Liu wencan, Li Dongxu, Gao Dezhen, 1996. ANALYSIS OF THE TIME SEQUENCE OF COMPOUNDING OF STRUCTURAL DEFORMATION SYSTEMS AND THE RESULTING EFFECTS IN TONGLING AREA. Journal of Geomechanics, 2 (1): 42-48.
Citation: ZOU X B,Li X J,SHAO Y X,et al.,2024. Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake[J]. Journal of Geomechanics,30(6):978−990 doi: 10.12090/j.issn.1006-6616.2023125

Tectonic deformation and seismic mechanism of the 2021 Aksai MS 5.5 earthquake

doi: 10.12090/j.issn.1006-6616.2023125
Funds:  This research is financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0901), Science and Technology Plan of Gansu Province (Grant No. 22JR11RA088), State Key Laboratory of Earthquake Dynamics (Grant No. LED2023B04) , and the Earthquake Science and Technology Development Fund, Gansu Earthquake Agency (Grants No. 2021Y12 and 2019Y05).
More Information
  •   Objective  On August 26, 2021, an Ms5.5 earthquake occurred in Aksai, Gansu Province. The epicenter is located along the southern piedmont of the Danghe Nan Shan. This event garnered significant attention because of its deformation characteristics and seismogenic mechanisms. Existing studies have mainly focused on emergency response and seismic activity analyses; however, there is a lack of research on tectonic deformation and seismic mechanisms. This study aimed to fill this gap by analyzing the deformation characteristics of the earthquake zone and revealing its seismogenic mechanism.   Methods  This study employed seismological methods combined with interferometric synthetic aperture radar (InSAR) technology to investigate the tectonic deformation and seismic mechanism of the 2021 Aksai Ms5.5 earthquake. Combining focal mechanism solutions, precise earthquake locations, and InSAR results, the seismogenic fault and its geometric and kinematic parameters were determined and validated through geological field surveys.   Results  This study applied joint inversion with both local and teleseismic waveforms (the generalized cut-and-paste joint, gCAPjoint) to source parameters. The fault solutions strike 315°, dip 41°, rake 81°, depth 6.9 km. We relocated the Aksai earthquake and its aftershocks using the hypoinverse and double-difference method (HypoDD), and accurate locations of 88 earthquakes were obtained. The 2021 Ms5.5 earthquake sequence in Aksai is distributed near the southern Danghe Nan Shan Fault, with a fault dip toward the NE. The co-seismic deformation field indicated by InSAR matched the macro-epicenter with the precise location results, confirming the reliability of the precise location. Both the ascending and descending orbit surface deformation fields showed uplift near the epicenter with similar magnitudes and signs in the line-of-sight direction, indicating that the earthquake rupture was mainly thrusting. Fault scarps near the epicenter along the southern piedmont of the Danghe Nan Shan were recognized in the field and satellite images. Combined data from focal mechanism solutions, precise earthquake locations, and InSAR coseismic deformation fields, along with field geological survey results, indicate that the seismogenic fault of this event was the southern Danghe Nan Shan Fault, with a strike of 315°, dip of 41°, and rake of 81°.  Conclusion  This study indicated that the seismogenic fault of this event was the southern Danghe Nan Shan Fault, which is a thrust fault. The fault solutions strike 315°, dip 41°, rake 81°, depth 6.9 km. Because of the northward extrusion thrust of the Qinghai-Xizang Block, the seismic activity in the northern part of the Qaidam Block has significantly increased. The future seismic risk of the eastern section of the Altyn Tagh Fault and western Qilian Shan should be emphasized. [ Significance ] This study provides new insights and methods for researching active tectonics. It holds significant scientific importance and innovation in understanding seismogenic mechanisms and structural transformation, as it helps to understand the mode and magnitude of slip transfer between the strike-slipping of the Altyn Tagh Fault and the shortening of the Qilian Shan and also contributes to a better evaluation of the seismic risk in this region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BAI Q P, NI S D, CHU R S, et al., 2020. gCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms[J]. Seismological Research Letters, 91(6): 3550-3562. doi: 10.1785/0220200031
