YUN Jin-biao, ZHAO Li-hua, 2003. RESEARCH ON MOLDING, STRUCTURAL FEATURE AND FORMATION MECHANISM OF THE CENTRAL UPLIFT BELT IN DONGYING DEPRESSION,JIYANG. Journal of Geomechanics, 9 (2): 113-121.
Citation: ZHU Yifei, YAO Xin, YAO Leihua, et al., 2022. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing. Journal of Geomechanics, 28 (2): 268-280. DOI: 10.12090/j.issn.1006-6616.2021054

Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing

doi: 10.12090/j.issn.1006-6616.2021054
Funds:

China Three Gorges Corporation Project YMJ (XLD)/(19) 110

the Chinese Geological Survey Project DD20221738-2

More Information
  • The Zongling landslide group in Guizhou Province is characterized by strong regularity of disaster formation, concentrated development and severe threat. It is represented in the coal mining-induced geological hazards in western Guizhou and eastern Yunnan. In this paper, InSAR and optical remote sensing were used for nuanced identification to obtain the regional landslide information, and the landslide deformation-failure mode in the Zongling region was summarized. Based on this, the volume-distance statistical formula suitable for landslide risk assessment in this region was established, and the typical disaster bodies ware calculated. Some important insights are gained: Underground coal mining is the major contributor to the deformation of the edge of Table Mountain in Zongling. InSAR observation results show that the deformation in the Zongling area has prominent zonal characteristics, and the annual average deformation velocity is between -20.4~10.2 cm/a, which corresponds well with the lower goaf. The areas with great displacement are concentrated in the edge zone of cuesta, with coal mining subsidence and slope gravity superimposed; There are 64 deformations in the Zongling area, including 37 landslides, 27 cracks, and 2 dangerous deformed bodies. Landslides mainly occur in the dark grey limestone strata and dark purplish-red argillaceous siltstone strata of the Feixianguan Formation. According to the lithology and deformation characteristics of the slip source, the landslides can be classified into two types: pull-toppling and pull-clipping, and the former is distinguished by large particle size, long movement distance, and severe threat. The formula for calculating the slip distance of rock landslide debris flow has good applicability to the slip distance of coal mining-induced landslide developed in the "upper hard and lower soft" strata in the Zongling area, and the verification error is less than 5%. The formula is used to calculate the dangerous deformed bodies of Zuojiaying and Jingjiao in the study area, and the danger avoidance distance is predicted to be 220~386 m. The proposed method of coal mining-induced landslide risk assessment based on differential interferometry and optical image play an exemplary role for the prevention and control of coal mining-induced landslides in western Guizhou and eastern Yunnan.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • CHENG Y, ZHANG J, CHEN J, 2019. Analysis on stability and hazard zone of dangerous rock mass in Zongling Town, Nayong of Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 30(4): 9-15. (in Chinese with English abstract)
    DONG J, ZHANG L, LI M H, et al., 2018. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 15(1): 135-144. doi: 10.1007/s10346-017-0914-8
    FAN J H, GUO H D, GUO X F, et al., 2008. Monitoring subsidence in tianjin area using interferogram stacking based on coherent targets[J]. Journal of Remote Sensing, 12(1): 111-118. (in Chinese with English abstract)
    FAN X M, XU Q, SCARINGI G, et al., 2019. The "long" runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides, 16(1): 139-154. doi: 10.1007/s10346-018-1084-z
    FAN X Y, HU X B, ZHANG R X, et al., 2018. Study on the open topography influence on the moving distances of landslides[J]. Journal of Natural Disasters, 27(5): 188-196. (in Chinese with English abstract)
    GAO Y, HE K, LI Z, et al., 2020. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology, 47(4): 14-23. (in Chinese with English abstract)
    HAN D J, YANG C S, DONG J H, 2020. InSAR monitoring and analysis of landslide deformation after the earthquake in the Zhangmu port, Tibet[J]. Journal of Geomechanics, 26(4): 565-574. (in Chinese with English abstract)
    HUANG R Q, 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract)
    LI L J, YAO X, ZHANG Y S, et al., 2014. SBAS-InSAR technology based identification of slow deformation of geologic mass along section of China-Pakistan highway[J]. Journal of Engineering Geology, 22(5): 921-927. (in Chinese with English abstract)
    LI W L, XU Q, LU H Y, et al., 2019. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University, 44(7): 1043-1053. (in Chinese with English abstract)
    LI Z H, SONG C, YU C, et al., 2019. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 44(7): 967-979. (in Chinese with English abstract)
    LIU G W, WANG C J, LI G H, et al., 2019. Application research on the remote sensing technology in geological disaster prevention and control of existing railway[J]. Journal of Railway Engineering Society, 36(6): 23-27. (in Chinese with English abstract)
    LIU X H, YAO X, ZHOU Z K, et al., 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
    LU H Y, LI W L, XU Q, et al., 2019. Early detection of landslides in the upstream and downstream areas of the baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 44(9): 1342-1354. (in Chinese with English abstract)
    STROZZI T, WEGMULLER U, WERNER C, et al., 2000. Measurement of slow uniform surface displacement with mm/year accuracy[C]//IGARSS 2000. IEEE 2000 international geoscience and remote sensing symposium. Taking the pulse of the planet: the role of remote sensing in managing the environment. Proceedings (Cat. No. 00CH37120). Honolulu: IEEE: 2239-2241.
