FAN R Y,YANG M M,ZHOU J P,et al.,2023. The spore-pollen assemblages of the Miocene Baode Formation from Borehole ZK301 in the Yuncheng Basin and its geological significance[J]. Journal of Geomechanics,29(4):543−554 doi: 10.12090/j.issn.1006-6616.2023053
Citation: HAN Shuai, WU Zhonghai, GAO Yang, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS 6.9 Earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk. Journal of Geomechanics, 28 (2): 155-168. DOI: 10.12090/j.issn.1006-6616.2022013

Surface rupture investigation of the 2022 Menyuan MS 6.9 Earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk

doi: 10.12090/j.issn.1006-6616.2022013
Funds:

the Fundamental Research Funds of the Institute of Geomechanics Grant No.35, 56

More Information
  • The MS 6.9 Menyuan earthquake on January 8, 2022 occurred in the Qilian Mountain fault block in the northeastern margin of the Tibetan Plateau. The instrumental epicenter is located in the Lenglongling fault zone in the west section of the Haiyuan active fault system. It is another strong earthquake with M>6.5 that occurred in the fault system after the Haiyuan M 8.5 earthquake in 1920. The preliminary conclusion of the investigation results shows that the Menyuan earthquake generated two main fracture zones in the south and north separately, which are distributed in left-step oblique arrangement with a total length of nearly 23 km, and there is a surface rupture cavity with a length of about 3.2 km and a width of nearly 2 km between them. The south branch rupture (F1) appears in the east section of the Tuolaishan fault, striking 91°, with a length of about 2.4 km. It is mainly characterized by southward thrust and sinistral strike slip, with a maximum horizontal displacement of nearly 0.4 m. The north branch main rupture (F2) appears in the west section of the Lenglongling fault, with a total length of nearly 20 km. It is mainly sinistral strike-slip deformation, and presents an overall slightly convex arc distribution to the northeast, including the west, middle and east sections of 102°, 109° and 118°, respectively. The maximum strike-slip displacement occurs in the middle section, which is 3.0±0.2 m. In addition, a new north branch secondary fault (F3) with a cumulative length of about 7.6 km, dominated by normal-dextral fault, is discovered on the north side of the middle to east section of the main fault of the north branch, with a cumulative maximum horizontal displacement of about 0.8 m and a maximum normal vertical displacement of about 1.5 m. Comprehensively, the whole coseismic rupture is mainly sinistral strike-slip and has the characteristics of bilateral rupture, whereas the macroscopic epicenter is located in the north branch of midway through the main fracture zone, thus the strike-slip displacement of the surface may be associated with the shallow rupture of the source. The normal-dextral rupture is likely to be caused by the differential movement of the north block dragged by the active south plate. The south Qilian block was extruded eastward along the Haiyuan sinistral strike-slip fault system due to the strong collision and compression between the Indian and Eurasian plates, which led to the simultaneous rupture of the Tuolaishan fault and the Lenglongling fault. This is the main dynamic mechanism leading to the strong earthquake. Under the background of continental dynamics, further attention should be paid to the future strong earthquake risk of the Qilian Mountain fault block and its surrounding area with the Haiyuan sinistral strike-slip fault system as the main boundary.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • Zdansky(1923)将山西省保德县冀家沟一套产三趾马化石的红土命名为“三趾马红土”,又称“保德红土”。全国地层委员会(1963)首次将“三趾马红土”称为保德阶。山西省区调队(1978)将“三趾马红土”之下的底砾层和“三趾马红土”下部重新厘定为保德组(邓涛等,2004)。保德组主要分布于山西地堑系的运城盆地、临汾盆地、太原盆地以及大同盆地,岩性主要由粗碎屑岩和黏土组成,不整合于前新生代地层之上(山西省地质矿产局,1989)。古地磁测年和哺乳动物化石研究表明,保德组的沉积时代为中新世晚期(张云翔等,1997邓涛等,20042008):陕西省府谷县老高川剖面保德组古地磁年龄为7.4~5.3 Ma(张云翔等,1997),保德县冀家沟保德组古地磁年龄为10.0~5.3 Ma(邓涛等,2004),三门峡盆地“三趾马红土”保德组古地磁年龄为12.0~5.3 Ma(邓涛等,2008)。汾渭地堑系保德组含有丰富的哺乳动物化石(童永生等,1995张云翔等,1997邓涛等,2004),也表明其沉积时代为中新世晚期(童永生等,1995)。

    区域地质资料研究表明,中新世保德组沉积时期是青藏高原向北东方向隆升扩展影响到鄂尔多斯周缘新生代盆地的关键时期,该期构造事件对河西走廊及鄂尔多斯周缘的古气候环境都产生了明显的影响(Li et al.,2011索艳慧等,2017李三忠等,2019Shi et al.,2020)。保德组红黏土广泛分布于鄂尔多斯及周缘地区,黏土形成演化与青藏高原10~8 Ma的强烈隆升密切相关(邓涛等,2004Molnar,2005)。河西走廊循化盆地与保德组沉积时代相当的地层中,孢粉组合以麻黄粉属−白刺粉属−藜粉属为主,古植被表现为灌丛草原,气候持续变冷变干,表明青藏高原向北东方向的隆升扩展已经影响到了该区域古气候环境的变化(徐增连,2015)。汾渭地堑系三门峡盆地保德组的孢粉组合中,以桑科−藜科−蒿属−禾本科孢粉为主,孢粉浓度低,植物种类单调,气候相对寒冷干旱(陈兴强,2017)。山西地堑系保德县芦子沟剖面保德组的孢粉组合中,乔木植物花粉含量已经较高,并且种类丰富,亚热带植物如芸香科、漆树科等较常见,仍含有一定量的耐旱的蒿属、藜科和禾本科等,表明气候环境与循化盆地、三门峡盆地相比要温暖湿润的多(Li et al.,2011)。

    青藏高原中新世晚期向北东方向的隆升扩展引起了鄂尔多斯盆地的逆时针旋转,山西地堑系的运城盆地、临汾盆地、太原盆地、忻州盆地、大同盆地自南向北依次形成(Shi et al.,2020)。文章以山西地堑系最南段的运城盆地中的ZK301钻孔为研究对象,针对中新世保德组开展系统的孢粉分析,建立沉积孢粉和再沉积孢粉的演化序列,研究成果将为运城盆地中新世晚期的古气候和古构造背景研究提供新的依据。

