Citation: | ZHU Yifei, YAO Xin, YAO Leihua, et al., 2022. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing. Journal of Geomechanics, 28 (2): 268-280. DOI: 10.12090/j.issn.1006-6616.2021054 |
CHENG Y, ZHANG J, CHEN J, 2019. Analysis on stability and hazard zone of dangerous rock mass in Zongling Town, Nayong of Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 30(4): 9-15. (in Chinese with English abstract)
|
DONG J, ZHANG L, LI M H, et al., 2018. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 15(1): 135-144. doi: 10.1007/s10346-017-0914-8
|
FAN J H, GUO H D, GUO X F, et al., 2008. Monitoring subsidence in tianjin area using interferogram stacking based on coherent targets[J]. Journal of Remote Sensing, 12(1): 111-118. (in Chinese with English abstract)
|
FAN X M, XU Q, SCARINGI G, et al., 2019. The "long" runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides, 16(1): 139-154. doi: 10.1007/s10346-018-1084-z
|
FAN X Y, HU X B, ZHANG R X, et al., 2018. Study on the open topography influence on the moving distances of landslides[J]. Journal of Natural Disasters, 27(5): 188-196. (in Chinese with English abstract)
|
GAO Y, HE K, LI Z, et al., 2020. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology, 47(4): 14-23. (in Chinese with English abstract)
|
HAN D J, YANG C S, DONG J H, 2020. InSAR monitoring and analysis of landslide deformation after the earthquake in the Zhangmu port, Tibet[J]. Journal of Geomechanics, 26(4): 565-574. (in Chinese with English abstract)
|
HUANG R Q, 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract)
|
LI L J, YAO X, ZHANG Y S, et al., 2014. SBAS-InSAR technology based identification of slow deformation of geologic mass along section of China-Pakistan highway[J]. Journal of Engineering Geology, 22(5): 921-927. (in Chinese with English abstract)
|
LI W L, XU Q, LU H Y, et al., 2019. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University, 44(7): 1043-1053. (in Chinese with English abstract)
|
LI Z H, SONG C, YU C, et al., 2019. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 44(7): 967-979. (in Chinese with English abstract)
|
LIU G W, WANG C J, LI G H, et al., 2019. Application research on the remote sensing technology in geological disaster prevention and control of existing railway[J]. Journal of Railway Engineering Society, 36(6): 23-27. (in Chinese with English abstract)
|
LIU X H, YAO X, ZHOU Z K, et al., 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
|
LU H Y, LI W L, XU Q, et al., 2019. Early detection of landslides in the upstream and downstream areas of the baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 44(9): 1342-1354. (in Chinese with English abstract)
|
STROZZI T, WEGMULLER U, WERNER C, et al., 2000. Measurement of slow uniform surface displacement with mm/year accuracy[C]//IGARSS 2000. IEEE 2000 international geoscience and remote sensing symposium. Taking the pulse of the planet: the role of remote sensing in managing the environment. Proceedings (Cat. No. 00CH37120). Honolulu: IEEE: 2239-2241.
|
TANG R, XU Q, WU B, et al., 2018. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics, 39(3): 1009-1019, 1070. (in Chinese with English abstract)
|
WANG J, WANG C, XIE C, et al., 2020. Monitoring of large-scale landslides in Zongling, Guizhou, China, with improved distributed scatterer interferometric SAR time series methods[J]. Landslides, 17(8): 1777-1795. doi: 10.1007/s10346-020-01407-5
|
XU C, XU X W, SHEN L L, et al., 2016. Optimized volume models of earthquake-triggered landslides[J]. Scientific Reports, 6: 29797. doi: 10.1038/srep29797
|
YANG X Z, XUE L G, 1994. Natural resources for Tourism in Maoshi, Northen Suburb of Zunyi city and their classification[J]. Guizhou Geology, 11(2): 161-166. (in Chinese with English abstract)
|
YANG Z P, JIANG Y W, LI B, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 26(4): 459-470. (in Chinese with English abstract)
|