    TANG R, XU Q, WU B, et al., 2018. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics, 39(3): 1009-1019, 1070. (in Chinese with English abstract)
    WANG J, WANG C, XIE C, et al., 2020. Monitoring of large-scale landslides in Zongling, Guizhou, China, with improved distributed scatterer interferometric SAR time series methods[J]. Landslides, 17(8): 1777-1795. doi: 10.1007/s10346-020-01407-5
    XU C, XU X W, SHEN L L, et al., 2016. Optimized volume models of earthquake-triggered landslides[J]. Scientific Reports, 6: 29797. doi: 10.1038/srep29797
    YANG X Z, XUE L G, 1994. Natural resources for Tourism in Maoshi, Northen Suburb of Zunyi city and their classification[J]. Guizhou Geology, 11(2): 161-166. (in Chinese with English abstract)
    YANG Z P, JIANG Y W, LI B, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 26(4): 459-470. (in Chinese with English abstract)
    ZHAN W W, HUANG R Q, PEI X J, et al., 2017. Empirical prediction model for movement distance of gully-type rock avalanches[J]. Journal of Engineering Geology, 25(1): 154-163. (in Chinese with English abstract)
    ZHANG M, WU L Z, ZANG J C, et al., 2019. The 2009 Jiweishan rock avalanche, Wulong, China: deposit characteristics and implications for its fragmentation[J]. Landslides, 16(5): 893-906. doi: 10.1007/s10346-019-01142-6
    ZHANG Y, WANG Y J, YAN S Y, 2016. Ground subsidence detection of peibei mining area based on stacking InSAR technology[J]. Coal Technology, 35(7): 102-105. (in Chinese with English abstract)
    ZHAO J J, MA Y T, LIN B, et al., 2016. Geomechanical mode of Mining landslides with gently counter-inclined bedding: a case study of madaling landslide in Guizhou Province[J]. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2217-2224. (in Chinese with English abstract)
    ZHENG D, FROST J D, HUANG R Q, et al., 2015. Failure process and modes of rockfall induced by underground mining: a case study of kaiyang phosphorite mine rockfalls[J]. Engineering Geology, 197: 145-157. doi: 10.1016/j.enggeo.2015.08.011
    ZHENG G, XU Q, PENG S Q, 2019. Calculation model of the long-runout distance of rock avalanche[J]. Rock and Soil Mechanics, 40(12): 4897-4906. (in Chinese with English abstract)
    ZHU J J, LI Z W, HU J, 2017. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1717-1733. (in Chinese with English abstract)
    ZHUO B X, 2011. Remote sensing interpretation & application of geology engineering[M]. 2nd ed. Beijing: China Railway Press. (in Chinese)
    程宇, 张健, 陈进, 等, 2019. 贵州纳雍骔岭镇危岩带稳定性及危害范围分析[J]. 中国地质灾害与防治学报, 30(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201904003.htm
    范景辉, 郭华东, 郭小方, 等, 2008. 基于相干目标的干涉图叠加方法监测天津地区地面沉降[J]. 遥感学报, 12(1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200801015.htm
    樊晓一, 胡晓波, 张睿骁, 等, 2018. 开阔型地形条件对滑坡运动距离的影响研究[J]. 自然灾害学报, 27(5): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805021.htm
    高杨, 贺凯, 李壮, 等, 2020. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质, 47(4): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004003.htm
    韩冬建, 杨成生, 董继红, 2020. 西藏樟木口岸震后滑坡灾害变形InSAR监测分析[J]. 地质力学学报, 26(4): 565-574. doi: 10.12090/j.issn.1006-6616.2020.26.04.049
    黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    李凌婧, 姚鑫, 张永双, 等, 2014. 基于SBAS-InSAR技术的中巴公路(公格尔-墓士塔格段)地质体缓慢变形识别研究[J]. 工程地质学报, 22(5): 921-927. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405023.htm
    李为乐, 许强, 陆会燕, 等, 2019. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版, 44(7): 1043-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907010.htm