    运城盆地是山西地堑系南部的新生代断陷盆地,其南部为中条山,北部有孤峰山、稷王山,西部为渭河盆地。盆地南北界山地均以一系列阶梯状的活动断裂与盆地相连,主要包括中条山北缘断裂、鸣条岗南缘断裂、鸣条岗北缘断裂、峨眉台地南缘断裂和峨眉台地北缘断裂(图1)。这些阶梯状的断裂将运城盆地划分为涑水平原和峨眉台地两大主要构造单元。盆地南部中条山出露太古界涑水杂岩、古元古界中条群,均为变质岩系,其上为中元古界长城系石英岩、黑色页岩、含硅质条带白云岩、震旦系冰碛岩以及寒武系、奥陶系碳酸盐岩(李振宏等,2020仇度伟等,2021)。盆地北部峨眉台地以孤峰山为中心,出露早白垩世花岗岩,两侧主要出露寒武系碳酸盐岩(齐玥等,20112016)。峨眉台地的其它地区主要出露中更新世离石黄土和上更新世马兰黄土,钻孔揭示其下主要为中新世—上新世的河湖相地层,以粉砂和黏土为主。夹持于中条山与峨眉台地之间的涑水平原为一套新生代河湖体系沉积,沉积厚度达3000 m,古近纪和新近纪地层在露头尺度上呈现明显的角度不整合接触关系。运城盆地古近纪的演化主要受控于东部的滨太平洋构造域,沉积中心仅仅局限于中条山北缘的盐湖一带,中新世时期受控于青藏高原向北东方向隆升扩展所引起的鄂尔多斯盆地逆时针旋转的远程效应,沉积中心在现今的峨眉台地一带(Shi et al.,2020)。早更新世时期,黄河贯通三门峡东流入海,峨眉台地形成(李振宏等,2020)。

    图  1  运城盆地区域地质简图
    Figure  1.  Regional geologic map of the Yuncheng Basin

    ZK301钻孔位于峨眉台地北缘断裂的下降盘,地表出露晚更新世马兰黄土,完钻井深1327.00 m(图2)。自上而下钻遇的层位包括晚更新世马兰黄土、丁村组,中更新世匼河组,早更新世三门组,上新世静乐组,中新世保德组以及二叠纪石盒子组。晚更新世马兰黄土(0~8.20 m)主要为一套棕色黏土质粉砂岩、粉砂质黏土岩,上部偶见炭质团块,下部发育钙质结核。晚更新世丁村组(8.20~134.53 m),主要为一套河流相的粗砂岩、细砂岩、粉砂岩沉积,纵向上存在多个向上变细的旋回。中更新世匼河组(134.53~283.32 m),主要为一套河流相的浅棕黄色粗中砂岩、粗砂岩,中砂岩中可见泥砾和砂质团块,粗砂岩中偶见砾石,局部可见砂纹层理,层理中见可见铁锰质条纹。早更新世三门组(283.32~744.48 m),底部为一套杂色砾岩,砾石多呈次圆状,少量呈现棱角状,成分主要为砂岩和灰岩,向上逐步过渡为含砾粗砂岩、粗砂岩;中部为一套棕红色黏土岩、粉砂质黏土岩,水平层理发育;上部为一套厚层状棕黄色砂岩,可见小型交错层理,偶见铁锰质条纹和钙质结核。上新世静乐组(744.48~794.00 m),主要为一套红棕色黏土、黏土质细砂岩,含大量的钙质结核。中新世保德组(794.00~1288.80 m),上部为红棕色黏土岩,底部为一套厚层状砾石层,砾石成分主要为砂岩,少量紫红色泥岩,向上逐步过渡为含砾粗砂岩、黏土质细砂岩,局部可见水平层理,与下覆的二叠世石盒子组棕黄色、黄绿色泥岩角度不整合接触。ZK301钻孔未打穿二叠纪石盒子组。

    图  2  ZK301钻孔中新世晚期保德组剖面柱状图
    Figure  2.  Histogram of the late Miocene Baode Formation from the Borehole ZK301

    研究目的层位为运城盆地ZK301钻孔中新世保德组,钻孔深度为794.00~1288.80 m,共采集孢粉样品37个(图2)。孢粉样品前处理、鉴定和分析均在中国地质科学院地质力学研究所孢粉实验室完成。为了保证获取足够的孢粉数量,每个样品称100 g烘干,之后加入1片石松子孢子片(10300粒/片)。然后在样品中加入20 %的盐酸去除碳酸盐。样品洗至中性后,再加入40 %的氢氟酸去除硅酸盐。再洗至中性后,在超声波清洗器中先后过200 µm和7 µm筛布富集孢粉。最后,转移到1 ml的指形管中,加入甘油保存,在孢粉鉴定室进行制片并在显微镜下进行鉴定。

    孢粉样品的鉴定在德国产Leica DM 2500 生物显微镜和日本产 Olympus BX-51 型光学显微镜下进行,照相采用Olympus DP25成像系统。鉴定过程中参考了《花粉分析》(坡克罗夫斯卡娅等,1956)、《中国植物花粉形态》(中国科学院植物研究所形态室孢粉组,1960)、《中国蕨类植物孢子形态》(中国科学院北京植物研究所古植物研究室孢粉组,1976)、《中国孢粉化石(第一卷):晚白垩世和第三纪孢粉》(宋之琛等,1999)等。最后,使用Tilia软件进行孢粉百分比计算和画图。再沉积孢粉是保存在老地层中的孢粉化石经过一系列的风化、剥蚀,搬运到新地层中继续保存下来的孢粉,常常与新形成的孢粉掺杂在一起。新生代沉积地层中再沉积孢粉和地层中新形成的孢粉以自身荧光进行区分。再沉积孢粉的镜下特点是深褐色至棕黑色,被压扁呈扁平或片状,外壁残破,保存不全或外壁纹饰不清,弱或无荧光。地层中新形成的孢粉一般是浅色的,自身荧光颜色为从黄色到橙色,通常在透射光下呈黄色—浅黄褐色。

