Volume 30 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
CHENG Y,JIANG Y N,HOU Z J,et al.,2024. InSAR deformation observation and regional severe earthquake hazard analysis of the 2016 and 2022 strong earthquake activities in Menyuan, Qinghai[J]. Journal of Geomechanics,30(6):965−977 doi: 10.12090/j.issn.1006-6616.2023197
Citation: CHENG Y,JIANG Y N,HOU Z J,et al.,2024. InSAR deformation observation and regional severe earthquake hazard analysis of the 2016 and 2022 strong earthquake activities in Menyuan, Qinghai[J]. Journal of Geomechanics,30(6):965−977 doi: 10.12090/j.issn.1006-6616.2023197

InSAR deformation observation and regional severe earthquake hazard analysis of the 2016 and 2022 strong earthquake activities in Menyuan, Qinghai

doi: 10.12090/j.issn.1006-6616.2023197
Funds:  This research is financially supported by the Key Research and Development Program of the Sichuan Province (Grants No. 2023YFS0435 and 2023YFS0439) and Province National Natural Science Foundation (Grant No. 42304042).
More Information
  • Received: 2023-12-26
  • Revised: 2024-05-19
  • Accepted: 2024-05-31
  • Available Online: 2024-11-29
  • Published: 2024-12-27
  •   Objective  Over the past 30 years, Menyuan Country, Qinghai, has experienced three strong earthquakes, demonstrating active seismic activity. The focal mechanisms of these earthquakes showed remarkable differences and the epicenters were all located near the Lenglongling fault.   Methods  In order to quantitatively analyze the activity characteristics of the Menyuan seismic sequence using InSAR technology to obtain the coseismic deformation field of the Menyuan earthquake of 2016 and 2022 and establish an appropriate fault model, the fine slip distributions of the two earthquakes were obtained through steepest decent method (SDM). Furthermore, the static Coulomb stress changes on the faults in the region and its surroundings caused by the Menyuan Mw 6.6 earthquake in 2022 were evaluated.   Results  The coseismic deformation field in 2016 exhibited a single elliptical uplift center, with predominantly thrust motion. In contrast, the spatial distribution of the deformation field in 2022 was more complex, showing a Y-shaped distribution, and there was a slight variation in the rupture direction from west to east, with primarily horizontal deformation.  Conclusion  The two earthquakes also differed in their slip patterns and shallow and deep structural styles. In 2016, the seismic activity was weak, with a slip zone existing at depths between 8 km and 12 km, where the maximum slip was only 0.23 m. The fault plane had a low inclination angle, which is a characteristic of deep-seated slip. By contrast, the 2022 earthquake was a typical shallow-focus earthquake featuring three distinct slip areas. The primary rupture occurred in the Lenglongling section, concentrated in the shallow part from 1 km to 7 km, with a maximum displacement of 3.22 m. A significant slip also occurred along the western extension of the Lenglongling fault, reaching a maximum slip of 2.59 m. The Tuolaishan section experienced rupturing mainly between 3 km and 8 km, with the maximum slip recorded as 2.1 m.  Significance  Combined with the analysis of the Menyuan earthquake activity in 1986, it is inferred that the Menyuan earthquake sequence is dominated by the activity of the Lenglongling fault, which is continuously adapting to new structures and stress adjustments in its northeast extension and shows compressive-shortening activity trend. The 2022 Menyuan Mw 6.6 earthquake had a significant impact range, and earthquake hazards need to be continuously monitored and studied further, especially in areas where static Coulomb stress changes exceed the hazard threshold.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ALLEN M B, WALTERS R J, SONG S G, et al., 2017. Partitioning of oblique convergence coupled to the fault locking behavior of fold-and-thrust belts: evidence from the Qilian Shan, northeastern Tibetan Plateau[J]. Tectonics, 36(9): 1679-1698. doi: 10.1002/2017TC004476
    [2]
    CHEN X H, SHAO Z G, XIONG X S, et al., 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995-1020. (in Chinese with English abstract
    [3]
    DAOUT S, JOLIVET R, LASSERRE C, et al. 2016. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR[J]. Geo-physical Supplements to the Monthly Notices of the Royal Astronomical Society, 205(1): 536-547.
