YANG Yan, YANG Bo, ZHANG Hong-yuan, 2013. MICROTECTONIC FEATURES AND EVOLUTION OF THE YUSHIGOU PERIDOTITE ROCK FROM THE QILIANSHAN MOUNTAIN. Journal of Geomechanics, 19 (3): 275-286.
Citation: LI Lingjing, YAO Xin, ZHOU Zhenkai, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir. Journal of Geomechanics, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109

The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir

doi: 10.12090/j.issn.1006-6616.2021109
Funds:

the National Natural Science Foundation of China 41807299

the Chinese Geological Survey Project DD20221738-2

the Three Gorges Corporation Project YMJ(XLD)/(19)110

More Information
  • Sentinel satellite is widely used in deformed slope identification and monitoring due to its high resolution, stable orbit system, large coverage capacity, short repetition time, and free data download. Since the 1963 catastrophic landslide of Vaiant in Italy, the geologic hazard on bank slopes has been one of the main problems of the reservoir in the mountainous area. Taking the Xiluodu reservoir in the upper reaches of the Jinsha River as the study area, the applicability of the Sentinel-1 SAR data in InSAR monitoring of deformed slopes of reservoir in mountainous areas was evaluated by combining PALSAR-2 and TerraSAR-X data. The results were used to evaluate whether Sentinel-1 data could replace other commercial SAR data under certain conditions. It provides a reference for future applications in related researches. The results show that: About 200 deformed slopes were interpreted by the Sentinel-1 data in the study area, including landslide, rockfall, and bank collapse. According to field investigations, the minimum projected area of deformed slope based on the Sentinel-1 data is about 2400 m2, a size of 35 m (length)×77 m (width), gathered by 16 high-value raster pixels. Overlapping mask shadow phenomenon is severe in the alpine valley area. By comparing SAR data in common satellite radar observation modes, the effective observation area is 70.3% of the ascending Sentinel-1 orbit, 68.9% of the descending Sentinel-1 orbit, 70.4% of the ascending PALSAR-2 orbit, 67.6% of the descending PALSAR-2 orbit, and 52.5% of the descending TerraSAR-X orbit in the intersection area of all SAR data used. Without considering the resolution, it can be concluded that the Sentinel-1 data in the reservoir area has an equal or more excellent observation ability than the other two SAR data. The water level rises from June to early November, and the currounding vegetation develops well, resulting in poor data coherence. Since 2017, the amount of SAR data acquired by Sentinel-1A (1B) has increased, and high-frequency observations can improve the coherence. Therefore, the SAR data can be used to effectively identify the development and change of regional deformed slopes during the water fluctuation cycle. When the SAR data is lacking for a long time, the deformation measured by some pixels between the nearest pair of SAR data could exceed the maximum InSAR measurement range, and the phase period will be lost during the unwrapping. Sentinel-1 SAR data is more suitable for trend identification of continuous small deformations due to its good continuity.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • CHEN H K, ZHOU X H, 2016. Study on Identification Method on Failure Mode of Reservoir Landslide: Taking Qingshi Landslide in Three Gorges Reservoir as an Example[J]. Journal of Chongqing Normal University (Natural Science), 33(5): 37-41. (in Chinese with English abstract)
    CHEN T Z, DAI F C, 2018. Exploring the Landslide Deformation Regular Based After the Impoundment in the Xiluodu Reservoir[J]. Industial Construction, 48(Sup): 634-639. (in Chinese with English abstract)
    China Geological Disaster Prevention Engineering Industry Association, 2018. Guideline of InSAR Monitoring for Geo-hazard, T/CAGHP 013-2018 [S]. Beijing: China University of Geosciences Press. (in Chinese)
    DENG H Y, WANG C H, 2011. Engineering Geological Characteristics and Genetic Mechanism of Old Landslide of Reservoir Bank of Xiluodu Reservoir Areas[J]. Soil and Water Conservation in China, (5): 59-62. (in Chinese)
    DONG J, ZHANG L, LI M H, et al., 2018. Measuring precursory movements of the recent Xinmo landslide in Mao county, China with sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 15(1): 135-144. doi: 10.1007/s10346-017-0914-8
    GAO G P, YANG J H. 2003. Application of GIS in geologic disaster research [J]. Yangtze River, 34(6): 32-33. (in Chinese)
    GAO L, ZENG QM, 2007. Terrain deformation monitoring in Three Gorges Area using Permanent Scatterers SAR Interferometry[C]//ScanGIS′2007-Proceedings of the 11th Scandinavian Research Conference on Geographical Information Science, s, Norway, 5-7 September 2007: 261-267.