    [2]
    CHEN W W, NI S D, WANG Z J, et al., 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake[J]. Chinese Journal of Geophysics, 55(7): 2319-2328. (in Chinese with English abstract
    [3]
    EKSTRÖM G, NETTLES M, DZIEWOŃSKI A M, 2012. The global CMT project 2004-2010: centroid-moment tensors for 13, 017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 200-201: 1-9. doi: 10.1016/j.pepi.2012.04.002
    [4]
    ENGDAHL E R, VAN DER HILST R, BULAND R, 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bulletin of the Seismological Society of America, 88(3): 722-743. doi: 10.1785/BSSA0880030722
    [5]
    GOLDSTEIN R M, WERNER C L, 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 4035-4038. doi: 10.1029/1998GL900033
    [6]
    HETZEL R, NIEDERMANN S, TAO M X, et al., 2002. Low slip rates and long-term preservation of geomorphic features in Central Asia[J]. Nature, 417(6887): 428-432. doi: 10.1038/417428a
    [7]
    KISSLING E, ELLSWORTH W L, EBERHART-PHILLIPS D, et al., 1994. Initial reference models in local earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 19635-19646. doi: 10.1029/93JB03138
    [8]
    KISSLING E, KRADOLFER U, MAURER H, 1995. Program VELEST USER'S guide-short introduction[R]. Technical report. Institute of Geophysics, ETH Zuerich.
    [9]
    KLEIN F W, 1978. Hypocenter location program HYPOINVERSE: part I: users guide to versions 1, 2, 3, and 4. Part II. Source listings and notes[R]. Menlo Park: U.S. Geological Survey: 78-694.
    [10]
    LI L J, YAO X, ZHOU Z K, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: a case study in the Xiluodu Reservoir[J]. Journal of Geomechanics, 28(2): 281-293. (in Chinese with English abstract
    [11]
    MASSONNET D, FEIGL K L, 1998. Radar interferometry and its application to changes in the earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
    [12]
    MEYER B, TAPPONNIER P, GAUDEMER Y, et al., 1996. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E (China)[J]. Geophysical Journal International, 124(1): 29-44. doi: 10.1111/j.1365-246X.1996.tb06350.x
    [13]
    MEYER B, TAPPONNIER P, BOURJOT L, et al., 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x
    [14]
    QIU J T, LIU L, LIU C J, et al., 2019. The deformation of the 2008 Zhongba earthquakes and the tectonic movement revealed[J]. Seismology and Geology, 41(2): 481-498. (in Chinese)
    [15]
    QIU J T, SUN J B, 2023. Characteristics of normal-fault earthquake deformation in the Qinghai-Tibet Plateau revealed by InSAR[J]. Reviews of Geophysics and Planetary Physics, 54(6): 600-611 (in Chinese with English abstract
    [16]
    SHAO Y X, 2010. The activity features during late Quaternary of Yema River-Banghe Nan Shan faults in western Qilian Shan[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract
    [17]
    SHAO Y X, YUAN D Y, LEI Z S, et al, 2011. The features of earthquake surface rupture zone on northern margin fault of Danghe Nanshan[J]. Technology for Earthquake Disaster Prevention, 6(4): 427-435. (in Chinese with English abstract
    [18]
    SHAO Y X, YUAN D Y, OSKIN M E, et al., 2017. Historical (Yuan Dynasty) earthquake on the North Danghe Nanshan Thrust, western Qilian Shan, China[J]. Bulletin of the Seismological Society of America, 107(3): 1175-1184. doi: 10.1785/0120160289
    [19]
    SHAO Y X, VAN DER WOERD J, LIU-ZENG J, et al., 2023. Shortening rates and recurrence of large earthquakes from folded and uplifted terraces in the Western Danghe Nan Shan foreland, North Tibet[J]. Journal of Geophysical Research: Solid Earth, 128(1): e2021JB023736. doi: 10.1029/2021JB023736
    [20]
    TAPPONNIER P, XU Z Q, ROGER F, 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    [21]
    VAN DER WOERD J, XU X W, LI H B, et al., 2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China)[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504. doi: 10.1029/2001JB000583