    [4]
    FAN L P, LI B R, LIAO S R, et al., 2022. High-precision relocation of the aftershock sequence of the January 8, 2022, MS 6.9 Menyuan earthquake[J]. Earthquake Science, 35(2): 138-145. doi: 10.1016/j.eqs.2022.01.021
    [5]
    GAUDEMER Y, TAPPONNIER P, MEYER B, et al., 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    [6]
    GUO P, HAN Z J, AN Y F, et al., 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS 6.4 Menyuan earthquake[J]. Science China Earth Sciences, 60(5): 929-942. doi: 10.1007/s11430-016-9007-2
    [7]
    GUO P, HAN Z J, MAO Z B, et al., 2019. Paleoearthquakes and rupture behavior of the Lenglongling fault: implications for seismic hazards of the northeastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 124(2): 1520-1543. doi: 10.1029/2018JB016586
    [8]
    HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS 6.9 Earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168. (in Chinese with English abstract
    [9]
    HE J K, LU S J, WANG W M, 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions[J]. Tectonophysics, 584: 257-266. doi: 10.1016/j.tecto.2012.03.025
    [10]
    HE W G, YUAN D Y, GE W P, et al., 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian mountain active fault zone[J]. Earthquake, 30(1): 131-137. (in Chinese with English abstract
    [11]
    HE X H, ZHANG Y P, SHEN X Z, et al., 2020. Examination of the repeatability of two MS 6.4 Menyuan earthquakes in Qilian-Haiyuan fault zone (NE Tibetan Plateau) based on source parameters[J]. Physics of the Earth and Planetary Interiors, 299: 106408. doi: 10.1016/j.pepi.2019.106408
    [12]
    HU C Z, YANG P X, LI Z M, et al., 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS 6.4 earthquake[J]. Chinese Journal of Geophysics, 59(5): 1637-1646. (in Chinese with English abstract
    [13]
    JI L Y, LIU C J, XU J, et al., 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS 7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082. (in Chinese with English abstract
    [14]
    LI Y S, JIANG W L, ZHANG J F, et al., 2016. Space geodetic observations and modeling of 2016 MW 5.9 Menyuan earthquake: implications on seismogenic tectonic motion[J]. Remote Sensing, 8(6): 519. doi: 10.3390/rs8060519
    [15]
    LI Y S, JIANG W L, LI Y J, et al., 2022. Coseismic rupture model and tectonic implications of the January 7 2022, Menyuan MW 6.6 earthquake constraints from InSAR observations and field investigation[J]. Remote Sensing, 14(9): 2111. doi: 10.3390/rs14092111
    [16]
    LIANG K, HE Z T, JIANG W L, et al., 2022. Surface rupture characteristics of the Menyuan MS 6.9 earthquake on January 8, 2022, Qinghai Province[J]. Seismology and Geology, 44(1): 256-278. (in Chinese with English abstract
    [17]
    LIU B Y, ZENG W H, YUAN D Y, et al., 2015. The research on fault parameter and sliding behavior of the 1927 Gulang M8.0 earthquake[J]. Seismology and Geology, 37(3): 818-828. (in Chinese with English abstract
    [18]
    LIU M, LI H Y, PENG Z G, et al., 2019. Spatial-temporal distribution of early aftershocks following the 2016 MS 6.4 Menyuan, Qinghai, China Earthquake[J]. Tectonophysics, 766: 469-479. doi: 10.1016/j.tecto.2019.06.022
    [19]
    LIU Y H, ZHANG G H, ZHANG Y F, et al., 2018. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements[J]. Journal of Asian Earth Sciences, 158: 103-111. doi: 10.1016/j.jseaes.2018.02.009
    [20]
    LIU Y, XU C J, WEN Y M. 2019. InSAR observation of Menyuan MW5. 9 earthquake deformation and deep geometry of regional fault zone [J]. Geomatics and Information Science of Wuhan University. 44(7): 1035-1042. (in Chinese with English abstract
    [21]
    LI Z H, HAN B Q, LIU Z J, et al., 2022. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 47(6): 887-897. (in Chinese with English abstract
    [22]
    LUO H, WANG T, 2022. Strain partitioning on the western Haiyuan fault system revealed by the adjacent 2016 MW5.9 and 2022 MW6.7 Menyuan earthquakes[J]. Geophysical Research Letters, 49(16): e2022GL099348. doi: 10.1029/2022GL099348
    [23]
    MA B Q, LI D W, 2008. Stages of the neotectonic movement of the Menyuan Basin in the middle segment of the Qilian mountains[J]. Journal of Geomechanics, 14(3): 201-211. (in Chinese with English abstract
    [24]
    PAN J W, LI H B, CHEVALIER M L, et al., 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS 6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 96(1): 215-231. (in Chinese with English abstract
    [25]
    TANG D W, GE W P, YUAN D Y, et al., 2023. Triggering effect of historical earthquakes in the northern Tibetan Plateau on the Coulomb stress of the 2022 Menyuan MS 6.9 earthquake and subsequent earthquakes[J]. Chinese Journal of Geophysics, 66(7): 2772-2795. (in Chinese with English abstract
    [26]
    WANG J Y, DING L, HE J K, et al., 2023. Research of seismogenic structures of the 2016 and 2022 Menyuan earthquakes, in the Northeastern Tibetan Plateau[J]. Remote Sensing, 15(3): 742. doi: 10.3390/rs15030742
    [27]
    WANG K, DREGER D S, TINTI E, et al., 2020. Rupture process of the 2019 Ridgecrest, California MW 6.4 foreshock and MW 7.1 earthquake constrained by seismic and geodetic data[J]. Bulletin of the Seismological Society of America, 110(4): 1603-1626. doi: 10.1785/0120200108
    [28]
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
    [29]
    WANG R J, LORENZO-MARTÍN F, ROTH F, 2006. PSGRN/PSCMP: a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 32(4): 527-541.
