Volume 31 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
WANG R Y,WAN Y K,GUAN Z X,et al.,2025. Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023[J]. Journal of Geomechanics,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039
Citation: WANG R Y,WAN Y K,GUAN Z X,et al.,2025. Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023[J]. Journal of Geomechanics,31(2):223−234 doi: 10.12090/j.issn.1006-6616.2024039

Static stress triggering of Morocco M 6.9 earthquake on 9 September 2023

doi: 10.12090/j.issn.1006-6616.2024039
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42174074, 41674055, and 42364005).
More Information
  • Received: 2024-04-17
  • Revised: 2025-02-14
  • Accepted: 2025-02-20
  • Available Online: 2025-02-28
  • Published: 2025-04-27
  •   Objective  Coulomb stress change is an important tool for studying earthquake triggering effects and assessing seismic hazard. In order to study the triggering of the static Coulomb Failure Stress(CFS) of the M 6.9 earthquake in Morocco on September 9, 2023, the study determined the geometric configuration and slip properties of the seismogenic fault, analyzed the co-seismic displacement field and surface strain field generated by the earthquake, and evaluated the triggering effects of the mainshock on aftershocks and surrounding faults, revealing the impact of this earthquake on regional seismic activity.   Methods  Using the "central solution" algorithm, two possible nodal planes of the earthquake were determined, and the local stress field was projected onto these two planes. The nodal plane with higher Coulomb stress was selected as the seismogenic fault plane (strike 253.44°, dip 45.43°, rake 81.05°). Based on statistical formulas, the slip properties of the seismogenic fault plane were determined. Under the homogeneous elastic half-space theoretical model, the co-seismic displacement field and areal strain field of the region were constructed. Subsequently, assuming that the focal mechanisms of the aftershocks on the receiver faults were consistent with the mainshock, the triggering effect of the mainshock on the aftershocks was calculated. Finally, the Coulomb stress changes induced by the mainshock on the surrounding faults were computed to assess the seismic hazard.   Results  The results show that the material at the epicenter moved outward, while the material on the north and south sides moved inward, resulting in uplift at the epicenter and slight subsidence on the north and south sides. The static Coulomb stress generated by the mainshock promoted the occurrence of most shallow aftershocks, with a large number of aftershocks located in areas of high Coulomb stress change. Additionally, the western and southwestern segments of the South Atlas Fault, the southern segment of the North Atlas Fault, and the western segment of the South Sous Fault all exhibited Coulomb stress change values exceeding the 0.01 MPa threshold, indicating a very high seismic hazard that warrants attention.   Conclusion  The study demonstrates that the static CFS generated by the M 6.9 earthquake in Morocco significantly influenced the surrounding seismic activity. The mainshock not only promoted the occurrence of aftershocks but also increased the stress on surrounding faults, particularly in the western and southwestern segments of the South Atlas Fault, the southern segment of the North Atlas Fault, and the western segment of the South Sous Fault. [Significance] The study not only assessed the seismic hazard in the region but also provided a foundational dataset for geodynamic research in the area. It contributes to enhancing earthquake monitoring, prediction, and risk mitigation capabilities, promotes the formulation of relevant policies, and safeguards people's lives and property. Therefore, an in-depth exploration of earthquake triggering is of great significance for strengthening post-earthquake scientific research and improving society's ability to respond to earthquakes.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    CHELONI D, AMIGLIETTI N A, TOLOMEI C, et al., 2024. The 8 September 2023, MW 6.8, Morocco earthquake: a deep transpressive faulting along the active high Atlas mountain belt[J]. Geophysical Research Letters, 51(2): e2023GL106992. doi: 10.1029/2023GL106992
    [2]
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract
    [3]
    DAI Y L, WAN Y G, KONG X X, et al., 2022. Central focal mechanism of the Dengta, Liaoning M5.1 earthquake in 2013 and the analysis of its surrounding tectonic stress field[J]. Journal of Seismological Research, 45(4): 570-580. (in Chinese with English abstract
    [4]
    DENG J S, GURNIS M, KANAMORI H, et al., 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689
    [5]
    ELLERO A, OTTRIA G, MARCO G, et al. , 2012. Structural geological analysis of the high atlas (Morocco): evidences of a transpressional Fold-Thrust Belt[J/ OL]. Tectonics-recent advances, http://dx.doi.org/10.5772/50071.