    [22]
    WALDHAUSER F, ELLSWORTH W L, 2000. A Double-Difference earthquake location algorithm: method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006
    [23]
    WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese)
    [24]
    WANG G M, WU Z H, PENG G L, et al., 2021. Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: analysis results from the relocation of the earthquake sequence[J]. Journal of Geomechanics, 27(4): 662-678. (in Chinese with English abstract
    [25]
    WANG P T, 2016. A study on the rupture characteristics of great earthquake along Danghenanshan north piedmont fault with high resolution aerial-survey data[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese)
    [26]
    WANG S J, 2020. Research on co-seismic and post-seismic deformation of the 2015 Pishan earthquake based on sentinel-1a data[D]. Xi’an: Chang' an University. (in Chinese with English abstract
    [27]
    XIAO X G, 2019. Study on the evolution law of landslide and seismic deformation field based on InSAR technology —taking Jiuzhaigou Earthquake as an example[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract
    [28]
    XIE Z J, JIN B K, ZHENG Y, et al. , 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Science China: Earth Sciences, 43(6): 1010-1019. (in Chinese)
    [29]
    XU X W, TAPPONNIER P, VAN DER WOERD J, et al. , 2003. Discussion on Late Quaternary left lateral strike-slip rate of Altun fault zone and its transformation model of tectonic movement[J]. Scientia Sinica (Terrae), 33(10): 967-974. (in Chinese with English abstract
    [30]
    XUE S Y, XIE H, YUAN D Y, et al.,2023. Relocation of the 2021 Aksai M5.5 earthquake and its tectonic implication[J]. China Earthquake Engineering Journal,45(3):540-551. (in Chinese with English abstract
    [31]
    YI G X, LONG F, VALLAGE A, et al., 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan Earthquake Sequence, Southwestern China[J]. Chinese Journal of Geophysics, 59(10): 3711-3731. (in Chinese with English abstract
    [32]
    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32: 1-13. doi: 10.1029/2012TC003159
    [33]
    YUAN D Y, FENG J G, ZHENG W J, et al., 2020. Migration of large earthquakes in Tibetan block area and disscussion on major active region in the future[J]. Seismology and Geology, 42(2): 297-315. (in Chinese with English abstract
    [34]
    ZHANG G W, LEI J S, 2013. Relocations of Lushan, Sichuan Strong Earthquake (Ms7.0) and its aftershocks[J]. Chinese Journal of Geophysics, 56(5): 1764-1771. (in Chinese with English abstract
    [35]
    ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract
    [36]
    ZHANG P Z, ZHANG H P, ZHENG W J, et al., 2014. Cenozoic tectonic evolution of Continental eastern Asia[J]. Seismology and Geology, 36(3): 574-585. (in Chinese with English abstract
    [37]
    ZHAO L S, HELMBERGER D V, 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104.
    [38]
    ZHAO P, 2009. Active characteristics study of major faults in the Suberegion in the Late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract
    [39]
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2009. Deformation on the northern of the Tibetan Plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics, 52(10): 2491-2508. (in Chinese with English abstract
    [40]
    ZHENG W J, ZHANG P Z, HE W G, et al., 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280. doi: 10.1016/j.tecto.2012.01.006
    [41]
    ZHENG W J, YUAN D Y, ZHANG P Z, et al., 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan plateau and their implications for understanding Northeastward growth of the plateau[J]. Quaternary Sciences, 36(4): 775-788. (in Chinese with English abstract
    [42]
    ZHU L P, HELMBERGER D V, 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641. doi: 10.1785/BSSA0860051634
    [43]
    陈伟文,倪四道,汪贞杰,等,2012. 2010年高雄地震震源参数的近远震波形联合反演[J]. 地球物理学报,55(7):2319-2328. doi: 10.6038/j.issn.0001-5733.2012.07.017
    [44]
    李凌婧,姚鑫,周振凯,等,2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例[J]. 地质力学学报,28(2):281-293.