    [30]
    WANG R J, DIAO F Q, HOECHNER A, 2013. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//EGU general assembly conference abstracts. Vienna, Austria: EUG.
    [31]
    WANG X, LI S P, KANg J, 2023. InSAR observations constrained coseismic slip distribution and Coulomb stress variation of MW 6.7 Menyuan earthquake in 2022[J]. Bulletin of Surveying and Mapping(7): 32-38. (in Chinese with English abstract
    [32]
    WU C, CHEN X H, DING L, 2023. Tectonic evolution and Cenozoic deformation history of the Qilian orogen[J]. Earth Science Frontiers, 30(3): 262-281. (in Chinese with English abstract
    [33]
    XIONG J G, LI Y L, ZHONG Y Z, et al., 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau[J]. Tectonics, 36(12): 2973-2986. doi: 10.1002/2017TC004648
    [34]
    XIONG W, CHEN W, ZHAO B, et al., 2019. Insight into the 2016 Menyuan MW 5.9 earthquake with InSAR: a blind reverse event promoted by historical earthquakes[J]. Pure and Applied Geophysics, 176(2): 577-591. doi: 10.1007/s00024-018-2000-0
    [35]
    XU G Y, XU X W, YI Y N, et al., 2022. Seismogenic structure of the 2022 Menyuan MW 6.6 earthquake, Qinghai Province, constrained by InSAR and Gaofen-7 observation[J]. Chinese Journal of Geophysics, 65(12): 4704-4724. (in Chinese with English abstract
    [36]
    YANG H F, WANG D, GUO R M, et al., 2022. Rapid report of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2(1): 100113. doi: 10.1016/j.eqrea.2022.100113
    [37]
    YU P F, CHEN W, QIAO X J, et al., 2022. Slip model of the 2022 Menyuan MS 6.9 earthquake constrained by multi-source SAR data[J]. Geomatics and Information Science of Wuhan University, 47(6): 898-906. (in Chinese with English abstract
    [38]
    YUAN D Y, XIE H, SU R H, et al., 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS 6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 66(1): 229-244. (in Chinese with English abstract
    [39]
    ZHANG Y F, SHAN X J, ZHANG G H, et al., 2020. The 2016 MW 5.9 Menyuan earthquake in the Qilian orogen, China: a potentially delayed depth-segmented rupture following from the 1986 MW 6.0 Menyuan earthquake[J]. Seismological Research Letters, 91(2A): 758-769. doi: 10.1785/0220190168
    [40]
    ZHANG Y F, CHEN J, GONG W Y, et al., 2023. Geodetic modelling of the 2022 MW 6.6 Menyuan earthquake: insight into the strain-partitioned northern Qilian Shan fault system and implications for regional tectonics and seismic hazards[J]. Geophysical Journal International, 233(3): 1987-2003. doi: 10.1093/gji/ggad012
    [41]
    ZHAO D Z, QU C Y, ZHANG G F, et al., 2023. Applications and advances for the coseismic deformation observations, earthquake emergency response and seismogenic structure investigation using InSAR[J]. Seismology and Geology, 45(2): 570-592. (in Chinese with English abstract
    [42]
    ZHAO L Q, SUN X Y, ZHAN Y, et al., 2022. The seismogenic model of the Menyuan MS 6.9 earthquake on January 8, 2022, Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics, 65(4): 1536-1546. (in Chinese with English abstract
    [43]
    ZHENG B W, GONG W Y, WEN S Y, et al. , 2018. Study on the seismogenic fault characteristics of 2016 Mw5. 9 Menyuan earthquake based on Sentinel-1A data[J]. Seismol. Geol. 40: 872-82. (in Chinese with English abstract
    [44]
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract
    [45]
    ZHU L, DAI Y, SHI F Q, et al., 2022. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 44(2): 223-336. (in Chinese with English abstract
    [46]
    ZUZA A V, WU C, REITH R C, et al., 2018. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925. doi: 10.1130/B31721.1
    [47]
    陈宣华,邵兆刚,熊小松,等,2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质,46(5):995-1020. doi: 10.12029/gc20190504
    [48]
    韩帅,吴中海,高扬,等,2022. 2022年1月8日青海门源MS 6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155-168.