    李振洪, 宋闯, 余琛, 等, 2019. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
    刘桂卫, 王长进, 李国和, 等, 2019. 遥感技术在既有铁路地灾防治中应用方法研究[J]. 铁道工程学报, 36(6): 23-27. doi: 10.3969/j.issn.1006-2106.2019.06.006
    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    陆会燕, 李为乐, 许强, 等, 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 44(9): 1342-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201909011.htm
    唐然, 许强, 吴斌, 等, 2018. 平推式滑坡运动距离计算模型[J]. 岩土力学, 39(3): 1009-1019, 1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803030.htm
    杨秀忠, 薛立根, 1994. 遵义毛石旅游自然资源特征及景点类型划分[J]. 贵州地质, 11(2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ402.008.htm
    杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 26(4): 459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039
    詹威威, 黄润秋, 裴向军, 等, 2017. 沟道型滑坡-碎屑流运动距离经验预测模型研究[J]. 工程地质学报, 25(1): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701021.htm
    张洋, 汪云甲, 闫世勇, 2016. 基于Stacking InSAR技术的沛北矿区沉降监测[J]. 煤炭技术, 35(7): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201607042.htm
    赵建军, 马运韬, 蔺冰, 等, 2016. 平缓反倾采动滑坡形成的地质力学模式研究: 以贵州省马达岭滑坡为例[J]. 岩石力学与工程学报, 35(11): 2217-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611006.htm
    郑光, 许强, 彭双麒, 2019. 岩质滑坡-碎屑流的运动距离计算公式研究[J]. 岩土力学, 40(12): 4897-4906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912040.htm
    朱建军, 李志伟, 胡俊, 2017. InSAR变形监测方法与研究进展[J]. 测绘学报, 46(10): 1717-1733. doi: 10.11947/j.AGCS.2017.20170350
    卓宝熙, 2011. 工程地质遥感判释与应用[M]. 2版. 北京: 中国铁道出版社.
  • Relative Articles

    2025: InSAR Coseismic Deformation Field and Tectonic Implications of the 2023 MS5.5 Subei Earthquake, Gansu, China. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024127
    ZHANG Jianyu, LYU Dunyu, LIU Songbo, WANG Cuiling, MENG Shuran. 2024: Development characteristics and risk assessment of geological hazards in the mountainous and hilly areas of western Zhengzhou City. Journal of Geomechanics, 30(4): 647-658. doi: 10.12090/j.issn.1006-6616.2022116
    CHENG Yan, JIANG Yanan, HOU Zhongjian, ZENG Rui, LUO Huiyuan. 2024: InSAR deformation observation and regional severe earthquake hazard analysis of the 2016 and 2022 strong earthquake activities in Menyuan, Qinghai. Journal of Geomechanics, 30(6): 965-977. doi: 10.12090/j.issn.1006-6616.2023197
    LIU Xinghong, YAO Xin, YANG Bo, TANG Wenkun, ZHOU Zhenkai. 2023: InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau. Journal of Geomechanics, 29(1): 111-126. doi: 10.12090/j.issn.1006-6616.2022024
    ZHAO Chaoying, LIU Xiaojie, GAO Yang, FENG Xiaosong. 2022: Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28(6): 981-994. doi: 10.12090/j.issn.1006-6616.20222825
    LI Lingjing, YAO Xin, ZHOU Zhenkai, WANG Defu. 2022: The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir. Journal of Geomechanics, 28(2): 281-293. doi: 10.12090/j.issn.1006-6616.2021109
    YAO Chuangchuang, YAO Xin, GU Zhenkui, REN Kaiyu, ZHOU Zhenkai. 2022: Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083
    HAN Dongjian, YANG Chengsheng, DONG Jihong. 2020: InSAR monitoring and analysis of landslide deformation after the earthquake in the Zhangmu Port, Tibet. Journal of Geomechanics, 26(4): 565-574. doi: 10.12090/j.issn.1006-6616.2020.26.04.049
    ZHOU Jingjing, ZHANG Xiaomin, ZHAO Fasuo, LI Hui, LIU Hainan. 2019: RESEARCH ON RISK ASSESSMENT OF GEOLOGICAL HAZARDS IN QINLING-DABA MOUNTAIN AREA, SOUTH SHAANXI PROVINCE. Journal of Geomechanics, 25(4): 544-553. doi: 10.12090/j.issn.1006-6616.2019.25.04.053
    2019: Inside Cover. Journal of Geomechanics, 25(3): 封二-封二.