    37块孢粉样品中,23块样品的孢粉含量达到100粒以上,其余14块样品少于100粒。孢粉数量达到100粒以上的样品参加孢粉百分含量的计算。样品中的孢粉由地层沉积时新形成的孢粉化石和再沉积孢粉化石两部分组成,地层中新形成的孢粉类型分属24科28属,主要孢粉类型见图3;再沉积孢粉类型分属13科15属,主要孢粉类型见图4。根据孢粉统计结果,建立了主要和具有代表性的孢粉百分比含量图谱(图5)。孢粉百分比含量反映的是某种植物在当时当地植被中的相对丰富程度,孢粉浓度是指单位体积或单位质量的沉积物中所含的孢粉粒数。依据主要孢粉类型、百分比关系、木本植物、草本及灌木植物类型、再沉积孢粉及孢粉浓度特征等,自下而上将ZK301钻孔中保德组孢粉组合划分为2个组合带。

    图  3  ZK301钻孔中新世晚期保德组主要孢粉类型(比例尺均为10 μm)
    1—蒿属;2—蓝刺头属;3—藜科;4—麻黄科;5—白刺属;6—白花丹科;7—禾本科;8—葎草属;9—蓼科;10—毛茛科;11—牻牛儿苗科;12—伞形科;13—莎草科;14—眼子菜科;15—槭树科;16—桦木科;17—胡桃科;18—柳属;19—椴树科;20—榆科;21—苏铁科;22—铁杉属;23—松属
    Figure  3.  Photomicrographs of selected spore-pollen types from the late Miocene Baode Formation from Borehole ZK301 (The scale is 10 μm)
    (1) Artemisia; (2) Echinops; (3) Chenopodiaceae; (4) Ephedraceae; (5) Nitraria; (6) Plumbaginaceae; (7) Gramineae; (8) Humulus; (9) Polygonaceae; (10) Ranunculaceae; (11) Geraniaceae; (12) Apiaceae; (13) Cyperaceae; (14) Potamogetonaceae; (15) Aceraceae; (16) Betulaceae; (17) Juglandaceae; (18) Salix; (19) Tiliaceae; (20) Ulmaceae; (21) Cycadaceae; (22) Tsuga; (23) Pinus
    图  4  ZK301钻孔中新世晚期保德组主要再沉积孢粉类型(比例尺均为10 μm)
    1—里白科;2—凤尾蕨科;3—卷柏科;4—紫萁科;5—水蕨科;6—克拉梭粉属;7—胡桃科:山核桃属;8—胡桃科:黄杞属;9—藜科;10—胡颓子科;11—麻黄科:梭形麻黄粉;12—麻黄科:多肋麻黄粉;13—柏科;14—南洋杉科;15—铁杉属;16—松属;17—云杉属
    Figure  4.  Photomicrographs of selected redeposited spore-pollen types of the late Miocene Baode Formation from Borehole ZK301 (The scale is 10 μm)
    (1) Gleicheniaceae; (2) Pteridaceae; (3) Selaginellaceae; (4) Osmundaceae; (5) Parkeriaceae; (6) Classopollis; (7) Juglandaceae: Carya; (8) Juglandaceae: Engelhardtia; (9) Chenopodiaceae; (10) Elaeagnaceae; (11) Ephedraceae: Ephedripites fusiformis; (12) Ephedraceae: Ephedripites multicotatus; (13) Cupressaceae; (14) Araucariaceae; (15) Tsuga; (16) Pinus; (17) Picea
    图  5  ZK301钻孔中新世晚期保德组孢粉百分比图谱
    Figure  5.  Spore-pollen percentage diagram of the late Miocene Baode Formation from Borehole ZK301

    该孢粉组合带共分析样品23块,其中14块样品达到统计孢粉含量要求,总体孢粉浓度较高,最高达19980粒/克。该组合带的孢粉包括地层沉积时新形成的孢粉化石和再沉积孢粉化石,其中再沉积孢粉的数量比地层中新形成的孢粉多。该孢粉组合带草本和灌木花粉占绝对优势,约53.9%~92.4%,主要由麻黄科(11.4%~60.0%)、藜科(5.6%~59.8%)和禾本科(0~17.3%)组成,麻黄科再沉积花粉所占比例较大,藜科和禾本科再沉积花粉所占比例较小。地层沉积时新形成的草本和灌木植物孢粉化石以麻黄科、藜科和禾本科占优势,还含有一定量的蒿属(0.3%~19.1%)、白花丹科(0~5.9%)、白刺属(0~5.3%)和少量的紫苑属、蓝刺头属、唇形科、蓼科、毛茛科、蔷薇科、牻牛儿苗科、伞形科、莎草科、眼子菜科。木本植物花粉(6.4%~43.1%)包括云杉属(0~18.6%)、松属(0~14.8%)、柏科(0~10.6%)、桦木科(0~5.9%)、胡桃科(0~4.9%)和少量的铁杉属、南洋杉科、克拉梭粉属、苏铁科、槭树科、柳属、椴树科、榆科等。蕨类植物孢子(0~12.0%)包括卷柏科(0~4.2%)、凤尾蕨科(0~4.2%)、里白科(0~3.5%)、紫萁科和水蕨科。再沉积花粉包括大量的麻黄科,还有藜科、胡桃科、胡颓子科、松属、云杉属、铁杉属、南洋杉科、柏科、克拉梭粉属、卷柏科、里白科、紫萁科、水蕨科和凤尾蕨科等。

    该孢粉组合带共分析样品14块,其中9块达到统计的孢粉含量要求,但总体孢粉浓度较低,未见再沉积孢粉。该组合带仍是草本和灌木花粉占绝对优势,约93.8%~98.7%,木本植物花粉含量少,仅占1.3%~5.5%,未见蕨类植物孢子。草本和灌木花粉以蒿属(75.9%~93.7%)和藜科(1.9%~19.8%)为主,出现葎草属(0~3.4%)花粉,还发现少量的禾本科(0~2.1%)、毛茛科(0~1.4%)、唇形科(0~0.9%)、菊科(0~0.9%)、白花丹科(0~0.8%)。与孢粉组合I带相比,蒿属花粉含量明显升高,藜科花粉含量显著降低。木本植物花粉(1.3%~5.5%)包括松属(0~2.1%)、胡桃科(0~2.1%)、桦木科(0~1.4%)、榆科(0~0.9%)和柳属(0~0.6%)等。

    ZK301钻孔的孢粉包括再沉积孢粉和新形成孢粉两部分。再沉积孢粉是由盆地周围及造山带老地层经过剥蚀、搬运和再沉积到新地层中富集的,并不能反映新地层本身的古植被和古环境。根据新形成孢粉组合带的特征, ZK301钻孔保德组孢粉组合大致可以分为以下2类植被与环境。

