Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LIU Shuai, HE Bin, WANG Tao, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China. Journal of Geomechanics, 30 (2): 314-331. DOI: 10.12090/j.issn.1006-6616.2024009
Citation: LIU Shuai, HE Bin, WANG Tao, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China. Journal of Geomechanics, 30 (2): 314-331. DOI: 10.12090/j.issn.1006-6616.2024009

Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China

doi: 10.12090/j.issn.1006-6616.2024009
Funds:

the National Key R&D Program of China 2022YFC3003505

the National Key R&D Program of China 2022YFC3004302

the Geological Survey Projects of the China Geological Survey DD20221738

National Natural Science Foundation of China 41572313

Ministry of Natural Resources Science and Technology Talent Project Grant project 121106000000180039-2207

More Information
  • Received: 2024-01-20
  • Revised: 2024-01-30
  • Accepted: 2024-01-31
  • Available Online: 2024-01-31
  • Published: 2024-04-28
  •   Objective  On December 18, 2023, an MS 6.2 earthquake occurred in Jishishan County, Gansu Province, China. Coseismic geological hazards induced by the earthquake crucially threatened the safety of personnel and property. Existing research is mainly concentrated in the vicinity of active faults and the concentrated distribution area of hidden danger points. Moreover, no special susceptibility assessment studies have been carried out on coseismic geological hazards in the administrative area of Jishishan County, making it challenging to meet the needs of the county's post-disaster recovery and reconstruction planning. Hence, the development laws of coseismic geological hazards must be summarized and analyzed crucially, and county susceptibility must be analyzed in time to support post-earthquake recovery and reconstruction.  Methods  The development characteristics of coseismic geological hazards are analyzed and summarized through emergency investigations, field surveys, and result analysis. Using the newly added and exacerbated coseismic hazard points identified during post-earthquake investigations as analysis samples, influencing factors were selected using the Pearson correlation coefficient and random forest Gini coefficient analysis methods. Then, a machine learning-random forest model was applied to assess the susceptibility of coseismic geological hazards in Jishishan County.  Results  In analyzing the development characteristics of coseismic geological hazards, we identified 134 instances of increased and exacerbated hazards in Jishishan County. Overall, the degree of development of these hazards was relatively low, with primarily small-scale occurrences. These hazards were categorized into three main types and eight sub-categories: ① Collapse (including cut slope loess collapse, high loess collapse, and high rock collapse); ② Landslide (encompassing loess landslide, secondary sand/mudstone landslide, and potential landslide); and ③ Debris flow (comprising gully debris flow and slope debris flow). In terms of factor selection, 15 influencing factors were screened. Regarding the susceptibility assessment results, the AUC value of the susceptibility assessment results of coseismic geological hazards in most Jishishan counties was 0.961, and the results showed that the areas of extremely high susceptibility accounted for approximately 8.67 %, mainly distributed in Hulinjia, Xuhujia, Liugoujia, and other townships. The statistical results of the proportion of susceptibility zones in 17 townships in Jishishan County showed that the top three townships with the largest proportions of extremely high-susceptibility areas are Hulinjia (24.67%), Xuhujia (21.24%), and Biezang (20.94%).  Conclusion  (1) Most coseismic geological hazards in Jishishan are distributed in the loess hilly area, with few occurrences in the Jishishan area and the right bank terrace of the Yellow River. (2) The influence of elevation and peak ground acceleration (PGA) on hazard occurrence is notably greater than that of other factors, playing a predominant role in developing coseismic geological hazards. (3) Utilizing the random forest model, the susceptibility assessment of coseismic geological hazards in Jishishan County demonstrates high accuracy, with hidden danger points clustered in highly susceptible areas. This alignment between susceptibility assessment results and the spatial distribution of hidden dangers underscores the reliability of the assessment outcomes.  Significance  In addition to identifying existing hidden danger points, this study offers predictive insights into slope deformation and potential landslides significantly affected by seismic cracking. The assessment results exhibit high accuracy and reliability, offering valuable geological safety support for post-disaster recovery and reconstruction planning in the county.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ABBAS F, ZHANG F, ISMAIL M, et al., 2023. Optimizing machine learning algorithms for landslide susceptibility mapping along the Karakoram highway, Gilgit Baltistan, Pakistan: a comparative study of baseline, Bayesian, and metaheuristic Hyperparameter optimization techniques[J]. Sensors, 23(15): 6843. doi: 10.3390/s23156843