    [6]
    FENG G, WAN Y G, XU X, et al. , 2021. Static stress influence of the 2021 Ms7.4 Madoi, Qinghaiearthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571. (in Chinese with English abstract
    [7]
    GUAN Z X, WAN Y G, HUANG S H, et al., 2023. Study on the triggering mechanism and earthquake dynamics of the 2022 Michoacan Mw7.6 earthquake sequence in Mexico[J]. Earthquake Research in China, 39(3): 584-595. (in Chinese with English abstract
    [8]
    GUAN Z X, WAN Y G, HUANG S H, 2024. The stress effect of the M5.5 earthquake on the surrounding area in Shandong Pingyuan in 2023[J]. Earthquake Research in China, 40(2): 378-388. (in Chinese with English abstract
    [9]
    HARRIS R A, 1998. Introduction to special section, stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24347-24358. doi: 10.1029/98JB01576
    [10]
    HEIDBACH O, RAJABI M, CUI X F, et al., 2018. The World Stress Map database release 2016: crustal stress pattern across scales[J]. Tectonophysics, 744: 484-498. doi: 10.1016/j.tecto.2018.07.007
    [11]
    HUANG K, WEI G G, CHEN K J, et al., 2024. The 2023 Mw 6.8 Morocco earthquake: a lower crust event triggered by mantle upwelling?[J]. Geophysical Research Letters, 51(12): e2024GL109052, doi: 10.1029/2024GL109052
    [12]
    HUANG S H, WAN Y G, FENG G, et al., 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022[J]. Journal of Geomechanics, 29(5): 674-684. (in Chinese with English abstract
    [13]
    JAEGER J C, COOK N G W, ZIMMERMAN R. 2007. Fundamentals of rock mechanics[M]. 4th ed. Malden: Blackwell Publishing Ltd: 488.
    [14]
    JIN Z T, WAN Y G, LIU Z C, et al., 2019. The static stress triggering influences of the 2017Ms7.0 Jiuzhaigou earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 62(4): 1282-1299. (in Chinese with English abstract
    [15]
    KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.
    [16]
    LI Q H, WAN Y G, 2024. Geometry of seismogenic faults determination of the 2021 Maduo earthquake sequence by fuzzy clustering algorithm[J]. Earth Science, 49(9): 3363-3376. (in Chinese with English abstract
    [17]
    LI Y, WAN Y G, JIN Z T, et al., 2017. The study of static stress variation of the Mw6.3 Jinghe earthquake[J]. Earthquake Research in China, 33(4): 671-681. (in Chinese with English abstract
    [18]
    LI Z D, 2023. Warnings from the earthquake in Morocco[J]. Life & Disaster, 30(10): 32-35. (in Chinese)
    [19]
    LI Z Y, WAN Y G, JIN Z T, et al., 2020. The static Coulomb stress influence of the Mainling M6.9 earthquake in Tibet on November 18, 2017 to the subsequent earthquakes[J]. Seismology and Geology, 42(5): 1091-1108. (in Chinese with English abstract
    [20]
    NALBANT S S, HUBERT A, KING G C P, 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24469-24486. doi: 10.1029/98JB01491
    [21]
    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018
    [22]
    SONG Z Y, WAN Y G, GUAN Z X, et al., 2024. Stress changes on surrounding faults and triggering of aftershocks induced by the Ms7.1 earthquake in Wushi County, Aksu Prefecture, Xinjiang, on January 23, 2024[J]. China Earthquake Engineering Journal, 46(4): 982-991. (in Chinese with English abstract
    [23]
    WAN Y G, SHEN Z K, ZENG Y H, et al., 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) plateau and its effect on large earthquake occurrence[J]. Acta Seismologica Sinica, 29(2): 115-129. (in Chinese with English abstract
    [24]
    WAN Y G, SHEN Z K, ZENG Y H, et al., 2008. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence[J]. Acta Seismologica Sinica, 30(6): 581-593. (in Chinese with English abstract
    [25]
    WAN Y G, SHEN Z K, SHENG S Z, et al., 2009. The influence of 2008 Wenchuan earthquake on surrounding faults[J]. Acta Seismologica Sinica, 31(2): 128-139. (in Chinese with English abstract
    [26]
    WAN Y G, SHEN Z K, SHENG S Z, et al., 2010. The mechanical effects of the 2008 Ms7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism[J]. Chinese Journal of Geophysics, 53(2): 280-289. (in Chinese with English abstract
    [27]
    WAN Y G, SHENG S Z, XU Y R, et al., 2011. Effect of stress ratio and friction coefficient on composite P wave radiation patterns[J]. Chinese Journal of Geophysics, 54(4): 994-1001. (in Chinese with English abstract
    [28]
    WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese with English abstract
    [29]
    WAN Y G, 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 63(6): 2281-2296. (in Chinese with English abstract
    [30]
    WAN Y G, 2024. Focal mechanism classification based on areal strain of horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of earthquake sequence[J]. Earth Science, 49(7): 2675-2684. (in Chinese with English abstract
    [31]
    WANG R Y, WAN Y G, SONG Z Y, et al., 2024. Focal mechanism and stress implication on the surrounding region of the Jishishan, Gansu Ms6.2 earthquake on December 18, 2023[J]. Earthquake, 44(1): 175-184. (in Chinese with English abstract
    [32]
    WANG X M, 2023. Striking similarities between the revelations of the Morocco earthquake and the Shandong Dezhou earthquake[J]. Overview of Disaster Prevention(5): 28-33. (in Chinese)
    [33]
    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974
    [34]
    XU X, WAN Y G, LI Z Y., et al., 2022. Static stress triggering of the 2021 Yangbi Ms6.4 earthquake sequence in Yunnan Province[J]. China Earthquake Engineering Journal, 44(4): 970-979. (in Chinese with English abstract
    [35]
    ZHOU J, 2023. Brief introduction on the earthquake science research and disaster loss of M6.9 earthquake in morocco[J] . City and Disaster Reduction(6): 59-66. (in Chinese)
    [36]
    陈群策,孙东生,崔建军,等,2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报,25(5):853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    [37]
    戴盈磊,万永革,孔祥雪,等,2022. 2013年辽宁灯塔M5.1地震震源机制中心解及震源区构造应力场特征分析[J]. 地震研究,45(4):570-580.