    孢粉组合带I(990.20~1288.80 m),以草本植物占优势、木本植物次之、蕨类植物最少。该组合带孢粉浓度较高,但再沉积孢粉比地层沉积时新形成的孢粉含量高,地层沉积时新形成的孢粉浓度并不高。地层沉积时新形成的孢粉组合特征以麻黄科、藜科和禾本科花粉占优势。麻黄科的生长环境条件极差, 是一种极度耐旱的荒漠植物,生长在年降水量不足100 mm的干旱、荒漠地区,是草原或半荒漠植物的典型代表,常用来指示干旱环境(中国植被编辑委员会,1980)。藜科为旱生和超旱生草本植物,一般来讲,藜科与蒿属相比,生长条件更为干旱,生长在开阔的陆地环境,现代藜科花粉在荒漠环境中占优势(许清海等,2005)。高含量的藜科花粉分布在年均温−2~4 ℃之间,年降水量300 mm以下地区(李文漪,1998)。禾本科为相对喜湿的中生草本植物,具有代表性,不少种类是草地、草甸和草原的建群种或优势种,在草原及荒漠草原地区指示低温高湿环境(罗传秀等,2006),以年均温−2~6 ℃为宜,年降水量300~600 mm之间为宜(Schäbitz,1994)。菊科蒿属的生境条件比藜科好,多分布在水分条件较好的低山和冲洪积扇上(Minckley and Whitlock,2000)。白刺属和白花丹科生长在干旱环境下的盐碱土壤(Grubov,2001)中。草本植物还零星发现耐寒的紫苑属、蓝刺头属和中生的唇形科、毛茛科、蔷薇科、伞形科等,以及水生的莎草科和眼子菜科。眼子菜科是生长在水下的植物,莎草科通常生长在湿润或沼泽地区,反应湿冷的生态环境(Xu et al.,2007)。综上所述,该时期的古植被是以麻黄科−藜科−禾本科为主的荒漠草原,反映寒冷干燥的气候环境。

    孢粉组合带II(794.00~990.20 m),与孢粉组合带I相比,孢粉浓度骤降,且未见再沉积孢粉。该孢粉组合带仍是草本和灌木花粉占绝对优势,木本植物花粉含量少,未见蕨类植物孢子。草本和灌木花粉以蒿属占绝对优势,其次是藜科花粉。蒿属和藜科植物属耐盐碱植物,也多生长在湖泊周围的河滩湿地,其往往与隐域性生境条件密切相关(Li et al.,2019)。干旱条件下藜科含量高,而半干旱条件下蒿含量高(闫顺,1991)。当蒿属和藜科植物成为绝对优势种群,则表现为荒漠景观,物种组成单调。组合带中出现葎草属花粉,葎草属常生长在沟边、荒地、废墟、林缘边。另外,还含有一些中生的草本植物禾本科、毛茛科和唇形科等,以及喜温湿的落叶阔叶植物花粉胡桃科、桦木科和榆科等。总体而言,该时期的古植被是以蒿属−藜科为主的荒漠草原,反映偏冷偏干的气候环境。

    上述分析表明,运城盆地峨嵋台地ZK301钻孔中新世保德组的孢粉组合特征能够比较客观地反映当地及周围的古植被和古气候演化过程。中新世晚期以藜科−禾本科−麻黄科为主的荒漠草原发展为以蒿属−藜科为主的荒漠草原,对应的古气候背景由寒冷干燥逐渐过渡为偏冷偏干,寒冷程度自中新世保德组沉积初期至晚期寒冷程度有所减弱,气候逐渐变的温和。这种古气候环境的变化过程可能与青藏高原隆升扩展影响到了运城盆地引起区域古气候的变迁有关。在中新世保德组沉积初期,由于青藏高原的强烈隆升扩展的远程效应,中条山及相邻的运城盆地气候突然变得寒冷干燥,随着强烈隆升作用的逐步减弱,气候也随之变得偏冷偏干。中新世保德组沉积时期古气候背景由寒冷干燥转变为偏冷偏干的过程,较好地响应了区域隆升扩展远程效应由强变弱的过程,反应了构造与气候之间的相互耦合关系。

    山西峨眉台地ZK301钻孔保德组下部孢粉I带(990.20~1288.80 m)含有大量的再沉积孢粉,而保德组上部孢粉II带(794.00~990.20 m)未发现再沉积孢粉。保德组钻孔序列中再沉积孢粉含量自下而上的变化,使得该区域孢粉分布的控制因素变得更为复杂。

    孢粉组合I带再沉积孢粉中,麻黄科含量最高,其次是松属、云杉属、柏科、藜科、胡桃科和蕨类植物孢子,还有少量的克拉梭粉属和胡颓子科等。克拉梭粉属开始出现于晚三叠世,繁盛于晚侏罗世—早白垩世,一直延续到古近纪(刘兆生,2000)。区域地质资料表明,运城盆地及中条山邻区均未发现晚三叠世、侏罗纪和白垩纪沉积,因此保德组中的再沉积克拉梭粉属应该来自于古近纪地层。受到区域隆升剥蚀以及盆地沉降的影响,中条山及邻区古近纪地层主要出露于中条山南缘平陆坡底、米汤沟一带,中条山北缘永济首阳一带也有局部分布。运城盐湖黑泥浴地热钻井中也钻遇到了该套地层,岩性组合与平陆坡底、米汤沟以及永济首阳一带的岩性组合特征基本一致,以紫红色泥岩、灰白色砂岩夹薄层石膏为典型特征(图1)。运城盆地ZK301钻孔保德组孢粉I带再沉积孢粉组合特征可与中条山南缘平陆坡底渐新世门里组和始新世高庙组相对比,古新世门里组孢粉的主要种属有:松属(23.2%)、麻黄科(12.0%)、罗汉松科(11.3%)、南洋杉科、雪松属、柏科、杉科、云杉属,以及被子植物胡桃科(6.2%)、栎属(6.2%)、柳属(1.9%)、漆树属和蕨类植物孢子;始新世高庙组的孢粉主要种属有:松属(22.1%)、麻黄科(20.4%)、柏科(5.5%)、杉科(4.6%),被子植物栎属(5.2%)、柳属(3.7%)、豆科、胡颓子科、桦木科、胡桃科、棕榈科、木兰科和一些蕨类植物孢子(山西省地质局二一四地质队,1982陈兴强,2017)。在中条山北缘永济首阳一带出露始新统至渐新统部分地层,岩性为灰白色砂岩、紫红色泥岩局部夹薄层石膏层,与上覆保德组底部砾岩呈角度不整合接触。中条山北缘运城盐湖地热钻孔资料显示,保德组底部岩性组合特征与ZK301钻孔以及露头资料完全可以对比,均为一套厚层砾岩,砾石成分有来自于中条山的混合花岗岩以及与古近纪沉积特征较为一致的紫红色泥岩、灰白色砂岩。区域上保德组底部砾岩的砾石成分表明,保德组沉积初期,中条山处于快速隆升期,运城盆地随之沉降,早期古近纪位于中条山山前的沉积中心迁移至现今的峨眉台地一带,在二叠系石盒子组基底之上开始接受晚新生代沉积。随着中条山北缘隆起范围的不断扩大,早期沉积的古近纪地层开始遭受剥蚀,向位于盆地沉积中心的峨眉台地一带提供物源。结合区域露头及钻孔资料综合分析,ZK301钻孔保德组中下部含有大量的再沉积孢粉,应该来自于中条山北缘古近纪地层的剥蚀再沉积。随着区域隆升剥蚀的逐步减弱,物源区由早期的快速抬升逐步趋于稳定,再沉积孢粉由于沉积速率的下降而淋滤消失,因而在保德组上部地层中基本上不再含有剥蚀再沉积的孢粉,而是以代表盆地气候背景的新生沉积孢粉为主。