    [49]
    何文贵,袁道阳,葛伟鹏,等,2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震,30(1):131-137. doi: 10.3969/j.issn.1000-3274.2010.01.015
    [50]
    胡朝忠,杨攀新,李智敏,等,2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637-1646. doi: 10.6038/cjg20160509
    [51]
    季灵运,刘传金,徐晶,等,2017. 九寨沟MS 7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报,60(10):4069-4082. doi: 10.6038/cjg20171032
    [52]
    梁宽,何仲太,姜文亮,等,2022. 2022年1月8日青海门源MS6.9地震的同震地表破裂特征[J]. 地震地质,44(1):256-278. doi: 10.3969/j.issn.0253-4967.2022.01.016
    [53]
    刘洋,许才军,温扬茂,等,2019. 门源MW5.9级地震形变InSAR观测及区域断裂带深部几何形态[J]. 武汉大学学报(信息科学版),44(07):1035-1042.
    [54]
    李振洪,韩炳权,刘振江,等,2022. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 47 (6):887-897.
    [55]
    刘白云,曾文浩,袁道阳,等,2015. 1927年古浪8级大地震断层面参数和滑动性质[J]. 地震地质,37(3):818-828
    [56]
    马保起,李德文,2008. 祁连山中段门源盆地新构造运动的阶段划分[J]. 地质力学学报,14(3):201-211. doi: 10.3969/j.issn.1006-6616.2008.03.002
    [57]
    潘家伟,李海兵,CHEVALIER M L,等,2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215-231. doi: 10.3969/j.issn.0001-5717.2022.01.018
    [58]
    汤大委,葛伟鹏,袁道阳,等,2023. 青藏高原北部历史强震对2022年门源MS6.9地震及后续地震库仑应力触发作用[J]. 地球物理学报,66(7):2772-2795. doi: 10.6038/cjg2022Q0400
    [59]
    王欣,李水平,康晶,2023. InSAR观测约束2022年门源MW 6.7级地震同震滑动分布和库伦应力变化[J]. 测绘通报(7):32-38.
    [60]
    吴晨,陈宣华,丁林,2023. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘,30(3):262-281.
    [61]
    许光煜,徐锡伟,易亚宁,等,2022. 2022年青海门源MW6.6地震发震构造:来自InSAR和高分影像约束[J]. 地球物理学报,65(12):4704-4724. doi: 10.6038/cjg2022Q0080
    [62]
    余鹏飞,陈威,乔学军,等,2022. 基于多源SAR数据的2022年门源MS6.9地震同震破裂模型反演研究[J]. 武汉大学学报·信息科学版,47(6):898-906.
    [63]
    袁道阳,谢虹,苏瑞欢,等,2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229-244. doi: 10.6038/cjg2022Q0093
    [64]
    赵德政,屈春燕,张桂芳,等,2023. 基于InSAR技术的同震形变获取、地震应急监测和发震构造研究应用进展[J]. 地震地质,45(2):570-592. doi: 10.3969/j.issn.0253-4967.2023.02.016
    [65]
    赵凌强,孙翔宇,詹艳,等,2022. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报,65(4):1536-1546. doi: 10.6038/cjg2022Q0051
    [66]
    郑文俊,张培震,袁道阳,等,2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报,25(5):699-721. doi: 10.12090/j.issn.1006-6616.2019.25.05.062
    [67]
    郑博文,龚文瑜,温少妍,等,2018. 基于Sentinel-1A的2016年青海门源M_W5.9地震发震构造特征[J]. 地震地质,40(04):872-882. doi: 10.3969/j.issn.0253-4967.2018.04.011
    [68]
    朱琳,戴勇,石富强,等,2022. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报,44(2):223-236. doi: 10.11939/jass.20220012
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (187) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return