ZHAN W W, HUANG R Q, PEI X J, et al., 2017. Empirical prediction model for movement distance of gully-type rock avalanches[J]. Journal of Engineering Geology, 25(1): 154-163. (in Chinese with English abstract)
|
ZHANG M, WU L Z, ZANG J C, et al., 2019. The 2009 Jiweishan rock avalanche, Wulong, China: deposit characteristics and implications for its fragmentation[J]. Landslides, 16(5): 893-906. doi: 10.1007/s10346-019-01142-6
|
ZHANG Y, WANG Y J, YAN S Y, 2016. Ground subsidence detection of peibei mining area based on stacking InSAR technology[J]. Coal Technology, 35(7): 102-105. (in Chinese with English abstract)
|
ZHAO J J, MA Y T, LIN B, et al., 2016. Geomechanical mode of Mining landslides with gently counter-inclined bedding: a case study of madaling landslide in Guizhou Province[J]. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2217-2224. (in Chinese with English abstract)
|
ZHENG D, FROST J D, HUANG R Q, et al., 2015. Failure process and modes of rockfall induced by underground mining: a case study of kaiyang phosphorite mine rockfalls[J]. Engineering Geology, 197: 145-157. doi: 10.1016/j.enggeo.2015.08.011
|
ZHENG G, XU Q, PENG S Q, 2019. Calculation model of the long-runout distance of rock avalanche[J]. Rock and Soil Mechanics, 40(12): 4897-4906. (in Chinese with English abstract)
|
ZHU J J, LI Z W, HU J, 2017. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1717-1733. (in Chinese with English abstract)
|
ZHUO B X, 2011. Remote sensing interpretation & application of geology engineering[M]. 2nd ed. Beijing: China Railway Press. (in Chinese)
|
程宇, 张健, 陈进, 等, 2019. 贵州纳雍骔岭镇危岩带稳定性及危害范围分析[J]. 中国地质灾害与防治学报, 30(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201904003.htm
|
范景辉, 郭华东, 郭小方, 等, 2008. 基于相干目标的干涉图叠加方法监测天津地区地面沉降[J]. 遥感学报, 12(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200801015.htm
|
樊晓一, 胡晓波, 张睿骁, 等, 2018. 开阔型地形条件对滑坡运动距离的影响研究[J]. 自然灾害学报, 27(5): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805021.htm
|
高杨, 贺凯, 李壮, 等, 2020. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质, 47(4): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004003.htm
|
韩冬建, 杨成生, 董继红, 2020. 西藏樟木口岸震后滑坡灾害变形InSAR监测分析[J]. 地质力学学报, 26(4): 565-574. doi: 10.12090/j.issn.1006-6616.2020.26.04.049
|
黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
|
李凌婧, 姚鑫, 张永双, 等, 2014. 基于SBAS-InSAR技术的中巴公路(公格尔-墓士塔格段)地质体缓慢变形识别研究[J]. 工程地质学报, 22(5): 921-927. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405023.htm
|
李为乐, 许强, 陆会燕, 等, 2019. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版, 44(7): 1043-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907010.htm
|
李振洪, 宋闯, 余琛, 等, 2019. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
|
刘桂卫, 王长进, 李国和, 等, 2019. 遥感技术在既有铁路地灾防治中应用方法研究[J]. 铁道工程学报, 36(6): 23-27. doi: 10.3969/j.issn.1006-2106.2019.06.006
|
刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
|
陆会燕, 李为乐, 许强, 等, 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 44(9): 1342-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201909011.htm
|
唐然, 许强, 吴斌, 等, 2018. 平推式滑坡运动距离计算模型[J]. 岩土力学, 39(3): 1009-1019, 1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803030.htm
|
杨秀忠, 薛立根, 1994. 遵义毛石旅游自然资源特征及景点类型划分[J]. 贵州地质, 11(2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ402.008.htm
|
杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 26(4): 459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039
|
詹威威, 黄润秋, 裴向军, 等, 2017. 沟道型滑坡-碎屑流运动距离经验预测模型研究[J]. 工程地质学报, 25(1): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701021.htm
|
张洋, 汪云甲, 闫世勇, 2016. 基于Stacking InSAR技术的沛北矿区沉降监测[J]. 煤炭技术, 35(7): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201607042.htm
|
赵建军, 马运韬, 蔺冰, 等, 2016. 平缓反倾采动滑坡形成的地质力学模式研究: 以贵州省马达岭滑坡为例[J]. 岩石力学与工程学报, 35(11): 2217-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611006.htm
|
郑光, 许强, 彭双麒, 2019. 岩质滑坡-碎屑流的运动距离计算公式研究[J]. 岩土力学, 40(12): 4897-4906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912040.htm
|
朱建军, 李志伟, 胡俊, 2017. InSAR变形监测方法与研究进展[J]. 测绘学报, 46(10): 1717-1733. doi: 10.11947/j.AGCS.2017.20170350
|
卓宝熙, 2011. 工程地质遥感判释与应用[M]. 2版. 北京: 中国铁道出版社.
|