    INTRIERI E, RASPINI F, FUMAGALLI A, et al., 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data[J]. Landslides, 15(1): 123-133. doi: 10.1007/s10346-017-0915-7
    JIANG M, LI Z W, DING X L, et al., 2009. A study on the maximum and minimum detectable deformation gradients resolved by InSAR[J]. Chinese Journal of Geophysics, 52(7): 1715-1724. (in Chinese with English abstract)
    JIA H Y, WANG Y J, GE D Q, et al., 2020. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China) [J]. Remote Sensing of Environment, 247: 111899. doi: 10.1016/j.rse.2020.111899
    HENDRON JR A J, PATTON F D., 1987. The Vaiont slide. a geotechnical analysis based on new geologic observations of the failure surface [J]. Engineering Geology, 24(1-4): 475-491. doi: 10.1016/0013-7952(87)90080-9
    HERRERA G, FERNÁNDEZ-MERODO J A, et al., 2009. A landslide forecasting model using ground based SAR data: the portalet case study[J]. Engineering Geology, 105(3-4): 220-230. doi: 10.1016/j.enggeo.2009.02.009
    HU J, LI Z W, DING X L, et al., 2014. Resolving three-dimensional surface displacements from InSAR measurements: a review[J]. Earth-Science Reviews, 133: 1-17. doi: 10.1016/j.earscirev.2014.02.005
    KANKAKU Y, SAGISAKA M, Suzuki S. (2014). PALSAR-2 launch and early orbit status[C]//. Proceedings of 2014 IEEE geoscience and & remote sensing symposium. Quebec City, QC, Canada: IEEE: 3410-3412.
    LIAO M S, TANG J, WANG T, et al., 2012. Landslide monitoring with high-resolution SAR data in the Three Gorges region[J]. Sci China Earth Sci, 42(22): 217-229. (in Chinese with English abstract)
    LIAO M S, WANG T, 2014. Time series InSAR technology and application[M]. Beijing: Science Press. (in Chinese)
    LIU G X, CHEN Q, LUO X J, et al., 2019. Principle and application of InSAR[M]. Beijing: Science Press. (in Chinese)
    LIU X H, YAO X, ZHOU Z K, et al, 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
    LI B, ZHANG Q, WANG W P, et al, 2020. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics, 26(4): 556-564. (in Chinese with English abstract)
    LI L J, YAO X, Yao J M, et al., 2019a. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China[J]. Natural Hazards, 98(2): 719-733. doi: 10.1007/s11069-019-03726-w
    LI M H, ZHANG L, SHI X G, et al., 2019b. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking[J]. Remote Sensing of Environment, 221: 80-93. doi: 10.1016/j.rse.2018.11.006
    LI X E, ZHOU L, SU F Z, et al., 2021. Application of InSAR technology in landslide hazard: Progress and prospects[J]. National Remote Sensing Bulletin, 25(2): 614-629. (in Chinese with English abstract)
    MASSONNET D, FEIGL K L, 1998. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
    OUYANG L X, LI X Q, HUI F M, et al., 2017. Sentinel-1A Data Products Characteristics and the Potential Applications[J]. Chinese Journal of Polar Research, 29(2): 286-295. (in Chinese with English abstract)