    LIU Xinghong, YAO Xin, ZHOU Zhenkai, LI Lingjing, YAO Jiaming. 2018: STUDY OF THE TECHNIQUE FOR LANDSLIDE RAPID RECOGNITION BY INSAR. Journal of Geomechanics, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    YAO Xin, ZHANG Zhenkai, LI Lingjing, LIU Xinghong, YAO Jiaming. 2017: INSAR CO-SEISMIC DEFORMATION OF 2017 Ms 7.0 JIUZHAIGOU EARTHQUAKE AND DISCUSSIONS ON SEISMOGENIC TECTONICS. Journal of Geomechanics, 23(4): 507-514.
    CHENG Xiao-jie, YANG Wei-min, XIANG Ling-zhi, ZHANG Shu-xuan, LI Huan-bin. 2017: RISK ASSESSMENT OF SEISMIC LOESS LANDSLIDE BASED ON NEWMARK MODEL IN BEISHAN, TIANSHUI CITY. Journal of Geomechanics, 23(2): 296-305.
    FENG Zhen, LI Bin, ZHAO Chao-ying, WANG Li, WANG Lei. 2016: GEOLOGICAL HAZARDS MONITORING AND APPLICATION IN MOUNTAINOUS TOWN OF THREE GORGES RESERVOIR. Journal of Geomechanics, 22(3): 685-694.
    XU Dan, YAO Xin, CHEN Qi, SUN Yue, LIU Yuan, LIU Feng-min. 2011: ALOS INSAR COSEISMIC DEFORMATION OF YUTIAN EARTHQUAKE AND INITIAL ANALYSIS FOR GEOLOGY. Journal of Geomechanics, 17(4): 373-380.
    WANG Lei, ZHANG Chun-shan, YANG Wei-min, SUN Wei-feng, QIU Zhan-lin, WANG Tao. 2011: RISK ASSESSMENT OF GEOHAZARDS BY USING GIS IN GANGU COUNTY, GANSU PROVINCE. Journal of Geomechanics, 17(4): 388-401.
    YAO Xin, ZHANG Yong-shuang, YANG Nong, XIONG Tan-yu. 2010: D-INSAR OBSERVATION OF EARTH SURFACE DEFORMATION IN THE MS7.1 YUSHU EARTHQUAKE. Journal of Geomechanics, 16(2): 129-136.
    CHEN Qi, LI Zhi-yi, SHI Huai-lun. 2004: THOUGHTS AND BASIC METHODS OF REGIONAL GEOLOGICAL HAZARD RISK ASSESSMENT. Journal of Geomechanics, 10(1): 71-80.
    ZHANG Chun-shan, ZHANG Ye-cheng, ZHANG Li-hai. 2004: DANGER ASSESSMENT OF COLLAPSES,LANDSLIDES AND DEBRIS FLOWS OF GEOLOGICAL HAZARDS IN CHINA. Journal of Geomechanics, 10(1): 27-32.
