Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
WANG Guangming, WU Zhonghai, PENG Guanling, et al., 2021. Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence. Journal of Geomechanics, 27 (4): 662-678. DOI: 10.12090/j.issn.1006-6616.2021.27.04.055
Citation: WANG Guangming, WU Zhonghai, PENG Guanling, et al., 2021. Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence. Journal of Geomechanics, 27 (4): 662-678. DOI: 10.12090/j.issn.1006-6616.2021.27.04.055

Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence

doi: 10.12090/j.issn.1006-6616.2021.27.04.055
Funds:

the Science for Earthquake Resilience XH20054Y

the National Nature Science Foundation of China U2002211

the Youth Project of National Nature Science Foundation of China 41804061

More Information
  • Received: 2021-06-16
  • Revised: 2021-07-11
  • Published: 2021-08-28
  • According to China Earthquake Network Center (CENC), the MS 6.4 Yangbi earthquake struck northwestern Yunnan Province on 21 May, 2021 at 21:48(Beijing time). Figuring out the seismogenic fault and source rupture characteristics in time can provide a key basis for understanding the dynamic conditions in this region and estimating the risk of strong earthquakes in the future. We employed the double-difference relocation algorithm to relocate the Yangbi earthquake sequence, and obtained precise locations of 3, 863 earthquakes. In general, the result revealed a narrow 25-km-long, linear southeast seismicity trend concentrated in the 2~14 km depth range, and the orientation is 135°. The MS 6.4 mainshock located at (25.688°N, 99.877°E) after relocation, and the focal depth is 9.6 km. Based on the results of precise locations and focal mechanism solutions, the seismogenic fault might be a NW dextral strike-slip fault with southwest dip, and the dip angle tends to gradually decrease from NW to SE. The Yangbi earthquake sequence belongs to the "foreshock-mainshock-aftershock" type, revealed by the temporal and spatial evolution process of the earthquake sequence, and the fracture process mainly includes three stages: fracture nucleation stage, mainshock rupture stage, and tension rupture stage. In the first stage, small-scale fractures occurred at the relatively weak part of the seismogenic fault at the depth between 10~12 km, after two-days' nucleation, the fault entered into an unstably accelerated rupture state, resulting in the MS 5.6 foreshock. Under the joint influence of continuous loading of tectonic stress and surrounding small-scale fractures, the higher strength blocking area in the shallow part of the fault ruptured, and the MS 6.4 mainshock occurred. The tension rupture mainly occurred at the southeast end of the seimogenic fault. A horsetail splay with normal fault features was formed at the southeast end of the aftershock sequence, started by the largest aftershock of MS 5.2. In addition, the mainshock triggered small-scale fractures on a NEN sinistral strike-slip fault near the source area. The comprehensive study shows that the seismogenic fault of the Yangbi earthquake is not the well-known Weixi-Qiaohou fault, but the Caoping fault in the Lanping-Simao block. The Yangbi MS 6.4 mainshock is the result of the dextral strike-slip motion of the Caoping fault, which has been revived under the NWN-SES regional principal compressive stress, and the fault has obviously new fracture characteristics. This study indicates that the continuous southeastward extrusion of material from the Tibetan Plateau is leading to the reconnection and reactivation of the old faults in the junction zone between the eastern Lanping-Simao block and the Lijiang-Dali fault system, resulting in relatively frequent moderate-to-strong earthquakes in this area. Therefore, the reactivation of old faults and the generation of new faults in the southwestern boundary zone of Sichuan-Yunnan block are worthy to pay attention on the risk estimation and evaluation of regional moderate-to-strong earthquakes. We suggest that more attention should be paid to the possibility of further southern or northern migration (or expansion) of moderate-to-strong earthquakes.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AN X W, CHANG Z F, CHEN Y J, et al., 2018. Quaternary active faults in Yunnan: Distribution map of Quaternary active faults in Yunnan[M]. Beijing, Seismological Press, 11-19(in Chinese).