    REN Y, 2013. Research on Layover and Shadow Detecting in InSAR[D]. Changsha National University of Defense Technology. (in Chinese with English abstract)
    STROZZI T, LUCKMAN A, MURRAY T, et al., 2002. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391. doi: 10.1109/TGRS.2002.805079
    SINGLETON A, LI Z, HOEY T et al., 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 147: 133-144. doi: 10.1016/j.rse.2014.03.003
    SHI X G, ZHANG L, BALZ T, et al., 2015. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 128-140. doi: 10.1016/j.isprsjprs.2015.03.017
    SHI X G, LIAO M S, LI M H, et al., 2016. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China[J]. Remote Sensing, 8(2): 136. doi: 10.3390/rs8020136
    SCOTT H, ROLAND B, BRENT D, et al., 2016. Three-dimensional surface deformation derived from airborne interferometric uavsar: application to the slumgullion landslide[J]. Journal of geophysical research. Solid earth: JGR, 121(5): 3951-3977. doi: 10.1002/2015JB012559
    TANG X S, ZHENG Y R, TANG H M, et al., 2013. Numerical researches on deformation characteristics and prediction of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 35(5): 940-947. (in Chinese with English abstract)
    WANG G J, XIE M W, QIU C, et al., 2011. Experiment research of D-InSAR technique on identifying landslide moving in a wide area[J]. Journal of University of Science and Technology Beijing, 33(2): 131-141. (in Chinese with English abstract)
    WANG Z Y, ZHANG J Z, 2013. Landslides Monitoring Based on InSAR Technique[J]. Journal of Geodesy and Geodynamics, 33(3): 87-91. (in Chinese with English abstract)
    XU S, WANG S X, NIU R Q, 2020. Identification of the Potential Landslide in Wushan—Fengjie in the Three Gorges Reservoir Area Based on InSAR Technology[J]. Safety and Environmental Engineering, 27(1): 32-38. (in Chinese with English abstract)
    XU W B, LI Z W, DING X L, et al., 2011. Interpolating atmospheric water vapor delay by incorporating terrain elevation information[J]. Journal of Geodesy, 85(9): 555-564. doi: 10.1007/s00190-011-0456-0
    YOU X Z, LI S S, YANG S M, et al., 2001. InSAR Investigation in the Early Stage of the Three Gorges Project on the Yangtze River[J]. Crustal Deformation and Earthquake, 21(4): 58-66. (in Chinese with English abstract)
    ZHONGCUN H Z, 1990. Discussion on reservoir landslide[J]. WANG G X, trans. Bulletin of Soil and Water Conservation, 10(1): 53-64. (in Chinese)
    ZHANG M, ZHANG C S, YANG W M, et al, 2014. The formation conditions and stability of Chahandusi Reservoir landslide in Xunhua Country, Qinghai Province[J]. Journal of Geomechanics, 20(3): 274-284. (in Chinese with English abstract)
    ZHAN W J, LI Z W, WEI J C, et al., 2015. A strategy for modeling and estimating atmospheric phase of SAR interferogram[J]. Chinese Journal of Geophysics, 58(7): 2320-2329. (in Chinese with English abstract)
    ZHANG F, 2018. Study and Engineering Implementation on Problem Areas Detection Technology for Spaceborne InSAR[D]. Xi'an: Xidian University. (in Chinese with English abstract)
