Volume 31 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
XIONG G H,JI L Y,CHEN Y X,et al.,2025. InSAR coseismic deformation field and tectonic implications of the 2023 MS 5.5 Subei Earthquake, Gansu, China[J]. Journal of Geomechanics,31(2):287−300 doi: 10.12090/j.issn.1006-6616.2024127
Citation: XIONG G H,JI L Y,CHEN Y X,et al.,2025. InSAR coseismic deformation field and tectonic implications of the 2023 MS 5.5 Subei Earthquake, Gansu, China[J]. Journal of Geomechanics,31(2):287−300 doi: 10.12090/j.issn.1006-6616.2024127

InSAR coseismic deformation field and tectonic implications of the 2023 MS 5.5 Subei Earthquake, Gansu, China

doi: 10.12090/j.issn.1006-6616.2024127
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42474013 and 42104061) and the Earthquake Tracking Task of CEA (Grant No. 2024010206)
More Information
  • Received: 2024-11-20
  • Revised: 2025-03-06
  • Accepted: 2025-03-10
  • Available Online: 2025-03-10
  • Published: 2025-04-27
  •   Objective  On October 24, 2023, an MS 5.5 earthquake occurred in Subei County, Jiuquan City, Gansu Province. The epicenter was located in the Qilian mountain seismic belt at the northeastern margin of the Qinghai-Tibet Plateau. Understanding the seismogenic mechanism of this earthquake and its relationship with the tectonic stress field is crucial for analyzing the seismic hazard in the region.   Methods  The InSAR coseismic deformation field of the MS5.5 earthquake in Subei was obtained using ascending and descending Sentinel-1 SAR data, and the parameters of the seismogenic fault were determined based on a uniform slip model. Subsequently, a distributed slip inversion method was applied to obtain a detailed slip distribution of the seismogenic fault. Furthermore, the earthquake-induced changes in the Coulomb stress and the regional interseismic strain rate were determined.   Results  The results indicate that the surface deformation values generated by this earthquake reached 12 cm and 9 cm in the ascending and descending InSAR line of sight, respectively. The deformation primarily manifests as surface uplift; the seismogenic fault is a concealed fault located between the Shule Nanshan Fault and the northern margin fault of the Central Qilian, the strike is approximately 166.97°, the dip angle is around 68.69°, and the slip angle is about 110.39°; the fault slip is primarily concentrated within the depth range of 1.2 km to 4.9 km, with a maximum slip of 0.58 m occurring at a depth of approximately 2.56 km; the moment magnitude obtained from the inversion is MW 5.6, and the coseismic rupture is primarily characterized by thrust motion with a minor component of right-lateral strike-slip. This seismic event resulted in regional Coulomb stress changes between the northern margin fault of the Central Qilian and the Shule Nanshan Fault, as well as in the northern area of the Shule River Fault Zone. Additionally, the regional surface strain rate exhibited a distinct compressive trend before the earthquake, with higher surface strain and maximum shear strain rates observed on the northern side of the seismic zone.   Conclusion  The continuous accumulation of strain leads to an increased seismic hazard, with historical earthquakes often occurring in gradient zones where strain values transition from high to low. Considering the regional strain distribution characteristics and seismic activity, the seismic hazard in this area remains significant in the future and should not be overlooked. [Significance] The research findings have a certain guiding significance for understanding the tectonic background of the Qilian Block and its seismic hazard.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BAGNARDI M, HOOPER A, 2018. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2194-2211.
    [2]
    CHEN H Y, ZHAO C Y, LI B, et al., 2023. Monitoring spatiotemporal evolution of Kaiyang landslides induced by phosphate mining using distributed scatterers InSAR technique[J]. Landslides, 20(3): 695-706. doi: 10.1007/s10346-022-01986-5
    [3]
    CHEN X H, SHAO Z G, XIONG X S, et al., 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995-1020. (in Chinese with English abstract
    [4]
    CHENG F, ZUZA A V, HAPROFF P J, et al., 2021. Accommodation of India–Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold–thrust belt, northern margin of the Tibetan Plateau[J]. Journal of the Geological Society, 178(3): jgs2020-207.