    Bureau of Geology and Mineral Resources of Yunnan Province, 1990. Regional Geology of Yunnan Province[M]. Beijing: Geological Publishing House: 728. (in Chinese)
    CHANG Z F ZHANG Y F, ZHOU Q Y, et al., 2014. Intensity distribution characteristics and active tectonic background in area of the 2013 Eryuan MS5.5 earthquake[J]. Earthquake Research in China, 30(4): 560-570. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD201404009.htm
    CHANG Z F, CHANG H, ZANG Y, et al., 2016a. Recent active features of Weixi-Qiaohou fault and its relation with Honghe fault[J]. Journal of Geomechanics, 22(3);517-530. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603009.htm
    CHANG Z F, CHANG H, LI J L, et al., 2016b. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou fault[J]. Journal of Seismological Research, 39(4): 579-586. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201604007.htm
    CHANG Z F, MAO Z B, MA B Q, et al., 2019. The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan province[J]. Geological Bulletin of China, 38(6): 967-976. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201906008.htm
    CUI X F, XIE F R, ZHANG H Y, 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 28(5): 451-461. (in Chinese with English abstract)
    DING G Y, LI Y S, 1979. Seismicity and the recent fracturing pattern of the earth crust in China[J]. Acta Geologica Sinica(1): 22-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE197901001.htm
    FANG L H, WU J P, WANG W L, et al., 2015a. Aftershock observation and analysis of the 2013 MS 7.0 Lushan earthquake[J]. Seismological Research Letters, 86(4): 1135-1142. doi: 10.1785/0220140186
    FANG L H, WU J P, LIU J, et al., 2015b. Preliminary report on the 22 November 2014 MW6.1/MS6.3 Kangding earthquake, Western Sichuan, China[J]. Seismological Research Letters, 86(6): 1603-1613. doi: 10.1785/0220150006
    FANG L H, WU J P, SU J R, et al., 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake[J]. Chinese Science Bulletin, 63(7): 649-662. (in Chinese with English abstract) doi: 10.1360/N972017-01184
    GUO S M, XIANG H F, XU X W, et al., 2000. Characteristics and formation mechanism of the Longling-Lancang newly emerging fault zone in Quaternary in the southwest Yunnan[J]. Seismology and Geology, 22(3): 277-284, 237. (in Chinese with English abstract)
    HAN Z J, HE Y L, AN Y F, et al., 2009. A new seismotectonic belt: Features of the latest structural deformation style in the Mabian Seismotectonic Zone[J]. Acta Geologica Sinica, 83(2): 218-229. (in Chinese with English abstract) http://www.researchgate.net/publication/289793790_A_new_seismotectonic_belt_Features_of_the_latest_structural_deformation_style_in_the_Mabian_seismotectonic_zone
    HAUKSSON E, SHEARER P, 2005. Southern California hypocenter relocation with waveform cross-correlation, Part 1: results using the double-difference method[J]. Bulletin of the Seismological Society of America, 95(3): 896-903. doi: 10.1785/0120040167
    HAUKSSON E, YANG W Z, SHEARER P M, 2012. Waveform relocated earthquake catalog for southern California (1981 to June 2011)[J]. Bulletin of the Seismological Society America, 102(5): 2239-2244. doi: 10.1785/0120120010
    HUANG X L, WU Z H, JIANG Y, et al., 2015. Seismic intensity distribution and seismogenic structure analysis of the March 3, 2013 Eryuan MS5.5 earthquake in Dali, Yunnan province[J]. Geological Bulletin of China, 34(1): 135-145. (in Chinese with English abstract) http://www.researchgate.net/publication/282687959_Seismic_intensity_distribution_and_seismogenic_structure_analysis_of_the_March_3_2013_Eryuan_Ms55_earthquake_in_Dali_Yunnan_Province
    HUANG Y, 2008. Study on the application and development of the DD algorithm with cross correlation of waveform data in the earthquake location[J]. Recent Developments in World Seismology(4): 29-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJZT200804005.htm
    Institute of Crustal Dynamics, CEA, 2006. Active fault identification and seismic safety evaluation report of Dali-Ruili railway. [R].