    ZHANG T T, YANG H L, LI DM, et al., 2019. Identification of layover and shadows regions in SAR images: taking Badong as an example[J]. Bulletin of Surveying and Mapping, (11): 85-88. (in Chinese with English abstract)
    ZHENG J H, HUANG B L, ZHANG Q, et al, 2020. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges reservoir area[J]. Journal of Geomechanics, 26(4): 533-543. (in Chinese with English abstract)
    陈洪凯, 周晓涵, 2016. 库岸滑坡破坏模式识别方法研究—以三峡水库青石滑坡为例[J]. 重庆师范大学学报(自然科学版), 33(5): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201605008.htm
    陈廷照, 戴福初, 2018. 溪洛渡库区蓄水后滑坡时空分布特征分析[J]. 工业建筑, 48(Sup): 634-639. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GYJZ201806003157.htm
    邓宏艳, 王成华, 2011. 溪洛渡库区库岸老滑坡工程地质特征及成因机制分析[J]. 中国水土保持, (5): 59-62. doi: 10.3969/j.issn.1000-0941.2011.05.023
    高改萍, 杨建宏, 2003. GIS在地质灾害研究中的应用[J]. 人民长江, 34(6): 32-33. doi: 10.3969/j.issn.1001-4179.2003.06.011
    蒋弥, 李志伟, 丁晓利, 等, 2009. InSAR可检测的最大最小变形梯度的函数模型研究[J]. 地球物理学报, 52(7): 1715-1724. doi: 10.3969/j.issn.0001-5733.2009.07.006
    廖明生, 唐婧, 王腾, 等, 2012. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学: 地球科学, 42(2): 217-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202009.htm
    廖明生, 王腾, 2014. 时间序列InSAR技术与应用[M]. 北京: 科学出版社.
    刘国祥, 陈强, 罗小军, 等, 2019. InSAR原理与应用[M]. 北京: 科学出版社.
    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    李滨, 张青, 王文沛, 等, 2020. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报, 26(4): 556-564. doi: 10.12090/j.issn.1006-6616.2020.26.04.048
    李晓恩, 周亮, 苏奋振, 等, 2021. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 25(2): 614-629. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102008.htm
    欧阳伦曦, 李新情, 惠凤鸣, 等, 2017. 哨兵卫星Sentinel-1A数据特性及应用潜力分析[J]. 极地研究, 29(2): 286-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201702013.htm
    任云, 2013. InSAR叠掩与阴影检测技术[D]. 长沙: 国防科学技术大学.
    唐晓松, 郑颖人, 唐辉明, 等, 2013. 水库滑坡变形特征和预测预报的数值研究[J]. 岩土工程学报, 35(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305023.htm
    王桂杰, 谢谟文, 邱骋, 等, 2011. 差分干涉合成孔径雷达技术在广域滑坡动态辨识上的实验研究[J]. 北京科技大学学报, 33(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201102000.htm
    王志勇, 张金芝, 2013. 基于InSAR技术的滑坡灾害监测[J]. 大地测量与地球动力学, 33(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303019.htm
    徐帅, 王尚晓, 牛瑞卿, 2020. 基于InSAR技术的三峡库区巫山—奉节段潜在滑坡识别[J]. 安全与环境工程, 27(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001006.htm
    游新兆, 李澍荪, 杨少敏, 等, 2001. 长江三峡工程库首区InSAR测量的初步研究[J]. 地壳形变与地震, 21(4): 58-66. doi: 10.3969/j.issn.1671-5942.2001.04.008
    中村浩之, 1990. 论水库滑坡[J]. 王恭先, 译, 水土保持通报, 10(1): 53-64.
    张淼, 张春山, 杨为民, 等, 2014. 青海循化县查汗都斯水库滑坡形成条件与稳定性分析[J]. 地质力学学报, 20(3): 274-284. doi: 10.3969/j.issn.1006-6616.2014.03.006
    占文俊, 李志伟, 韦建超, 等, 2015. 一种InSAR大气相位建模与估计方法[J]. 地球物理学报, 58(7): 2320-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507010.htm
    张芳, 2018. 星载InSAR问题区域检测技术研究以及工程化实现[D]. 西安: 西安电子科技大学.
    中国地质灾害防治工程行业协会, 2018. 地质灾害InSAR监测技术指南: T∕CAGHP 013-2018 [S]. 北京: 中国地质大学出版社.