    ZHANG Chun-shan, ZHANG Ye-cheng, MA Yin-sheng. 2003: REGIONAL DANGEROUS ON THE GEOLOGICAL HAZARDS OF COLLAPSE,LANDSLIDE AND DEBRIS FLOW IN THE UPPER REACHES OF THE YELLOW RIVER. Journal of Geomechanics, 9(2): 143-153.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.6 %FULLTEXT: 27.6 %META: 65.5 %META: 65.5 %PDF: 6.9 %PDF: 6.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.1 %其他: 7.1 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %United States: 0.1 %United States: 0.1 %三明: 0.1 %三明: 0.1 %上海: 1.1 %上海: 1.1 %东莞: 0.2 %东莞: 0.2 %中卫: 1.7 %中卫: 1.7 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.1 %佳木斯: 0.1 %兰州: 0.2 %兰州: 0.2 %包头: 0.2 %包头: 0.2 %北京: 16.8 %北京: 16.8 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 0.8 %南京: 0.8 %南充: 0.1 %南充: 0.1 %南宁: 0.6 %南宁: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.1 %和田: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈里亚纳: 0.1 %哈里亚纳: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %固原: 0.1 %固原: 0.1 %大同: 0.2 %大同: 0.2 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %威海: 0.1 %威海: 0.1 %安康: 0.4 %安康: 0.4 %安顺: 0.5 %安顺: 0.5 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常德: 0.1 %常德: 0.1 %平凉: 0.1 %平凉: 0.1 %广安: 0.1 %广安: 0.1 %广州: 0.6 %广州: 0.6 %延安: 0.1 %延安: 0.1 %弗罗茨瓦夫: 0.3 %弗罗茨瓦夫: 0.3 %张家口: 1.5 %张家口: 1.5 %徐州: 0.3 %徐州: 0.3 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.1 %抚顺: 0.1 %拉萨: 0.1 %拉萨: 0.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.7 %昆明: 1.7 %昭通: 0.5 %昭通: 0.5 %曲靖: 0.1 %曲靖: 0.1 %杭州: 0.6 %杭州: 0.6 %柳州: 0.1 %柳州: 0.1 %株洲: 0.1 %株洲: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 1.8 %武汉: 1.8 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.1 %泉州: 0.1 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %滁州: 0.1 %滁州: 0.1 %漯河: 0.5 %漯河: 0.5 %焦作: 0.2 %焦作: 0.2 %玉林: 0.2 %玉林: 0.2 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.4 %纽约: 0.4 %绥化: 0.1 %绥化: 0.1 %罗马: 0.1 %罗马: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 20.4 %芒廷维尤: 20.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.1 %苏州: 0.1 %荆门: 0.1 %荆门: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 16.5 %西宁: 16.5 %西安: 1.9 %西安: 1.9 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.1 %贵港: 0.1 %贵阳: 3.7 %贵阳: 3.7 %赣州: 0.1 %赣州: 0.1 %达州: 0.3 %达州: 0.3 %运城: 0.6 %运城: 0.6 %连云港: 0.3 %连云港: 0.3 %通辽: 0.1 %通辽: 0.1 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.1 %遵义: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.4 %重庆: 0.4 %钦州: 0.1 %钦州: 0.1 %铁岭: 0.1 %铁岭: 0.1 %银川: 0.1 %银川: 0.1 %长春: 0.6 %长春: 0.6 %长沙: 1.2 %长沙: 1.2 %阜新: 0.2 %阜新: 0.2 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.1 %鞍山: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黔南: 0.1 %黔南: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他Central DistrictChinaIndiaRochesterSan LorenzoUnited States三明上海东莞中卫临汾丹东乌鲁木齐乐山佛山佳木斯兰州包头北京华盛顿州南京南充南宁南昌南通台州合肥呼和浩特和田咸阳哈尔滨哈里亚纳嘉兴固原大同大庆大连天津威海安康安顺宝鸡宣城巴音郭楞常德平凉广安广州延安弗罗茨瓦夫张家口徐州德阳惠州成都扬州抚顺拉萨拉贾斯坦邦无锡昆明昭通曲靖杭州柳州株洲桂林武汉沈阳泉州法尔肯施泰因洛阳济南淮南深圳温州渭南湖州湘潭湛江滁州漯河焦作玉林石嘴山石家庄福州秦皇岛纽约绥化罗马舟山芒廷维尤芝加哥苏州荆门莫斯科衡水衡阳西宁西安西雅图许昌诺沃克贵港贵阳赣州达州运城连云港通辽遂宁遵义邢台邯郸邵阳郑州酒泉重庆钦州铁岭银川长春长沙阜新阜阳阳泉青岛鞍山马鞍山黔南齐齐哈尔龙岩

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (943) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return