    [5]
    CHENG J W, CHEN J F, LIU X Z, 2020. Division of seismic statistical areas and analysis of seismicity trend in the northern part of the Qinghai-Tibet Plateau[J]. Seismological and Geomagnetic Observation and Research, 41(3): 1-11. (in Chinese with English abstract
    [6]
    CHU Y B, 2015. The geomorphy characteristic of Qilian Mountains and its response to Tibetan Plateau uplift[D]. Chengdu: Chengdu University of Technology. (in Chinese)
    [7]
    FIALKO Y, 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature, 441(7096): 968-971.
    [8]
    GABRIEL A K, GOLDSTEIN R M, ZEBKER H A, 1989. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 94(B7): 9183-9191.
    [9]
    GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416.
    [10]
    GUO F, WANG Y, XIE M Y, et al., 2023. Summary of the Sunan MS 5.1 earthquake in Gansu on March 17, 2022[J]. Seismological and Geomagnetic Observation and Research, 44(2): 1-10. (in Chinese with English abstract
    [11]
    GUO P, HAN Z J, GAO F, et al., 2020. A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan Plateau[J]. Tectonics, 39(9): e2020TC006064.
    [12]
    HAO M, WANG Q L, SHEN Z K, et al., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292.
    [13]
    JI L Y, LIU C J, XU J, et al., 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082. (in Chinese with English abstract
    [14]
    JI L Y, XU J D, LIU L, et al., 2021. A review of present-day deformation of active volcanoes in China between 1970 and 2013[J]. Geological Society, London, Special Publications, 510: 215-226.
    [15]
    LI H Y, SHEN Y, HUANG Z X, et al., 2014. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 119(3): 1954-1970.
    [16]
    LI S Y, 2023. Combining GNSS and seismic anisotropy data to constrain upper crustal deformation in the northeastern Tibetan Plateau[D]. Beijing: Institute of Earthquake Forecasting, CEA. (in Chinese with English abstract
    [17]
    LI W, HE X H, ZHANG Y P, et al., 2023. The 2022 Delingha, China, earthquake sequence and implication for seismic hazard near the western end of the Qilian–Haiyuan fault[J]. Seismological Research Letters, 94(4): 1733-1746.
    [18]
    LIU C J, JI L Y, ZHU L Y, et al., 2024. Kilometer-resolution three-dimensional crustal deformation of Tibetan Plateau from InSAR and GNSS[J]. Science China Earth Sciences, 67(6): 1818-1835.
    [19]
    LIU X H, YAO X, YANG B, et al., 2023. InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau[J]. Journal of Geomechanics, 29(1): 111-126. (in Chinese with English abstract
    [20]
    LUO H, XU X W, LIU X L, et al., 2020. The structural deformation pattern in the eastern segment of the Altyn Tagh fault[J]. Acta Geologica Sinica, 94(3): 692-706. (in Chinese with English abstract
    [21]
    SHAO Y X, YUAN D Y, LEI Z S, et al., 2011. The features of earthquake surface rupture zone on northern margin fault of Danghe Nanshan[J]. Technology for Earthquake Disaster Prevention, 6(4): 427-435. (in Chinese with English abstract
    [22]
    TANG D W, GE W P, YUAN D Y, et al., 2023. Triggering effect of historical earthquakes in the northern Tibetan Plateau on the Coulomb stress of the 2022 Menyua MS6.9 earthquake and subsequent earthquakes[J]. Chinese Journal of Geophysics, 66(7): 2772-2795. (in Chinese with English abstract
    [23]
    TU H W, WANG R J, DIAO F Q, et al., 2016. Slip model of the 2001 Kunlun mountain MS8.1 earthquake by SDM: joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 59(4): 404-413. doi: 10.1002/cjg2.20245
    [24]
    VAN DER WOERD J, XU X W, LI H B, et al., 2001. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China)[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504.
    [25]
    WAN Y G, SHEN Z K, ZENG Y H, et al., 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence[J]. Acta Seismologica Sinica, 29(2): 115-129. (in Chinese with English abstract
    [26]
    WANG H, ZHANG G M, WU Y, et al., 2003. The deformation of active crustal-blocks on the Chinese Mainland and its relation with seismic activity[J]. Earthquake research in China, 19(3): 243-254. (in Chinese with English abstract
    [27]
    WANG J S, ZHAO N Y, 2020. Seismogenic structure of 2018 Xietongmen, Tibet MW5.6 earthquake inferred from InSAR data[J]. China Earthquake Engineering Journal, 42(2): 384-390. (in Chinese with English abstract
    [28]
    WANG R J, MARTÍN F L, ROTH F, 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP[J]. Computers & Geosciences, 29(2): 195-207.