    张同同, 杨红磊, 李东明, 等, 2019. SAR影像中叠掩与阴影区域的识别—以湖北巴东为例[J]. 测绘通报, (11): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911017.htm
    郑嘉豪, 黄波林, 张全, 等, 2020. 三峡库区龙门寨危岩体崩塌产生涌浪研究[J]. 地质力学学报, 26(4): 533-543. doi: 10.12090/j.issn.1006-6616.2020.26.04.046
  • Relative Articles

    2025: InSAR Coseismic Deformation Field and Tectonic Implications of the 2023 MS5.5 Subei Earthquake, Gansu, China. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024127
    CHENG Yan, JIANG Yanan, HOU Zhongjian, ZENG Rui, LUO Huiyuan. 2024: InSAR deformation observation and regional severe earthquake hazard analysis of the 2016 and 2022 strong earthquake activities in Menyuan, Qinghai. Journal of Geomechanics, 30(6): 965-977. doi: 10.12090/j.issn.1006-6616.2023197
    PENG Hua, MA Xiumin, SUN Yao, JIANG Jingjie, HAO Fei. 2023: Key technology and application of DRY-1B capacitive component borehole strain gauge. Journal of Geomechanics, 29(3): 313-323. doi: 10.12090/j.issn.1006-6616.20232902
    YANG Yongzhong, REN Junjie, LI Dongchen. 2023: Quantitative staging of alluvial fan geomorphic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor. Journal of Geomechanics, 29(6): 842-855. doi: 10.12090/j.issn.1006-6616.2023080
    YAO Chuangchuang, YAO Xin, GU Zhenkui, REN Kaiyu, ZHOU Zhenkai. 2022: Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083
    ZHU Yifei, YAO Xin, YAO Leihua, ZHOU Zhenkai, YAO Chuangchuang, XIAO Shihao. 2022: Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing. Journal of Geomechanics, 28(2): 268-280. doi: 10.12090/j.issn.1006-6616.2021054
    ZHAO Chaoying, LIU Xiaojie, GAO Yang, FENG Xiaosong. 2022: Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28(6): 981-994. doi: 10.12090/j.issn.1006-6616.20222825
    HAN Dongjian, YANG Chengsheng, DONG Jihong. 2020: InSAR monitoring and analysis of landslide deformation after the earthquake in the Zhangmu Port, Tibet. Journal of Geomechanics, 26(4): 565-574. doi: 10.12090/j.issn.1006-6616.2020.26.04.049
    LIU Xiangchong, ZHANG Dehui. 2019: THE EFFICIENT MECHANISMS FOR PRECIPITATING WOLFRAMITE: CO2 ESCAPING. Journal of Geomechanics, 25(1): 19-26. doi: 10.12090/j.issn.1006-6616.2019.25.01.003
    LIU Xinghong, YAO Xin, ZHOU Zhenkai, LI Lingjing, YAO Jiaming. 2018: STUDY OF THE TECHNIQUE FOR LANDSLIDE RAPID RECOGNITION BY INSAR. Journal of Geomechanics, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    YAO Xin, ZHANG Zhenkai, LI Lingjing, LIU Xinghong, YAO Jiaming. 2017: INSAR CO-SEISMIC DEFORMATION OF 2017 Ms 7.0 JIUZHAIGOU EARTHQUAKE AND DISCUSSIONS ON SEISMOGENIC TECTONICS. Journal of Geomechanics, 23(4): 507-514.
    PEI Yuan-yuan, DENG Fei. 2016: JOINT INTERPRETATION OF DUAL POLARIZATION SAR AND MULTISPECTRAL OPTICAL IMAGES FOR GEOLOGICAL MAPPINT IN STRONGLY WEATHERED ZONE IN SOUTHERN CHINA. Journal of Geomechanics, 22(4): 976-983.