    [45]
    邱江涛,刘雷,刘传金,等,2019. 2008年仲巴地震形变及其揭示的构造运动[J]. 地震地质,41(2):481-498. doi: 10.3969/j.issn.0253-4967.2019.02.014
    [46]
    邱江涛,孙建宝,2023. InSAR揭示的青藏高原近期正断型地震形变特征与指示意义[J]. 地球与行星物理论评(中英文),54(6):600-611.
    [47]
    邵延秀,2010. 祁连山西段野马河—党河南山断裂晚第四纪活动特征[D]. 兰州:中国地震局兰州地震研究所.
    [48]
    邵延秀,袁道阳,雷中生,等,2011. 党河南山北缘断裂古地震形变带特征研究[J]. 震灾防御技术,6(4):427-435. doi: 10.3969/j.issn.1673-5722.2011.04.008
    [49]
    万永革,2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718-4728. doi: 10.6038/cjg2019M0553
    [50]
    王光明,吴中海,彭关灵,等,2021. 2021年5月21日漾濞MS6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J]. 地质力学学报,27(4):662-678. doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    [51]
    王朋涛,2016. 基于高分辨航测数据研究党河南山北缘断裂的大震破裂习性[D]. 兰州:中国地震局兰州地震研究所.
    [52]
    王思佳,2020. 基于Sentinel-1A的2015年皮山地震同震及震后形变研究[D]. 西安:长安大学.
    [53]
    肖星光,2019. 基于InSAR技术的滑坡与同震形变场演化规律研究:以九寨沟地震为例[D]. 成都:西南交通大学.
    [54]
    谢祖军,金笔凯,郑勇,等,2013. 近远震波形反演2013年芦山地震震源参数[J]. 中国科学:地球科学,43(6):1010-1019.
    [55]
    徐锡伟,TAPPONNIER P,VAN DER WOERD J,等,2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑),33(10):967-974.
    [56]
    薛善余,谢虹,袁道阳,等,2023. 2021年阿克塞M5.5地震重定位及构造意义[J]. 地震工程学报,45(3):540-551.
    [57]
    易桂喜,龙锋,VALLAGE A,等,2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析[J]. 地球物理学报,59(10):3711-3731. doi: 10.6038/cjg20161017
    [58]
    袁道阳,冯建刚,郑文俊,等,2020. 青藏地块区大地震迁移规律与未来主体活动区探讨[J]. 地震地质,42(2):297-315. doi: 10.3969/j.issn.0253-4967.2020.02.004
    [59]
    张广伟,雷建设. 2013. 四川芦山7.0级强震及其余震序列重定位[J]. 地球物理学报,56(5):1764-1771.
    [60]
    张培震,郑德文,尹功明,等,2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究,26(1):5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002
    [61]
    张培震,张会平,郑文俊,等,2014. 东亚大陆新生代构造演化[J]. 地震地质,36(3):574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003
    [62]
    赵朋,2009. 肃北地区主要断裂晚第四纪活动特征研究[D]. 北京:中国地震局地质研究所.