    [29]
    WANG R J, LORENZO-MARTÍN F, ROTH F, 2006. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 32(4): 527-541.
    [30]
    WU X Y, XU X W, YU G H, et al., 2024. The China Active Faults Database (CAFD) and its web system[J]. Earth System Science Data, 16(7): 3391-3417.
    [31]
    WU Z H, 2024. The earthquake-controlling process of continental collision-extrusion active tectonic system around the Qinghai-Tibet Plateau: a case study of strong earthquakes since 1990[J]. Journal of Geomechanics, 30(2): 189-205. (in Chinese with English abstract
    [32]
    XIONG G H, JI L Y, LIU C J, 2023. Analysing the surface deformation and present-day magma activity of Changbaishan-Tianchi volcano from 2015 to 2022 with InSAR technology[J]. Seismology and Geology, 45(6): 1309-1327. (in Chinese with English abstract
    [33]
    XIONG W, XU C J, CHEN W, et al., 2024. The 2022 Har Lake earthquake sequence highlights a complex fault system in the western Qilian Shan, northeastern Tibetan Plateau[J]. Geophysical Journal International, 238(2): 1089-1102.
    [34]
    XU H, SHU B, ZHANG Q, et al., 2024. Site selection for landslide GNSS monitoring stations using InSAR and UAV photogrammetry with analytical hierarchy process[J]. Landslides, 21(4): 791-805.
    [35]
    YANG X P, CHEN J, LI A, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic[J]. Journal of Geomechanics, 30(2): 225-241. (in Chinese with English abstract
    [36]
    YU C, LI Z H, PENNA N T, 2018. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 204: 109-121.
    [37]
    YUE H, ZHANG Y, GE Z X, et al., 2020. Resolving rupture processes of great earthquakes: reviews and perspective from fast response to joint inversion[J]. Science China Earth Sciences, 63(4): 492-511.
    [38]
    ZHANG B, XU G C, LU Z P, et al., 2021. Coseismic deformation mechanisms of the 2021 MS 6.4 Yangbi earthquake, Yunnan Province, using InSAR observations[J]. Remote Sensing, 13(19): 3961.
    [39]
    ZHANG N, XU W J, WANG J, et al., 2020. Study on the zonal dynamic characteristics of strain rate field in the north section of the North-South Seismic Belt[J]. Progress in Geophysics, 35(5): 1724-1735. (in Chinese)
    [40]
    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.
    [41]
    ZHANG W T, JI L Y, ZHU L Y, et al., 2022. Current slip and strain rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations[J]. Frontiers in Earth Science, 10: 821761.
    [42]
    ZHANG X, LI Z Y, GUO X Y, et al., 2024. The focal mechanism solution and seismogenic structure of the Subei MS5.5 earthquake in Gansu on October 24th, 2023[J]. North China Earthquake Sciences, 42(2): 51-58. (in Chinese with English abstract
    [43]
    ZHAO L B, ZHAO L F, XIE X B, et al., 2016. Static Coulomb stress changes and seismicity rate in the source region of the 12 February, 2014 MW7.0 Yutian earthquake in Xinjiang, China[J]. Chinese Journal of Geophysics, 59(10): 3732-3743. (in Chinese with English abstract
    [44]
    ZHAO N Y, JI L Y, ZHANG W T, et al., 2023. Present-day kinematics and seismic potential of the Ganzi-Yushu fault, eastern Tibetan Plateau, constrained from InSAR[J]. Frontiers in Earth Science, 11: 1123711.
    [45]
    ZHENG W J, 2009. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administrator, 1-181. (in Chinese with English abstract
    [46]
    ZHU L, DAI Y, SHI F Q, et al., 2022. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 44(2): 223-236. (in Chinese with English abstract
    [47]
    ZIV A, RUBIN A M, 2000. Static stress transfer and earthquake triggering: no lower threshold in sight?[J]. Journal of Geophysical Research: Solid Earth, 105(B6): 13631-13642.
    [48]
    ZOU X B, LI X J, SHAO Y X, et al., 2024. Tectonic deformation and seismic mechanism of the 2021 Aksai MS5.5 earthquake[J]. Journal of Geomechanics, 30(6): 978-990. (in Chinese with English abstract
    [49]
    陈宣华,邵兆刚,熊小松,等,2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质,46(5):995-1020.