    SUN Wei-yu, Liang Qing-guo, YAN Song-hong, OU Er⁃feng, SHAO Sen-lin. 2015: EXPERIMENTAL STUDY ON TENSILE STRENGTH OF UNDISTUBED Q2 LOESS FROM YANAN SHANNXI, CHINA. Journal of Geomechanics, 21(3): 386-392.
    WU Fang. 2014: APPLICATION OF GeoEye-1 SATELLITE DATA TO MINE DEVELOPMENT ENVIRONMENT. Journal of Geomechanics, 20(3): 317-323.
    WANG Yi-xuan, ZHANG Xiao-dong, SUN Yong, AN Xing-yu. 2014: THE POROSITY CHARACTERISTICS OF SEDIMENTARY AND DIAGENETIC ENVIRONMENT FOR SHAN-2 MEMBER TO HE-8 MEMBER AT THE UPPER PALEOZOIC IN NORTHERN SHAANXI SLOPE. Journal of Geomechanics, 20(3): 230-242.
    CHEN Xiao-yang, ZHANG Hong-yang, JI Dong, MAO Shi-long. 2011: DEFORMATION MONITORING AND STABILITY ANALYSIS OF AN UNSTABLE SLOPE IN CHONGQING CITY. Journal of Geomechanics, 17(4): 402-409.
    MA Xiu-min, PENG Hua, JIANG Jing-jie, PENG Li-guov. 2011: ANALYSIS UPON DYNAMIC RANGE AND MONITORING CAPABILITY OF WFSD DIGITAL SEISMIC NETWORK OF THE LONGMENSHAN FAULT ZONE. Journal of Geomechanics, 17(1): 27-40.
    YAO Xin, ZHANG Yong-shuang, YANG Nong, XIONG Tan-yu. 2010: D-INSAR OBSERVATION OF EARTH SURFACE DEFORMATION IN THE MS7.1 YUSHU EARTHQUAKE. Journal of Geomechanics, 16(2): 129-136.
    Zhang Shukun, Sun Jiashu, Wang Xihai, Feng Yanwei. 1996: SER DATING OF THE F1 AND F7 FAULTS IN THE ZHANGHEWAN RESERVOIR DISTRICT, HEBEI. Journal of Geomechanics, 2(2): 94-96.
    Chen Bailin, Liu Zhaoxia. 1996: BRIEF NOTE ON THE APPLICATION OF X-RAY DETERMINATION OF PETROFABRICS TO STRUCTURAL ANALYSIS. Journal of Geomechanics, 2(4): 73-79.
  • Cited by

    Periodical cited type(9)

    1. 王深禾,王世杰. 白鹤滩库区水位波动对滑坡形变的影响. 地球物理学进展. 2025(01): 94-105 .
    2. 于建游,杜宪. 路桥膨胀土区域地表变形三维时序InSAR监测方法. 工程勘察. 2024(05): 54-59 .
    3. 刘航源,陈伟涛,李远耀,徐战亚,李显巨. 基于EEMD-CNN-LSTM的新型综合模型在滑坡位移预测中的应用. 地质力学学报. 2024(04): 633-646 . 本站查看
    4. 覃小丽,王闯. 基于InSAR技术在特高压走廊边坡形变探测应用. 云南水力发电. 2024(08): 71-74 .
    5. 邹小波,李兴坚,邵延秀,袁道阳,邱江涛,尹欣欣,寇俊阳. 2021年阿克塞M_S 5.5地震区形变特征及发震机制研究. 地质力学学报. 2024(06): 978-990 . 本站查看
    6. 戴可人,吴明堂,卓冠晨,居安华,温柠玲,冯文凯,许强. 西南山区大型水电工程库岸滑坡InSAR早期识别与监测研究进展. 地球科学与环境学报. 2023(03): 559-577 .