    [38]
    冯淦,万永革,许鑫,等,2021. 2021年青海玛多Ms7.4地震对周围地区的应力影响[J]. 地球物理学报,64(12):4562-4571. doi: 10.6038/cjg2021P0454
    [39]
    关兆萱,万永革,黄少华,等,2023. 2022年墨西哥米却肯州7.6级地震序列的触发关系及发震动力学探讨[J]. 中国地震,39(3):584-595. doi: 10.3969/j.issn.1001-4683.2023.03.010
    [40]
    关兆萱,万永革,黄少华,2024. 2023年山东平原M5.5地震对周围区域的应力影响[J]. 中国地震,40(2):378-388. doi: 10.3969/j.issn.1001-4683.2024.02.009
    [41]
    黄少华,万永革,冯淦,等,2023. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因[J]. 地质力学学报,29(5):674-684. doi: 10.12090/j.issn.1006-6616.2023056
    [42]
    靳志同,万永革,刘兆才,等,2019. 2017年九寨沟Ms7.0地震对周围地区的静态应力影响[J]. 地球物理学报,62(4):1282-1299. doi: 10.6038/cjg2019L0675
    [43]
    李佺洪,万永革,2024. 采用模糊聚类算法确定2021年玛多地震序列的断层结构[J]. 地球科学,49(9):3363-3376.
    [44]
    李瑶,万永革,靳志同,等,2017. 新疆精河Mw6.3地震产生的静态应力变化研究[J]. 中国地震,33(4):671-681. doi: 10.3969/j.issn.1001-4683.2017.04.023
    [45]
    李振月,万永革,靳志同,等,2020. 2017年11月18日西藏米林M6.9地震对后续地震的静态库伦应力的影响[J]. 地震地质,42(5):1091-1108. doi: 10.3969/j.issn.0253-4967.2020.05.005
    [46]
    李忠东,2023. 摩洛哥地震的警示[J]. 生命与灾害,30(10):32-35.
    [47]
    宋泽尧,万永革,关兆萱,等,2024. 2024年1月23日新疆阿克苏地区乌什县Ms7.1地震对周围断层的应力影响及对余震的触发作用[J]. 地震工程学报,46(4):982-991.
    [48]
    万永革,沈正康,曾跃华,等,2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报,29(2):115-129. doi: 10.3321/j.issn:0253-3782.2007.02.001
    [49]
    万永革,沈正康,曾跃华,等,2008. 唐山地震序列应力触发的粘弹性力学模型研究[J]. 地震学报,30(6):581-593. doi: 10.3321/j.issn:0253-3782.2008.06.004
    [50]
    万永革,沈正康,盛书中,等,2009. 2008年汶川大地震对周围断层的影响[J]. 地震学报,31(2):128-139. doi: 10.3321/j.issn:0253-3782.2009.02.002
    [51]
    万永革,沈正康,盛书中,等,2010. 2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释[J]. 地球物理学报,53(2):280-289. doi: 10.3969/j.issn.0001-5733.2010.02.006
    [52]
    万永革,盛书中,许雅儒,等,2011. 不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究[J]. 地球物理学报,54(4):994-1001. doi: 10.3969/j.issn.0001-5733.2011.04.014
    [53]
    万永革,2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718-4728. doi: 10.6038/cjg2019M0553
    [54]
    万永革,2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281-2296. doi: 10.6038/cjg2020M0472
    [55]
    万永革,2024. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J]. 地球科学,49(7):2675-2684.
    [56]
    王润妍,万永革,宋泽尧,等,2024. 2023年12月18日甘肃积石山6.2级地震震源机制及其对周围区域的应力影响[J]. 地震,44(1):175-184. doi: 10.12196/j.issn.1000-3274.2024.01.014
    [57]
    王晓民,2023. 摩洛哥地震与山东德州地震的启示惊人相似[J]. 防灾博览(5):28-33.
    [58]
    许鑫,万永革,李振月,等,2022. 2021年云南漾濞Ms6.4地震序列静态应力触发研究[J]. 地震工程学报,44(4):970-979.
    [59]
    周健,2023. 摩洛哥地震科学研究简介与6.9级地震灾情分析[J]. 城市与减灾(6):59-66.
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (123) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return