    ACHU A L, AJU C D, DI NAPOLI M, et al., 2023. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis[J]. Geoscience Frontiers, 14(6): 101657. doi: 10.1016/j.gsf.2023.101657
    ADO M, AMITAB K, MAJI A K, et al., 2022. Landslide susceptibility mapping using machine learning: a literature survey[J]. Remote Sensing, 14(13): 3029. doi: 10.3390/rs14133029
    CANTARINO I, CARRION M A, GOERLICH F, et al., 2019. A ROC analysis-based classification method for landslide susceptibility maps[J]. Landslides, 16(2): 265-282. doi: 10.1007/s10346-018-1063-4
    CHEN B, SONG C, CHEN Y, et al., 2024. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 MS6.2 Jishishan (Gansu, China) Earthquake[J/OL]. Geomatics and Information Science of Wuhan University, 1-16. https://doi.org/10.13203/J.whugis20230497, 2024-01-17. (in Chinese with English abstract)
    Danika S, Edward M, Sylvia H M, 2019. A Mixed-Methods Evaluation of a Gender Affirmative Education Program for Families of Trans Young People[J]. Journal of GLBT Family Studies, 16(1).
    DE OLIVEIRA G G, RUIZ L F C, GUASSELLI L A, et al., 2019. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil[J]. Natural Hazards, 99(2): 1049-1073. doi: 10.1007/s11069-019-03795-x
    FAN W, WEI X S, CAO Y B, et al., 2017. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science, 14(5): 906-925. doi: 10.1007/s11629-016-4068-2
    FANG L H, YANG T, FAN L P, 2023. On December 18, 2023, Jishishan County, Linxia Prefecture, Gansu Province, MS 6.2 earthquake science and technology support briefing[EB/OL]. Geophysical Research Institute of China Seismological Bureau. https://www.cea-igp.ac.cn/kydt/280418.html. (in Chinese)
    HUANG R Q, LI W L, 2008. Research on development and distribution rules of Geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.12.028
    HUANG R Q, LI W L, 2008. "5.12" Wenchuan earthquake triggered the development and distribution of geological disasters [J]. Rock mechanics and engineering, 27 (12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028
    LI R, HUANG S Y, DOU H Q, 2023. Dynamic risk assessment of landslide hazard for large-scale photovoltaic power plants under extreme rainfall conditions[J]. Water, 15(15): 2832. doi: 10.3390/w15152832
    LI W L, XU Q, LI Y S, et al., 2024. Preliminary analysis of the coseismic geohazards induced by the 2023 Jishishan MS6.2 earthquake[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 51(1): 33-45, 90. (in Chinese with English abstract)
    LI X, XUE G C, LIU C Z, et al., 2022. Evaluation of Geohazard susceptibility based on information value model and information value-logistic regression model: A case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics, 28(2): 294-305. (in Chinese with English abstract)
    LIU J M, WANG T, DU J J, et al., 2023. Emergency rapid assessment of landslides induced by the Luding MS6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology, 50(2): 84-94. (in Chinese with English abstract)
    LIU S, ZHU J Y, YANG D H, et al., 2023. Geological hazard assessment of collapse and landslide under different rainfall conditions[J/OL]. Bulletin of Geological Science and Technology, 1-19. https://doi.org/10.19509/j.cnki.dzkq.tb20220448, 2024-01-17. (in Chinese with English abstract)
    SHAREK D, MCCANN E, HUNTLEY-MOORE S, 2020. A mixed-methods evaluation of a gender affirmative education program for families of trans young people[J]. Journal of GLBT Family Studies, 16(1): 18-31. doi: 10.1080/1550428X.2019.1614504
    SUN D L, CHEN D L, MI C L, et al., 2023. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics, 29(2): 202-219. (in Chinese with English abstract)
    TIE Y B, ZHANG X Z, CAO J W, et al., 2024. Comparative research of the characteristics of geological hazards induced by the Jishishan (MS6.2) and Luding (MS6.8) earthquakes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 51(1): 9-21, 59. (in Chinese with English abstract)
    WANG L C, HOU S S, DONG Y, et al., 2023. Basic characteristics of co-seismic geological hazards induced by Jishishan MS6.2 earthquake and suggestions for their risk control[J/OL]. The Chinese Journal of Geological Hazard and Control, 1-11. http://kns.cnki.net/kcms/detail/11.2852.P.20231228.1352.002.html, 2024-01-17. (in Chinese with English abstract)
    WANG T, MA Y S, LONG C X, et al., 2008. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin of China, 27(11): 1913-1922. (in Chinese with English abstract)
    WANG T, WU S R, SHI J S, et al., 2015. Concepts and mechanical assessment method for seismic landslide hazard: a review[J]. Journal of Engineering Geology, 23(1): 93-104. (in Chinese with English abstract)
    WANG Y S, ZHAO B, JI F, et al., 2024. Preliminary insights into the hazards triggered by the 2023 Jishishan MS6.2 earthquake in Gansu province[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 51(1): 1-8. (in Chinese with English abstract)