    青藏高原自新生代以来经过多阶段快速隆升,向北东方向不断扩展,并在10~8 Ma期间影响到了青藏高原东北缘(方小敏,2017Shi et al.,2020寇琳琳等,2021),造成中新世以来鄂尔多斯盆地的逆时针旋转,进而使山西地堑系运城盆地峨眉台地、临汾盆地、太原盆地、大同盆地等一系列晚新生代盆地开始接受沉积(韩晓明等,2015林向东等,2017Shi et al.,2020; Chen et al.,2021秦帮策等,2021仲启蒙等,2022)。运城盆地峨眉台地上郭1井与ZK301钻孔保德组沉积序列完全可以对比,上郭1井保德组与下覆寒武系张夏组不整合接触,古地磁年龄限定保德组的底部沉积时代为9.1 Ma(闫纪元,2021)。通过与上郭1井沉积序列对比分析,ZK301钻孔的保德组底部年龄应该为9.1 Ma,也就是说运城盆地峨眉台地在该时期受到青藏高原隆升扩展的远程效应影响,开始接受沉积。中条山断裂自渐新世开始活动,晚中新世后构造活动显著增强,上盘强烈下沉和下盘相对隆升,造成中条山的隆升,也响应了该期构造运动(Su et al.,2021)。青藏高原在10~8 Ma期间隆升扩展的远程效应,在运城盆地沉积−气候方面都有较好的响应。中新世保德组沉积时期,运城盆地南缘中条山快速隆升,造成了中条山山麓河流加速下切,先期沉积在中条山北缘相对较高部位的古近纪地层被侵蚀、搬运、再沉积到了现今的峨眉台地区域,形成了中新世晚期的沉积中心,随着沉积中心不断扩展,汾渭地堑系最终形成(李振宏等,2020仇度伟等,2021图6)。运城盆地峨眉台地ZK301钻孔保德组与下覆二叠系石盒子组不整合接触,再沉积孢粉含量的变化正好响应了该期的隆升剥蚀、搬运到再沉积的过程。在古气候方面,运城盆地古近纪始新世至渐新世沉积时期总体上为温暖湿润的气候环境,但在中新世保德组沉积时期,气候变得寒冷干燥,正好响应了青藏高原隆升远程效应对气候变化的影响。随着隆升扩展程度的减弱,气候也逐渐变得相对温和,保德组上部偏冷偏干的气候背景也响应了该期构造活动逐渐减弱的过程。

    图  6  运城盆地新近系保德组沉积前后古地理格局
    a—保德组沉积前;b—保德组沉积初期
    Figure  6.  Paleogeographic pattern before and after the deposition of Neogene Baode Formation in the Yuncheng Basin
    (a) Before the deposition of the Baode Formation; (b) The early deposition stage of the Baode Formation

    (1)运城盆地ZK301钻孔中新世保德组孢粉具有新形成孢粉和再沉积孢粉两部分,二者分别反映了该沉积时期的古气候与古构造背景。

    (2)ZK301钻孔保德组新形成孢粉组合特征表明,运城盆地中新世晚期从以麻黄科−藜科−禾本科为主的荒漠草原发展为以蒿属−藜科为主的荒漠草原,对应的古气候背景由寒冷干燥逐步变化为偏冷偏干,这种变化与青藏高原隆升扩展由强变弱的趋势之间具有很好的响应关系。

    (3)ZK301钻孔保德组下部含较多的再沉积孢粉,上部几乎不含再沉积孢粉,这种变化响应了中条山及邻区中新世晚期的隆升由强逐渐减弱的过程,再沉积孢粉主要来自于古地形较高部位古近纪地层的剥蚀−搬运−再沉积,随着隆升强度的减弱,再沉积孢粉经过长期淋滤而消失。