    JIANG H K, YANG M L, FU H, et al., 2015. Reference guidance for determination of post earthquake trend[M]. Beijing: Seismological Press: 2-3. (in Chinese)
    JIANG J Z, LI J, FU H, 2019. Seismicity analysis of the 2016 MS5.0 Yunlong earthquake, Yunnan, China and its tectonic implications[J]. Pure and Applied Geophysics, 176(3): 1225-1241. doi: 10.1007/s00024-018-2067-7
    KAN R J, ZHANG S C, YAN F T, et al., 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica, 20(2): 96-109. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX197702001.htm
    KUANG W H, YUAN C C, ZHANG J, 2021. Real-time determination of earthquake focal mechanism via deep learning[J]. Nature Communications, 12: 1432. doi: 10.1038/s41467-021-21670-x
    LELOUP P H, LACASSIN R, TAPPONNIER P, et al., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4): 3-10, 13-84. doi: 10.1016/0040-1951(95)00070-4
    LI J, JIANG J Z, YANG J Q, 2020. Microseismic detection and relocation of the 2017 MS4.8 andMS5.1 Yangbi earthquake sequence, Yunnan[J]. Acta Seismologica Sinica, 42(5): 527-542. (in Chinese with English abstract)
    LI P, WANG L M, 1975. Exploration of the seismo-geological features of the Yunnan-west Sichuan region[J]. Chinese Journal of Geology, 10(4): 308-326. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197504001.htm
    LUO R J, WU Z H, HUANG X L, et al., 2015. The main active faults and the active tectonic system of Binchuan area, northwestern Yunnan[J]. Geological Bulletin of China, 34(1): 155-170. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201501013.htm
    MAO Y P, HAN X M, 2003. Study on strong earthquakes (M ≥ 6) in Yunnan[M]. Kunming: Yunnan Science and Technology Press. (in Chinese)
    MICHELINI A, LOMAX A. 2004. The effect of velocity structure errors on double-difference earthquake location[J]. Geophysical Research Letters, 31(9): L09602. doi: 10.1029/2004GL020731/epdf
    REN J J, ZHANG S M, HOU Z H, et al., 2007. Study of late quaternary slip rate in the mid-segment of the Tongdian-Weishan fault[J]. Seismology and Geology, 29(4): 756-764. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200704005.htm
    Regional Geological Investigation Division of Yunnan Geological Survey, 1990. 1: 250000 geological map and regional geological survey report of Dali City (G47C003003)[R].
    SHEN Z K, LǙ J N, WANG M, et al., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11409, doi: 1029/2004JB003421.
    UTSU T, 2002. Statistical features of seismicity, international handbook of earthquake and engineering seismology[M]. Amsterdam: Academic Press: 719-731.
    WALDHAUSER F, ELLSWORTH W L, 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 99(6): 1353-1368.
    WALDHAUSER F, SCHAFF D P, 2008. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods[J]. Journal of Geophysical Research: Solid Earth, 113(B8): B08311. doi: 10.1029/2007JB005479/full
    WANG G M, LIU Z F, ZHAO X Y, et al., 2018. Relocation of Tonghai MS5.0 earthquake sequence in 2018 and discussion of it's seismogenic fault[J]. Journal of Seismological Research, 41(4): 503-510. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZYJ201804003.htm
    WANG Q D, CHU R S, YANG H, et al., 2018. Complex rupture of the 2014 MS6.6 Jinggu earthquake sequence in Yunnan province inferred from double-difference relocation[J]. Pure and Applied Geophysics, 175(12): 4253-4274. doi: 10.1007/s00024-018-1913-y
    WANG W L, WU J P, FANG L H, et al., 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan province in 2014[J]. Chinese Journal of Geophysics, 57(9): 3042-3051. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409030.htm
    WANG Q D, CHU R S, YANG H, et al., 2018. Complex Rupture of the 2014 MS6.6 Jinggu Earthquake Sequence in Yunnan Province Inferred from Double-Difference Relocation[J]. Pure Appl. Geophys. 175: 4253-4274. doi: 10.1007/s00024-018-1913-y
    WESSEL P, LUIS J F, UIEDA L, et al., 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. doi: 10.1029/2019GC008515
    WU K G, WU Z H, XU F K, et al., 2016. Geological origin of Jinggu earthquake swarm in 2014 in southwest Yunnan: A response to propagation process of the Chafang-Puwen fault zone[J]. Geological Bulletin of China, 35(1): 140-151. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201601013.htm
    WU Z H, ZHANG Y S, HU D G, et al., 2009. Late Quaternary normal faulting and its kinematic mechanism of eastern piedmont fault of the Haba-Yulong Snow Mountains in northwestern Yunnan, China[J]. Science in China Series D: Earth Sciences, 52(10): 1470-1484, doi: 10.1007/s11430-009-0148-2.