    7. 李子阳,戴济群,黄对,张文,李涵曼,王喆,康芮. 水利工程卫星遥感监测技术应用与展望. 水科学进展. 2023(05): 798-811 .
    8. 殷宗敏,赵宝强,叶润青. 时序InSAR技术在三峡库首区潜在滑坡识别中的应用研究. 华南地质. 2022(02): 273-280 .
    9. 赵超英,刘晓杰,高杨,冯晓松. 基于SAR/In SAR技术的雅鲁藏布江下游高位地质灾害早期识别. 地质力学学报. 2022(06): 981-994 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 75.2 %META: 75.2 %PDF: 8.6 %PDF: 8.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.1 %其他: 0.1 %China: 0.2 %China: 0.2 %Cordova: 0.3 %Cordova: 0.3 %India: 0.7 %India: 0.7 %United States: 0.5 %United States: 0.5 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %中卫: 2.7 %中卫: 2.7 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %九江: 0.2 %九江: 0.2 %佛山: 0.4 %佛山: 0.4 %克雷加文: 0.1 %克雷加文: 0.1 %兰州: 0.3 %兰州: 0.3 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 17.7 %北京: 17.7 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈里亚纳: 0.2 %哈里亚纳: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %塔城: 0.2 %塔城: 0.2 %大同: 0.2 %大同: 0.2 %天津: 0.5 %天津: 0.5 %宁波: 0.1 %宁波: 0.1 %安康: 0.4 %安康: 0.4 %巴中: 0.1 %巴中: 0.1 %巴塞罗那: 0.2 %巴塞罗那: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %张家口: 3.0 %张家口: 3.0 %徐州: 0.2 %徐州: 0.2 %悉尼: 0.1 %悉尼: 0.1 %意法半: 0.2 %意法半: 0.2 %戈亚尼亚: 0.1 %戈亚尼亚: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.1 %扬州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %攀枝花: 0.1 %攀枝花: 0.1 %昆明: 2.1 %昆明: 2.1 %昭通: 0.1 %昭通: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.2 %杭州: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.3 %济南: 0.3 %海口: 0.1 %海口: 0.1 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %滁州: 0.1 %滁州: 0.1 %漯河: 0.6 %漯河: 0.6 %烟台: 0.2 %烟台: 0.2 %玉林: 0.2 %玉林: 0.2 %甘孜藏族自治州: 0.2 %甘孜藏族自治州: 0.2 %百色: 0.1 %百色: 0.1 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.6 %纽约: 0.6 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 24.9 %西宁: 24.9 %西安: 1.2 %西安: 1.2 %西雅图: 0.5 %西雅图: 0.5 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.7 %运城: 0.7 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %银川: 0.3 %银川: 0.3 %锦州: 0.1 %锦州: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 3.5 %长沙: 3.5 %阜新: 0.1 %阜新: 0.1 %阿什本: 0.1 %阿什本: 0.1 %雅加达: 0.7 %雅加达: 0.7 %青岛: 0.5 %青岛: 0.5 %黔南: 0.1 %黔南: 0.1 %其他其他ChinaCordovaIndiaUnited States上海东莞中卫临汾乌鲁木齐九江佛山克雷加文兰州加利福尼亚州北京十堰南京南昌南通合肥吉林呼和浩特咸阳哈尔滨哈里亚纳哥伦布嘉兴塔城大同天津宁波安康巴中巴塞罗那常州平顶山广州库比蒂诺张家口徐州悉尼意法半戈亚尼亚成都扬州拉萨拉贾斯坦邦攀枝花昆明昭通朝阳杭州桂林武汉沈阳沧州泰安洛阳济南海口温州湖州滁州漯河烟台玉林甘孜藏族自治州百色盐城石家庄福州秦皇岛纽约绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安西雅图诺沃克贵阳运城邢台邯郸郑州重庆银川锦州长春长沙阜新阿什本雅加达青岛黔南

Catalog

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (961) PDF downloads(110) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return