  • DENG Q D, CHENG S P, MA J, et al., 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 57(7): 2025-2042. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201407001.htm
    GAI H L, YAO S H, YANG L P, et al., 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS7.4 Earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese with English abstract)
    GAO R, WANG H Y, WANG C S, et al., 2011. Lithospheric deformation shortening of the northeastern Tibetan Plateau: evidence from reprocessing of deep seismic reflection data[J]. Acta Geoscientia Sinica, 32(5): 513-520. (in Chinese with English abstract)
    GAUDEMER Y, TAPPONNIER P, MEYER B, et al., 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645, doi: 10.1111/j.1365-246X.1995.tb01842.x.
    GUO A N, LI X, BAI X J, et al., 2016. The Menyuan, Qinghai MS6.4 Earthquake on 21 January 2016 and its related parameters[J]. China Earthquake Engineering Journal, 38(1): 150-158. (in Chinese with English abstract)
    GUO P, HAN Z J, DONG S P, et al., 2019a. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau: implications for faulting behavior[J]. Journal of Asian Earth Sciences, 172: 190-207, doi: 10.1016/j.jseaes.2018.09.008.
    GUO P, HAN Z J, MAO Z B, et al., 2019b. Paleoearthquakes and rupture behavior of the Lenglongling fault: Implications for seismic hazards of the northeastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 124(2): 1520-1543, doi: 10.1029/2018JB016586.
    HE W G, LIU B C, YUAN D Y, et al., 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal, 22(1): 90-97. (in Chinese with English abstract)
    HE W G, YUAN D Y, GE W P, et al., 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian mountain active fault zone[J]. Earthquake, 30(1): 131-137. (in Chinese with English abstract)
    HU C Z, YANG P X, LI Z M, et al., 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics, 59(5): 1637-1646. (in Chinese with English abstract)
    JIA S X, ZHANG X K, 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan plateau[J]. Chinese Journal of Geophysics, 51(5): 1431-1443. (in Chinese with English abstract) http://www.oalib.com/paper/1568190
    JIANG W L, LI Y S, TIAN Y F, et al., 2017. Research of seismogenic structure of the menyuan MS6.4 earthquake on January 21, 2016 in Lenglongling area of ne Tibetan Plateau[J]. Seismology and Geology, 39(3): 536-549. (in Chinese with English abstract)
    LASSERRE C, MOREL P H, GAUDEMER Y, et al., 1999. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17633-17651, doi: 10.1029/1998JB900082.
    LI Y L, WANG C S, DAI J E, et al., 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review[J]. Earth-Science Reviews, 143: 36-61, doi: 10.1016/j.earscirev.2015.01.001
    LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)
    MA B Q, LI D W, 2008. Stages of the neotectonic movement of the Menyuan basin in the middle segment of the Qilian mountains[J]. Journal of Geomechanics, 14(3): 201-211. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200803004.htm
    PAN J W, BAI M K, LI C, et al., 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese with English abstract)
    PELTZER G, TAPPONNIER P, 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117, doi: 10.1029/JB093iB12p15085.
    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677, doi: 10.1126/science.105978.
    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002, doi: 10.1785/BSSA0840040974.
    WU Z H, ZHAO G M, 2013. The earthquake prediction status and related problems: a review[J]. Geological Bulletin of China, 32(10): 1493-1512. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201310002.htm
    WU Z H, ZHAO G M, LONG C X, et al., 2014. The seismic hazard assessment around South-East area of Qinghai-Xizang plateau: a preliminary results from active tectonics system analysis[J]. Acta Geologica Sinica, 88(8): 1401-1416. (in Chinese with English abstract)
    WU Z H, ZHAO G M, LIU J, 2016. Tectonic genesis of the 2015 Ms8.1 Nepal great earthquake and its influence on future strong earthquake tendency of Tibetan Plateau and its adjacent region[J]. Acta Geologica Sinica, 90(6): 1062-1085. (in Chinese with English abstract) http://www.researchgate.net/publication/324493674_2015niannipoerMs81dezhengouzaochengyinjiduiqingcanggaoyuanjilinquweilaiqiangzhenqushideyingxiang2015175
    XIA Y, 2015. The faulting tectonics and it's evolution in Tuolai river of Qilian mountain since the Mesozoic[D]. Beijing: China University of Geosciences (Beijing). (in Chinese)
    YUAN D Y, LIU B C, LV T Y, et al., 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal, 20(4): 27-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ199804003.htm
    YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 78(2): 270-278. (in Chinese with English abstract)
    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32(5): 1358-1370, doi: 10.1002/tect.20081.
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract)
    ZHAO Q, WANG S X, JIANG F Y, et al., 2017. Coseismic deformation field and fault slip distribution of the 2016 Qinghai Menyuan MW5.9 earthquake from InSAR measurement[J]. Earthquake, 37(2): 96-105. (in Chinese with English abstract)
    ZHENG W J, YUAN D Y, HE W G, 2004. Characteristics of Palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology, 26(4): 645-657. (in Chinese with English abstract)
    ZHOU C J, WU Z H, NIMA C R, et al., 2014. Structural analysis of the co-seismic surface ruptures associated with the Yushu Ms7.1 earthquake, Qinghai Province[J]. Geological Bulletin of China, 33(4): 551-566. (in Chinese with English abstract)
    邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 57(7): 2025-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407001.htm
    盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"MS7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27(6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073
    高锐, 王海燕, 王成善, 等, 2011. 青藏高原东北缘岩石圈缩短变形: 深地震反射剖面再处理提供的证据[J]. 地球学报, 32(5): 513-520. doi: 10.3975/cagsb.2011.05.01
    郭安宁, 李鑫, 白雪见, 等, 2016. 2016年1月21日青海门源6.4级地震及相关参数[J]. 地震工程学报, 38(1): 150-158. doi: 10.3969/j.issn.1000-0844.2016.01.0150
    何文贵, 刘百篪, 袁道阳, 等, 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报, 22(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200001017.htm
    何文贵, 袁道阳, 葛伟鹏, 等, 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 30(1): 131-137. doi: 10.3969/j.issn.1000-3274.2010.01.015
    胡朝忠, 杨攀新, 李智敏, 等, 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报, 59(5): 1637-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201605009.htm
    嘉世旭, 张先康, 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报, 51(5): 1431-1443. doi: 10.3321/j.issn:0001-5733.2008.05.016
    姜文亮, 李永生, 田云锋, 等, 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 39(3): 536-549. doi: 10.3969/j.issn.0253-4967.2017.03.007
    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
    马保起, 李德文, 2008. 祁连山中段门源盆地新构造运动的阶段划分[J]. 地质力学学报, 14(3): 201-211. doi: 10.3969/j.issn.1006-6616.2008.03.002
    潘家伟, 白明坤, 李超, 等, 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. doi: 10.3969/j.issn.0001-5717.2021.06.001
    吴中海, 赵根模, 2013. 地震预报现状及相关问题综述[J]. 地质通报, 32(10): 1493-1512. doi: 10.3969/j.issn.1671-2552.2013.10.002
    吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果[J]. 地质学报, 88(8): 1401-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408004.htm
    吴中海, 赵根模, 刘杰, 2016. 2015年尼泊尔Ms8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响[J]. 地质学报, 90(6): 1062-1085. doi: 10.3969/j.issn.0001-5717.2016.06.002
    夏阳, 2015. 祁连山托来河地区中生代以来的断裂构造及其演化[D]. 北京: 中国地质大学(北京).
    袁道阳, 刘百篪, 吕太乙, 等, 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报, 20(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ199804003.htm
    袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002
    赵强, 王双绪, 蒋锋云, 等, 2017. 利用InSAR技术研究2016年青海门源MW5.9地震同震形变场及断层滑动分布[J]. 地震, 37(2): 96-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201702009.htm
    郑文俊, 袁道阳, 何文贵, 2004. 祁连山东段天桥沟: 黄羊川断裂古地震活动习性研究[J]. 地震地质, 26(4): 645-657. doi: 10.3969/j.issn.0253-4967.2004.04.011
    周春景, 吴中海, 尼玛次仁, 等, 2014. 青海玉树Ms7.1级地震同震地表破裂构造[J]. 地质通报, 33(4): 551-566. doi: 10.3969/j.issn.1671-2552.2014.04.011
  • Relative Articles