    WU Z H, ZHAO X T, FAN T Y, et al., 2012. Active faults and seismologic characteristics along the Dali-Ruili railway in western Yunnan province[J]. Geological Bulletin of China, 31(2): 191-217. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2012Z1001.htm
    WU Z H, LI G S, MAO X C, et al., 2013. The basic geology and main engineering geology problems along the Dali-Ruili section of Trans-Asian railway, in Yunnan province of China[M]. Beijing: Geological Publishing House: 467. (in Chinese)
    WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract)
    WU Z H, 2019. The definition and classification of active faults: History, current status and Progress[J]. Acta Geoscientica Sinica, 40(5): 661-697, doi: 10.3975/cagsb.2019.051001.(in Chinese with English abstract)
    XIAO K Z, TONG H M, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract)
    XU J, 2011. Studies on cenozoic seismic tectonic zones: A new field of earthquake geology[J]. South China Journal of Seismology, 31(4): 23-28. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI201104002.htm
    YANG J, SU Y J, LI X B, et al., 2015. Research on focal mechanism solutions of ML ≥ 3.4 earthquakes of Eryuan MS5.5 earthquake sequence in 2013[J]. Journal of Seismological Research, 38(2): 196-202. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201502003.htm
    YANG Z X, CHEN Y T, ZHENG Y J, et al., 2003. Accurate relocation of earthquakes in central-western China using the double-difference earthquake location algorithm[J]. Science in China Series D: Earth Sciences, 46(S2): 181-188. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_zgkx-ed2003z2014.aspx
    YI G X, LONG F, LIANG M J, et al., 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 62(9): 3432-3447. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201909017.htm
    Yunnan Seismological Bureau, Geological Research Institute of the State Seismological Bureau, 1990. Active faults in the northwest Yunnan region[M]. Beijing: Seismological Press: 69-128. (in Chinese)
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomachanics, 26(1): 13-32. (in Chinese with English abstract)
    ZHAO X Y, FU H, 2014. Seismogenic structure identification of the 2013 Eryuan MS5.5 and MS5.0 earthquake sequence[J]. Acta Seismologica Sinica, 36(4): 640-650. (in Chinese with English abstract) http://www.researchgate.net/publication/287775090_Seismogenic_structure_identification_of_the_2013_Eryuan_MS55_and_MS50_earthquake_sequence
    安晓文, 常祖峰, 2018. 云南第四纪活动断裂暨《云南第四纪活动断裂分布图》[M]. 北京: 地震出版社: 11-19.
    常祖峰, 张艳凤, 周青云, 等, 2014. 2013年洱源MS5.5地震烈度分布及震区活动构造背景研究[J]. 中国地震, 30(4): 560-570. doi: 10.3969/j.issn.1001-4683.2014.04.009
    常祖峰, 常昊, 臧阳, 等, 2016a. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160309&journal_id=dzlxxb
    常祖峰, 常昊, 李鉴林, 等, 2016b. 维西-乔后断裂南段正断层活动特征[J]. 地震研究, 39(4): 579-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201604007.htm
    常祖峰, 毛泽斌, 马保起, 等, 2019. 滇西南阿墨江断裂带与2018年墨江M5.9地震[J]. 地质通报, 38(6): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201906008.htm
    崔效锋, 谢富仁, 张红艳, 2006. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001
    丁国瑜, 李永善, 1979. 我国地震活动与地壳现代破裂网络[J]. 地质学报(1): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197901001.htm
    房立华, 吴建平, 苏金蓉, 等, 2018. 四川九寨沟MS 7.0地震主震及其余震序列精定位[J]. 科学通报, 63(7): 649-662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201807007.htm
    国家地震局地质研究所云南省地震局, 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社: 69-128.