    XIAO L, 2012. Study on the attenuation relationship of strong ground motion parameters of horizontal bedrock [J]. International seismic dynamics, (1): 37-39. (in Chinese with English abstract)
    XU C, XU X W, 2012. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 31(3): 116-121. (in Chinese with English abstract
    XU Q, HUANG R Q, 2008. Kinetics charateristics of large landlides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 721-729. (in Chinese with English abstract)
    YANG Z H, LAN H X, ZHANG Y S, et al., 2017. Research review on long-term activity of post-earthquake geohazard in strong seismic-disturbed regions[J]. Journal of Geomechanics, 23(5): 743-753. (in Chinese with English abstract)
    YIN Y P, ZHANG Y S, WU F Q, et al., 2014. Research achievements and prospects on Wenchuan earthquake-induced Geohazard investigation[J]. Geological Survey of China, 1(1): 1-9. (in Chinese with English abstract)
    YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S, et al., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 13(5): 839-856.
    YUAN D Y, 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the late Cenozoic time[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    YUAN D Y, ZHANG P Z, LEI Z S, et al., 2005. A preliminary study on the new activity features of the Lajishan mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 21(1): 93-102. (in Chinese with English abstract)
    ZANG B, 2012. The study of new activities on western segment of northern margin of western Qinling fault and Laji Shan fault[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration. (in Chinese with English abstract)
    ZHANG Y S, MA Y S, HU D G, et al., 2010. Investigation and research on the surface rupture of the Yushu earthquake and reconstruction site selection[J]. Acta Geologica Sinica, 84(5): 593-605. (in Chinese with English abstract)
    陈博, 宋闯, 陈毅, 等, 2024. 2023年甘肃积石山MS6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J/OL]. 武汉大学学报(信息科学版), 1-16. https://doi.org/10.13203/J.whugis20230497, 2024-01-17.
    房立华, 杨婷, 范莉苹, 2023. 2023年12月18日甘肃临夏州积石山县6.2级地震科技支撑简报[EB/OL]. 中国地震局地球物理研究所. https://www.cea-igp.ac.cn/kydt/280418.html, 2024-01-17.
    黄润秋, 李为乐, 2008. "5.12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
    李为乐, 许强, 李雨森, 等, 2024. 2023年积石山MS6.2级地震同震地质灾害初步分析[J]. 成都理工大学学报(自然科学版), 51(1): 33-45, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202401004.htm
    李信, 薛桂澄, 柳长柱, 等, 2022. 基于信息量模型和信息量-逻辑回归模型的海南岛中部山区地质灾害易发性研究[J]. 地质力学学报, 28(2): 294-305. doi: 10.12090/j.issn.1006-6616.2021111?viewType=HTML
    刘甲美, 王涛, 杜建军, 等, 2023. 四川泸定MS6.8级地震诱发崩滑灾害快速评估[J]. 水文地质工程地质, 50(2): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202302009.htm
    刘帅, 朱杰勇, 杨得虎, 等, 2023. 不同降雨工况条件下的崩滑地质灾害危险性评价[J/OL]. 地质科技通报, 1-19. https://doi.org/10.19509/j.cnki.dzkq.tb20220448, 2024-01-17.
    孙德亮, 陈丹璐, 密长林, 等, 2023. 基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报, 29(2): 202-219. doi: 10.12090/j.issn.1006-6616.2022128?viewType=HTML
    铁永波, 张宪政, 曹佳文, 等, 2024. 积石山MS6.2级和泸定MS6.8级地震地质灾害发育规律对比[J]. 成都理工大学学报(自然科学版), 51(1): 9-21, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202401002.htm
    王立朝, 侯圣山, 董英, 等, 2023. 甘肃积石山MS6.2级地震的同震地质灾害基本特征及风险防控建议[J/OL]. 中国地质灾害与防治学报, 1-11. http://kns.cnki.net/kcms/detail/11.2852.P.20231228.1352.002.html, 2024-01-17.
    王涛, 马寅生, 龙长兴, 等, 2008. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 27(11): 1913-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200811025.htm
    王涛, 吴树仁, 石菊松, 等, 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报, 23(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501019.htm
    王运生, 赵波, 吉锋, 等, 2024. 2023年甘肃积石山MS6.2级地震震害异常的启示[J]. 成都理工大学学报(自然科学版), 51(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202401001.htm
    肖亮, 2012. 水平向基岩强地面运动参数衰减关系研究[J]. 国际地震动态, (1): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201201016.htm
    许冲, 徐锡伟, 2012. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报, 31(3): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203019.htm
    许强, 黄润秋, 2008. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 16(6): 721-729. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806001.htm
    杨志华, 兰恒星, 张永双, 等, 2017. 强震区震后地质灾害长期活动性研究综述[J]. 地质力学学报, 23(5): 743-753. https://journal.geomech.ac.cn/article/id/416fc018-d66f-480e-b56e-55765e72d737?viewType=HTML
    殷跃平, 张永双, 伍法权, 等, 2014. 汶川地震地质灾害调查成果与展望[J]. 中国地质调查, 1(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201401002.htm
    袁道阳, 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所.
    袁道阳, 张培震, 雷中生, 等, 2005. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 21(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200501009.htm
    张波, 2012. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所.
    张永双, 马寅生, 胡道功, 等, 2010. 玉树地震地表破裂调查与灾后重建避让选址研究[J]. 地质学报, 84(5): 593-605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201005002.htm
  • 加载中

Catalog

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (605) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return