    [63]
    郑文俊,张培震,袁道阳,等,2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报,52(10):2491-2508. doi: 10.3969/j.issn.0001-5733.2009.10.008
    [64]
    郑文俊,袁道阳,张培震,等,2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究,36(4):775-788. doi: 10.11928/j.issn.1001-7410.2016.04.01
  • Relative Articles

    2025: Earthquake-induced fissures and formation mechanism of 2023 Jishishan Ms6.2 Earthquake. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024114
    LU Shiming, WU Zhonghai, HUANG Ting. 2025: Characteristics of geological hazard development and disaster-inducing environment of the MS6.2 earthquake in Jishishan, Gansu Province. Journal of Geomechanics, 31(1): 139-155. doi: 10.12090/j.issn.1006-6616.2024069
    2025: InSAR Coseismic Deformation Field and Tectonic Implications of the 2023 MS5.5 Subei Earthquake, Gansu, China. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024127
    LIU Guangying, LIANG Kuan, LI Zhipeng, MA Baoqi, LONG Tao, LI Lei, TAN Xin, LI Haoyang. 2024: Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M 7.0 earthquake. Journal of Geomechanics, 30(2): 242-259. doi: 10.12090/j.issn.1006-6616.2023088
    LIU Shuai, HE Bin, WANG Tao, LIU Jiamei, CAO Jiawen, WANG Haojie, ZHANG Shuai, LI Kun, LI Ran, ZHANG Yongjun, DOU Xiaodong, WU Zhonghai, CHEN Peng, FENG Chengjun. 2024: Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China. Journal of Geomechanics, 30(2): 314-331. doi: 10.12090/j.issn.1006-6616.2024009
    YAN Yuan. 2023: The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China. Journal of Geomechanics, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027
    HAN Shuai, WU Zhonghai, GAO Yang, LU Haifeng. 2022: Surface rupture investigation of the 2022 Menyuan MS 6.9 Earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk. Journal of Geomechanics, 28(2): 155-168. doi: 10.12090/j.issn.1006-6616.2022013
    FENG Chengjun, LI Bin, LI Hui, ZHOU Minghui, ZHANG Peng, ZHU Siyu, REN Yazhe, QI Bangshen, WANG Miaomiao, TAN Chengxuan, CHEN Qunce. 2022: Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability. Journal of Geomechanics, 28(6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
    ZHAO Di, CHEN Peng, LI Rongxi, WU Xiaoli, ZHAO Bangsheng, LIU Qi, WANG Xiaoxue. 2022: Discovery of the surface rupture zone along the southern branch of the Longshoushan Fault Zone, NW China and its significance to the deep structures of the 1954 Shandan MS 7¼ earthquake. Journal of Geomechanics, 28(4): 501-512. doi: 10.12090/j.issn.1006-6616.2022045
    GAI Hailong, YAO Shenghai, YANG Liping, KANG Taibo, YIN Xiang, CHEN Ting, LI Xin. 2021: Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and their significance. Journal of Geomechanics, 27(6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073
    WANG Guangming, WU Zhonghai, PENG Guanling, LIU Zifeng, LUO Ruijie, HUANG Xiaolong, CHEN Haopeng. 2021: Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence. Journal of Geomechanics, 27(4): 662-678. doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    HA Guanghao, WU Zhonghai. 2021: Discussion of the seismogenic structure of the 1901 M 6¾ Nyemo earthquake. Journal of Geomechanics, 27(2): 218-229. doi: 10.12090/j.issn.1006-6616.2021.27.02.021
    CAO Xinwen, MA Xiumin, GONG Shuyun, JI Youliang, FANG Chunbo, LI Zhen, DU Wei. 2018: A STUDY ON DISTRIBUTION CHARACTERISTICS AND ACTIVITY OF NORTH-WEST FAULTS IN SHENZHEN. Journal of Geomechanics, 24(6): 759-767. doi: 10.12090/j.issn.1006-6616.2018.24.06.078
    FENG Chengjun, QI Bangshen, ZHANG Peng, SUN Dongsheng, MENG Jing, NIU Linlin, WANG Miaomiao, TAN Chengxuan, CHEN Qunce. 2018: CRUSTAL STRESS FIELD AND ITS TECTONIC SIGNIFICANCE NEAR THE LONGMENSHAN FAULT BELT, AFTER THE WENCHUAN Ms8.0 EARTHQUAKE. Journal of Geomechanics, 24(4): 439-451. doi: 10.12090/j.issn.1006-6616.2018.24.04.046
    WANG Shidi, SHI Yaqin, REN Fengwen. 2018: ANALYSIS AND TEXTUAL RESEARCH OF THE SEISMOGENIC STRUCTURE OF THE QIN-LONG EARTHQUAKE IN 600 A.D.. Journal of Geomechanics, 24(2): 157-168. doi: 10.12090/j.issn.1006-6616.2018.24.02.017
    YAO Xin, ZHANG Zhenkai, LI Lingjing, LIU Xinghong, YAO Jiaming. 2017: INSAR CO-SEISMIC DEFORMATION OF 2017 Ms 7.0 JIUZHAIGOU EARTHQUAKE AND DISCUSSIONS ON SEISMOGENIC TECTONICS. Journal of Geomechanics, 23(4): 507-514.