    [50]
    程建武,陈继峰,刘旭宙,2020. 青藏高原北部地区地震统计区划分及地震活动特征[J]. 地震地磁观测与研究,41(3):1-11.
    [51]
    褚永彬,2015. 祁连山地貌特征及对青藏高原隆升的响应[D]. 成都:成都理工大学.
    [52]
    郭菲,王月,解孟雨,等,2023. 2022年3月17日甘肃肃南MS5.1地震总结[J]. 地震地磁观测与研究,44(2):1-10.
    [53]
    季灵运,刘传金,徐晶,等,2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报,60(10):4069-4082.
    [54]
    李抒予,2023. GNSS与地震各向异性资料联合约束青藏高原东北部上地壳变形[D]. 北京:中国地震局地震预测研究所.
    [55]
    刘传金,季灵运,朱良玉,等,2024. 联合InSAR和GNSS构建青藏高原千米分辨率三维地壳形变场[J]. 中国科学:地球科学,54(6):1845-1862.
    [56]
    刘星洪,姚鑫,杨波,等,2023. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报,29(1):111-126.
    [57]
    罗浩,徐锡伟,刘小利,等,2020. 阿尔金断裂东段的构造转换模式[J]. 地质学报,94(3):692-706. doi: 10.3969/j.issn.0001-5717.2020.03.002
    [58]
    邵延秀,袁道阳,雷中生,等,2011. 党河南山北缘断裂古地震形变带特征研究[J]. 震灾防御技术,6(4):427-435. doi: 10.11899/zzfy20110408
    [59]
    汤大委,葛伟鹏,袁道阳,等,2023. 青藏高原北部历史强震对2022年门源MS6.9地震及后续地震库仑应力触发作用[J]. 地球物理学报,66(7):2772-2795.
    [60]
    万永革,沈正康,曾跃华,等,2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报,29(2):115-129.
    [61]
    王辉,张国民,吴云,等,2003. 中国大陆活动地块变形与地震活动的关系[J]. 中国地震,19(3):243-254.
    [62]
    王金烁,赵宁远,2020. 利用InSAR技术研究2018年西藏谢通门MW5.6地震发震构造[J]. 地震工程学报,42(2):384-390.
    [63]
    吴中海,2024. 青藏高原陆陆碰撞-挤出活动构造体系控震作用:以1990年以来强震活动为例[J]. 地质力学学报,30(2):189-205. doi: 10.12090/j.issn.1006-6616.2023186
    [64]
    熊国华,季灵运,刘传金,2023. 长白山天池火山2015—2022年InSAR变形与活动状态分析[J]. 地震地质,45(6):1309-1327. doi: 10.3969/j.issn.0253-4967.2023.06.004
    [65]
    杨晓平,陈杰,李安,等,2024. 新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应[J]. 地质力学学报,30(2):225-241. doi: 10.12090/j.issn.1006-6616.2023136
    [66]
    岳汉,张勇,盖增喜,等,2020. 大地震震源破裂模型:从快速响应到联合反演的技术进展及展望[J]. 中国科学:地球科学,50(4):515-537.
    [67]
    张楠,许文俊,王静,等,2020. 南北地震带北段分区应变率场动态变化特征研究[J]. 地球物理学进展,35(5):1724-1735. doi: 10.6038/pg2020DD0465
    [68]
    张潇,李振月,郭祥云,等,2024. 2023年10月24日甘肃肃北MS5.5地震震源机制及发震构造[J]. 华北地震科学,42(2):51-58.
    [69]
    赵立波,赵连锋,谢小碧,等,2016. 2014年2月12日新疆于田MW7.0地震源区静态库仑应力变化和地震活动率[J]. 地球物理学报,59(10):3732-3743. doi: 10.6038/cjg20161018
    [70]
    郑文俊,2009. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京:中国地震局地质研究所,1-181.
    [71]
    朱琳,戴勇,石富强,等,2022. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报,44(2):223-236. doi: 10.11939/jass.20220012
    [72]
    邹小波,李兴坚,邵延秀,等,2024. 2021年阿克塞MS5.5地震区形变特征及发震机制研究[J]. 地质力学学报,30(6):978-990. doi: 10.12090/j.issn.1006-6616.2023125
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (138) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return