    LU Shiming, WU Zhonghai, HUANG Ting. 2025: Characteristics of geological hazard development and disaster-inducing environment of the MS6.2 earthquake in Jishishan, Gansu Province. Journal of Geomechanics, 31(1): 139-155. doi: 10.12090/j.issn.1006-6616.2024069
    2025: Earthquake-induced fissures and formation mechanism of 2023 Jishishan Ms6.2 Earthquake. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024114
    2025: InSAR Coseismic Deformation Field and Tectonic Implications of the 2023 MS5.5 Subei Earthquake, Gansu, China. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024127
    2025: Static stress triggering of Morocco M6.9earthquakeon 9 September 2023. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024039
    LIU Shuai, HE Bin, WANG Tao, LIU Jiamei, CAO Jiawen, WANG Haojie, ZHANG Shuai, LI Kun, LI Ran, ZHANG Yongjun, DOU Xiaodong, WU Zhonghai, CHEN Peng, FENG Chengjun. 2024: Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China. Journal of Geomechanics, 30(2): 314-331. doi: 10.12090/j.issn.1006-6616.2024009
    ZOU Xiaobo, LI Xingjian, SHAO Yanxiu, YUAN Daoyang, QIU Jiangtao, YIN Xinxin, KOU Junyang. 2024: Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake. Journal of Geomechanics, 30(6): 978-990. doi: 10.12090/j.issn.1006-6616.2023125
    YAN Yuan. 2023: The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China. Journal of Geomechanics, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027
    CHANG Zufeng, ZHANG Jianguo, SHEN Chongyang, LI Chunguang, LIU Changwei, WANG Guangming, YU Jiang. 2022: The 2012 Thabeikkjin (Myanmar) M 7.0 earthquake and its surface rupture characteristics. Journal of Geomechanics, 28(2): 169-181. doi: 10.12090/j.issn.1006-6616.2021161
    HAN Mingming, CHEN Lichun, ZENG Di, LI Yanbao, LIANG Mingjian, GAO Shuaipo, WANG Dongbing, LUO Liang. 2022: Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone. Journal of Geomechanics, 28(6): 969-980. doi: 10.12090/j.issn.1006-6616.20222824
    ZHAO Di, CHEN Peng, LI Rongxi, WU Xiaoli, ZHAO Bangsheng, LIU Qi, WANG Xiaoxue. 2022: Discovery of the surface rupture zone along the southern branch of the Longshoushan Fault Zone, NW China and its significance to the deep structures of the 1954 Shandan MS 7¼ earthquake. Journal of Geomechanics, 28(4): 501-512. doi: 10.12090/j.issn.1006-6616.2022045
    WANG Guangming, WU Zhonghai, PENG Guanling, LIU Zifeng, LUO Ruijie, HUANG Xiaolong, CHEN Haopeng. 2021: Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence. Journal of Geomechanics, 27(4): 662-678. doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    GAI Hailong, YAO Shenghai, YANG Liping, KANG Taibo, YIN Xiang, CHEN Ting, LI Xin. 2021: Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and their significance. Journal of Geomechanics, 27(6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073
    FENG Chengjun, QI Bangshen, ZHANG Peng, SUN Dongsheng, MENG Jing, NIU Linlin, WANG Miaomiao, TAN Chengxuan, CHEN Qunce. 2018: CRUSTAL STRESS FIELD AND ITS TECTONIC SIGNIFICANCE NEAR THE LONGMENSHAN FAULT BELT, AFTER THE WENCHUAN Ms8.0 EARTHQUAKE. Journal of Geomechanics, 24(4): 439-451. doi: 10.12090/j.issn.1006-6616.2018.24.04.046
    YAO Xin, ZHANG Zhenkai, LI Lingjing, LIU Xinghong, YAO Jiaming. 2017: INSAR CO-SEISMIC DEFORMATION OF 2017 Ms 7.0 JIUZHAIGOU EARTHQUAKE AND DISCUSSIONS ON SEISMOGENIC TECTONICS. Journal of Geomechanics, 23(4): 507-514.
    WU Kun-gang, WU Zhong-hai, HUANG Xiao-long, FENG Hui, ZHOU Chun-jing. 2015: ANALYSIS ON MAIN CHARACTERISTICS OF EARTHQUAKE DAMAGE CAUSED BY MS 6.1 EARTHQUAKE ON MAY 30, 2014 IN YINGJIANG COUNTY, YUNNAN PROVINCE. Journal of Geomechanics, (1): 87-96.
    WANG Lian-jie, CUI Jun-wen, WANG Wei, QIAO Zi-jiang, SUN Dong-sheng, ZHAO Wei-Hua. 2010: NUMERICAL MODELING FOR MECHANISM OF YUSHU MS7.1 EARTHQUAKE. Journal of Geomechanics, 16(2): 137-145.
    MA Bao-qi, LI De-wen. 2008: STAGES OF THE NEOTECTONIC MOVEMENT OF THE MENYUAN BASIN IN THE MIDDLE SEGMENT OF THE QILIAN MOUNTAINS. Journal of Geomechanics, 14(3): 201-211.
    JIANG Wa-li, XIE Xin-sheng. 2006: CHARACTERISTICS OF SEGMENTS OF SURFACE RUPTURES OF STRONG EARTHQUAKES ALONG THE EAST KUNLUN ACTIVE FAULT ZONE. Journal of Geomechanics, 12(2): 132-139.
    SUN Yan, LI Ben-liang, LIU Hai-ling, WNAG Xing-yuan. 1999: ON LAYER-SLIP,DIP-SLIP AND STRIKE-SLIP FAULT SYSTEMS. Journal of Geomechanics, 5(3): 53-57.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03050100150200250