    虢顺民, 向宏发, 徐锡伟, 等, 2000. 滇西南龙陵-澜沧第四纪新生断裂带的特征和变形机制研究[J]. 地震地质, 22(3): 277-284, 237. doi: 10.3969/j.issn.0253-4967.2000.03.008
    韩竹军, 何玉林, 安艳芬, 等, 2009. 新生地震构造带: 马边地震构造带最新构造变形样式的初步研究[J]. 地质学报, 83(2): 218-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902008.htm
    黄小龙, 吴中海, 蒋瑶, 等, 2015. 2013年3月3日云南大理洱源MS5.5地震烈度分布及发震构造[J]. 地质通报, 34(1): 135-145. doi: 10.3969/j.issn.1671-2552.2015.01.011
    黄媛, 2008. 结合波形互相关技术的双差算法在地震定位中的应用探讨[J]. 国际地震动态(4): 29-34. doi: 10.3969/j.issn.0253-4975.2008.04.003
    蒋海昆, 杨马陵, 付虹, 等, 2015. 震后趋势判定参考指南[M]. 北京: 地震出版社: 2-3.
    阚荣举, 张四昌, 晏凤桐, 等, 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 20(2): 96-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm
    李姣, 姜金钟, 杨晶琼, 2020. 2017年漾濞MS 4.8和MS 5.1地震序列的微震检测及重定位[J]. 地震学报, 42(5): 527-542. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202005002.htm
    李玶, 汪良谋, 1975. 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 10(4): 308-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197504001.htm
    罗睿洁, 吴中海, 黄小龙, 等, 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报, 34(1): 155-170. doi: 10.3969/j.issn.1671-2552.2015.01.013
    毛玉平, 韩新民, 2003. 云南地区强震(M ≥ 6级)研究[M]. 昆明: 云南科技出版社.
    任俊杰, 张世民, 侯治华, 等, 2007. 滇西北通甸-巍山断裂中段的晚第四纪滑动速率[J]. 地震地质, 29(4): 756-764. doi: 10.3969/j.issn.0253-4967.2007.04.006
    王光明, 刘自凤, 赵小艳, 等, 2018. 2018年云南通海MS5.0地震序列重定位及发震构造讨论[J]. 地震研究, 41(4): 503-510. doi: 10.3969/j.issn.1000-0666.2018.04.003
    王未来, 吴建平, 房立华, 等, 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报, 57(9): 3042-3051. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409030.htm
    吴坤罡, 吴中海, 徐甫坤, 等, 2016. 滇西南2014年景谷中-强震群的地质构造成因: 茶房-普文断裂带贯通过程的构造响应[J]. 地质通报, 35(1): 140-151. doi: 10.3969/j.issn.1671-2552.2016.01.013
    吴中海, 赵希涛, 范桃园, 等, 2012. 泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J]. 地质通报, 31(2): 191-217. doi: 10.3969/j.issn.1671-2552.2012.02.002
    吴中海, 李贵书, 毛晓长, 等, 2013. 泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题[M]. 北京: 地质出版社: 467.
    吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002
    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697, doi: 10.3975/cagsb.2019.051001.
    肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb
    徐杰, 2011. 新生地震构造带的研究: 地震地质研究新开拓的一项工作[J]. 华南地震, 31(4): 23-28. doi: 10.3969/j.issn.1001-8662.2011.04.003
    杨军, 苏有锦, 李孝宾, 等, 2015. 2013年洱源MS5.5地震序列ML ≥ 3.4地震的震源机制解研究[J]. 地震研究, 38(2): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201502003.htm
    杨智娴, 陈运泰, 郑月军, 等, 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用[J]. 中国科学(D辑), 33(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1013.htm
    易桂喜, 龙锋, 梁明剑, 等, 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报, 62(9): 3432-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909017.htm
    云南省地质矿产局, 1990. 云南省区域地质志[M]. 北京: 地质出版社, 728 p.
    云南省地质调查院区域地质调查所, 2008. 1: 25万大理市幅(G47C003003)地质图和区域地质调查报告[R].
    赵小艳, 付虹, 2014. 2013年洱源MS5.5和MS5.0地震发震构造识别[J]. 地震学报, 36(4): 640-650. doi: 10.3969/j.issn.0253-3782.2014.04.010
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200102&journal_id=dzlxxb
    中国地震局地壳应力研究所, 2006. 大理-瑞丽铁路线工程场地活动断层鉴定及地震安全性评价报告[R].
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1156) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return