    FU Guochao, LÜ Tongyan, SUN Dongxia, XIONG Renwei. 2017: SEISMOGENIC STRUCTURE OF THE Ms7.0 EARTHQUAKE ON AUGUST 8, 2017 IN JIUZHAIGOU, SICHUAN. Journal of Geomechanics, 23(6): 799-809.
    WU Kun-gang, WU Zhong-hai, HUANG Xiao-long, FENG Hui, ZHOU Chun-jing. 2015: ANALYSIS ON MAIN CHARACTERISTICS OF EARTHQUAKE DAMAGE CAUSED BY MS 6.1 EARTHQUAKE ON MAY 30, 2014 IN YINGJIANG COUNTY, YUNNAN PROVINCE. Journal of Geomechanics, (1): 87-96.
    WANG Lian-jie, CUI Jun-wen, WANG Wei, QIAO Zi-jiang, SUN Dong-sheng, ZHAO Wei-Hua. 2010: NUMERICAL MODELING FOR MECHANISM OF YUSHU MS7.1 EARTHQUAKE. Journal of Geomechanics, 16(2): 137-145.
    WANG Lian-jie, CUI Jun-wen, ZHOU Chun-jing, SUN Dong-sheng, WANG Wei, TANG Zhe-min, QIAN Hua-shan. 2009: NUMERICAL MODELING FOR WENCHUAN EARTHQUAKE MECHANISM. Journal of Geomechanics, 15(2): 105-113.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 72.7 %META: 72.7 %PDF: 15.5 %PDF: 15.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.8 %其他: 9.8 %其他: 1.1 %其他: 1.1 %China: 0.3 %China: 0.3 %上海: 0.3 %上海: 0.3 %上饶: 0.3 %上饶: 0.3 %中卫: 0.9 %中卫: 0.9 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %兰州: 3.4 %兰州: 3.4 %内江: 0.3 %内江: 0.3 %北京: 19.3 %北京: 19.3 %十堰: 0.6 %十堰: 0.6 %南昌: 0.3 %南昌: 0.3 %南通: 0.6 %南通: 0.6 %台州: 0.3 %台州: 0.3 %咸阳: 0.3 %咸阳: 0.3 %哥伦布: 0.9 %哥伦布: 0.9 %嘉兴: 0.3 %嘉兴: 0.3 %嘉峪关: 3.7 %嘉峪关: 3.7 %大同: 8.9 %大同: 8.9 %天津: 1.4 %天津: 1.4 %常州: 0.6 %常州: 0.6 %广州: 1.4 %广州: 1.4 %廊坊: 0.3 %廊坊: 0.3 %张家口: 7.8 %张家口: 7.8 %成都: 1.1 %成都: 1.1 %昆明: 0.3 %昆明: 0.3 %泰安: 0.3 %泰安: 0.3 %济南: 0.3 %济南: 0.3 %淮北: 0.3 %淮北: 0.3 %温州: 0.6 %温州: 0.6 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.3 %石家庄: 0.3 %红河: 0.9 %红河: 0.9 %芒廷维尤: 9.2 %芒廷维尤: 9.2 %莫斯科: 0.6 %莫斯科: 0.6 %萍乡: 0.3 %萍乡: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西宁: 7.2 %西宁: 7.2 %西安: 0.9 %西安: 0.9 %诺沃克: 2.9 %诺沃克: 2.9 %运城: 0.6 %运城: 0.6 %邯郸: 0.3 %邯郸: 0.3 %酒泉: 0.6 %酒泉: 0.6 %重庆: 0.6 %重庆: 0.6 %金昌: 0.3 %金昌: 0.3 %阳泉: 8.3 %阳泉: 8.3 %其他其他China上海上饶中卫乌鲁木齐兰州内江北京十堰南昌南通台州咸阳哥伦布嘉兴嘉峪关大同天津常州广州廊坊张家口成都昆明泰安济南淮北温州漯河石家庄红河芒廷维尤莫斯科萍乡衡阳西宁西安诺沃克运城邯郸酒泉重庆金昌阳泉

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (252) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return