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 78.8 %META: 78.8 %PDF: 12.0 %PDF: 12.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %Baden: 0.1 %Baden: 0.1 %China: 0.4 %China: 0.4 %Edinburg: 0.1 %Edinburg: 0.1 %India: 0.0 %India: 0.0 %Japan: 0.1 %Japan: 0.1 %Poland: 0.1 %Poland: 0.1 %United States: 0.4 %United States: 0.4 %三明: 0.1 %三明: 0.1 %上海: 1.4 %上海: 1.4 %东莞: 0.4 %东莞: 0.4 %东营: 0.1 %东营: 0.1 %中卫: 1.3 %中卫: 1.3 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %乌海: 0.0 %乌海: 0.0 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %九江: 0.1 %九江: 0.1 %伊犁: 0.0 %伊犁: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.1 %保定: 0.1 %克拉玛依: 0.0 %克拉玛依: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.7 %兰州: 0.7 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.1 %包头: 0.1 %北京: 15.0 %北京: 15.0 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %南阳: 0.0 %南阳: 0.0 %厦门: 0.1 %厦门: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈里亚纳: 0.1 %哈里亚纳: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.0 %四平: 0.0 %大同: 1.7 %大同: 1.7 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 0.0 %威海: 0.0 %宁德: 0.0 %宁德: 0.0 %安康: 0.2 %安康: 0.2 %安德森: 0.1 %安德森: 0.1 %安阳: 0.0 %安阳: 0.0 %定西: 0.3 %定西: 0.3 %宜昌: 0.0 %宜昌: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.2 %宣城: 0.2 %宿州: 0.1 %宿州: 0.1 %山南: 0.0 %山南: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴音郭楞蒙古自治州: 0.1 %巴音郭楞蒙古自治州: 0.1 %常州: 0.0 %常州: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.3 %广州: 0.3 %库卡蒙格牧场: 0.0 %库卡蒙格牧场: 0.0 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.2 %廊坊: 0.2 %延边: 0.1 %延边: 0.1 %开封: 0.0 %开封: 0.0 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %忻州: 0.1 %忻州: 0.1 %成都: 30.5 %成都: 30.5 %扬州: 0.0 %扬州: 0.0 %抚顺: 0.0 %抚顺: 0.0 %拉萨: 0.2 %拉萨: 0.2 %拉贾斯坦邦: 0.0 %拉贾斯坦邦: 0.0 %无锡: 0.1 %无锡: 0.1 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.5 %昆明: 0.5 %昌吉: 0.1 %昌吉: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %曲靖: 0.0 %曲靖: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.1 %杭州: 0.1 %果洛: 0.0 %果洛: 0.0 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.1 %梅州: 0.1 %榆林: 0.1 %榆林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 1.5 %武汉: 1.5 %江门: 0.0 %江门: 0.0 %池州: 0.0 %池州: 0.0 %沈阳: 0.2 %沈阳: 0.2 %泉州: 0.1 %泉州: 0.1 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %泰安: 0.2 %泰安: 0.2 %泰州: 0.0 %泰州: 0.0 %济南: 0.8 %济南: 0.8 %济源: 0.1 %济源: 0.1 %海东: 0.1 %海东: 0.1 %海北: 0.1 %海北: 0.1 %海口: 0.0 %海口: 0.0 %海西: 0.0 %海西: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %滁州: 0.1 %滁州: 0.1 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.1 %漳州: 0.1 %潍坊: 0.0 %潍坊: 0.0 %焦作: 0.1 %焦作: 0.1 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %白银: 0.1 %白银: 0.1 %百色: 0.0 %百色: 0.0 %益阳: 0.1 %益阳: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.3 %纽约: 0.3 %绵阳: 0.1 %绵阳: 0.1 %自贡: 0.0 %自贡: 0.0 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 10.7 %芒廷维尤: 10.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.0 %苏州: 0.0 %荆州: 0.0 %荆州: 0.0 %莆田: 0.0 %莆田: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %西双版纳: 0.0 %西双版纳: 0.0 %西宁: 11.5 %西宁: 11.5 %西安: 0.7 %西安: 0.7 %许昌: 0.1 %许昌: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.3 %贵阳: 0.3 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %通化: 0.1 %通化: 0.1 %遵义: 0.0 %遵义: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %鄂尔多斯: 0.0 %鄂尔多斯: 0.0 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.9 %重庆: 0.9 %金昌: 0.0 %金昌: 0.0 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.2 %银川: 0.2 %锦州: 0.1 %锦州: 0.1 %长春: 0.4 %长春: 0.4 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.1 %阳泉: 0.1 %陇南: 0.0 %陇南: 0.0 %雅安: 0.0 %雅安: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %黄山: 0.0 %黄山: 0.0 %黔南布依族苗族自治州: 0.0 %黔南布依族苗族自治州: 0.0 %其他BadenChinaEdinburgIndiaJapanPolandUnited States三明上海东莞东营中卫临汾临沂丹东乌海乌鲁木齐九江伊犁佛山佳木斯保定克拉玛依六安兰州加利福尼亚州包头北京北海十堰南京南宁南平南昌南通南阳厦门台州合肥吴忠呼和浩特咸阳哈尔滨哈里亚纳哥伦布商丘嘉兴四平大同大庆大连天津太原威海宁德安康安德森安阳定西宜昌宜春宝鸡宣城宿州山南巴音郭楞巴音郭楞蒙古自治州常州平顶山广州库卡蒙格牧场库比蒂诺廊坊延边开封张家口徐州德阳忻州成都扬州抚顺拉萨拉贾斯坦邦无锡日喀则昆明昌吉晋中晋城普洱曲靖朝阳杭州果洛枣庄柳州格兰特县桂林梅州榆林武威武汉江门池州沈阳泉州法尔肯施泰因泰安泰州济南济源海东海北海口海西淄博深圳温州渭南湖州滁州滨州漯河漳州潍坊焦作玉林珠海白银百色益阳石嘴山石家庄福州秦皇岛纽约绵阳自贡舟山芒廷维尤芝加哥苏州荆州莆田葫芦岛衡水衡阳衢州西双版纳西宁西安许昌诺沃克贵阳赤峰达州运城通化遵义邢台邯郸郑州鄂尔多斯酒泉重庆金昌铁岭银川锦州长春长沙阳泉陇南雅安青岛鞍山马鞍山黄山黔南布依族苗族自治州

Catalog

    Figures(8)

    Article Metrics

    Article views (2460) PDF downloads(374) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return