Citation: | LI Lingjing, YAO Xin, ZHOU Zhenkai, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir. Journal of Geomechanics, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109 |
CHEN H K, ZHOU X H, 2016. Study on Identification Method on Failure Mode of Reservoir Landslide: Taking Qingshi Landslide in Three Gorges Reservoir as an Example[J]. Journal of Chongqing Normal University (Natural Science), 33(5): 37-41. (in Chinese with English abstract)
|
CHEN T Z, DAI F C, 2018. Exploring the Landslide Deformation Regular Based After the Impoundment in the Xiluodu Reservoir[J]. Industial Construction, 48(Sup): 634-639. (in Chinese with English abstract)
|
China Geological Disaster Prevention Engineering Industry Association, 2018. Guideline of InSAR Monitoring for Geo-hazard, T/CAGHP 013-2018 [S]. Beijing: China University of Geosciences Press. (in Chinese)
|
DENG H Y, WANG C H, 2011. Engineering Geological Characteristics and Genetic Mechanism of Old Landslide of Reservoir Bank of Xiluodu Reservoir Areas[J]. Soil and Water Conservation in China, (5): 59-62. (in Chinese)
|
DONG J, ZHANG L, LI M H, et al., 2018. Measuring precursory movements of the recent Xinmo landslide in Mao county, China with sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 15(1): 135-144. doi: 10.1007/s10346-017-0914-8
|
GAO G P, YANG J H. 2003. Application of GIS in geologic disaster research [J]. Yangtze River, 34(6): 32-33. (in Chinese)
|
GAO L, ZENG QM, 2007. Terrain deformation monitoring in Three Gorges Area using Permanent Scatterers SAR Interferometry[C]//ScanGIS′2007-Proceedings of the 11th Scandinavian Research Conference on Geographical Information Science, s, Norway, 5-7 September 2007: 261-267.
|
INTRIERI E, RASPINI F, FUMAGALLI A, et al., 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data[J]. Landslides, 15(1): 123-133. doi: 10.1007/s10346-017-0915-7
|
JIANG M, LI Z W, DING X L, et al., 2009. A study on the maximum and minimum detectable deformation gradients resolved by InSAR[J]. Chinese Journal of Geophysics, 52(7): 1715-1724. (in Chinese with English abstract)
|
JIA H Y, WANG Y J, GE D Q, et al., 2020. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China) [J]. Remote Sensing of Environment, 247: 111899. doi: 10.1016/j.rse.2020.111899
|
HENDRON JR A J, PATTON F D., 1987. The Vaiont slide. a geotechnical analysis based on new geologic observations of the failure surface [J]. Engineering Geology, 24(1-4): 475-491. doi: 10.1016/0013-7952(87)90080-9
|
HERRERA G, FERNÁNDEZ-MERODO J A, et al., 2009. A landslide forecasting model using ground based SAR data: the portalet case study[J]. Engineering Geology, 105(3-4): 220-230. doi: 10.1016/j.enggeo.2009.02.009
|
HU J, LI Z W, DING X L, et al., 2014. Resolving three-dimensional surface displacements from InSAR measurements: a review[J]. Earth-Science Reviews, 133: 1-17. doi: 10.1016/j.earscirev.2014.02.005
|
KANKAKU Y, SAGISAKA M, Suzuki S. (2014). PALSAR-2 launch and early orbit status[C]//. Proceedings of 2014 IEEE geoscience and & remote sensing symposium. Quebec City, QC, Canada: IEEE: 3410-3412.
|
LIAO M S, TANG J, WANG T, et al., 2012. Landslide monitoring with high-resolution SAR data in the Three Gorges region[J]. Sci China Earth Sci, 42(22): 217-229. (in Chinese with English abstract)
|
LIAO M S, WANG T, 2014. Time series InSAR technology and application[M]. Beijing: Science Press. (in Chinese)
|
LIU G X, CHEN Q, LUO X J, et al., 2019. Principle and application of InSAR[M]. Beijing: Science Press. (in Chinese)
|
LIU X H, YAO X, ZHOU Z K, et al, 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
|
LI B, ZHANG Q, WANG W P, et al, 2020. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics, 26(4): 556-564. (in Chinese with English abstract)
|
LI L J, YAO X, Yao J M, et al., 2019a. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China[J]. Natural Hazards, 98(2): 719-733. doi: 10.1007/s11069-019-03726-w
|
LI M H, ZHANG L, SHI X G, et al., 2019b. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking[J]. Remote Sensing of Environment, 221: 80-93. doi: 10.1016/j.rse.2018.11.006
|
LI X E, ZHOU L, SU F Z, et al., 2021. Application of InSAR technology in landslide hazard: Progress and prospects[J]. National Remote Sensing Bulletin, 25(2): 614-629. (in Chinese with English abstract)
|
MASSONNET D, FEIGL K L, 1998. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
|
OUYANG L X, LI X Q, HUI F M, et al., 2017. Sentinel-1A Data Products Characteristics and the Potential Applications[J]. Chinese Journal of Polar Research, 29(2): 286-295. (in Chinese with English abstract)
|
REN Y, 2013. Research on Layover and Shadow Detecting in InSAR[D]. Changsha National University of Defense Technology. (in Chinese with English abstract)
|
STROZZI T, LUCKMAN A, MURRAY T, et al., 2002. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391. doi: 10.1109/TGRS.2002.805079
|
SINGLETON A, LI Z, HOEY T et al., 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 147: 133-144. doi: 10.1016/j.rse.2014.03.003
|
SHI X G, ZHANG L, BALZ T, et al., 2015. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 128-140. doi: 10.1016/j.isprsjprs.2015.03.017
|
SHI X G, LIAO M S, LI M H, et al., 2016. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China[J]. Remote Sensing, 8(2): 136. doi: 10.3390/rs8020136
|
SCOTT H, ROLAND B, BRENT D, et al., 2016. Three-dimensional surface deformation derived from airborne interferometric uavsar: application to the slumgullion landslide[J]. Journal of geophysical research. Solid earth: JGR, 121(5): 3951-3977. doi: 10.1002/2015JB012559
|
TANG X S, ZHENG Y R, TANG H M, et al., 2013. Numerical researches on deformation characteristics and prediction of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 35(5): 940-947. (in Chinese with English abstract)
|
WANG G J, XIE M W, QIU C, et al., 2011. Experiment research of D-InSAR technique on identifying landslide moving in a wide area[J]. Journal of University of Science and Technology Beijing, 33(2): 131-141. (in Chinese with English abstract)
|
WANG Z Y, ZHANG J Z, 2013. Landslides Monitoring Based on InSAR Technique[J]. Journal of Geodesy and Geodynamics, 33(3): 87-91. (in Chinese with English abstract)
|
XU S, WANG S X, NIU R Q, 2020. Identification of the Potential Landslide in Wushan—Fengjie in the Three Gorges Reservoir Area Based on InSAR Technology[J]. Safety and Environmental Engineering, 27(1): 32-38. (in Chinese with English abstract)
|
XU W B, LI Z W, DING X L, et al., 2011. Interpolating atmospheric water vapor delay by incorporating terrain elevation information[J]. Journal of Geodesy, 85(9): 555-564. doi: 10.1007/s00190-011-0456-0
|
YOU X Z, LI S S, YANG S M, et al., 2001. InSAR Investigation in the Early Stage of the Three Gorges Project on the Yangtze River[J]. Crustal Deformation and Earthquake, 21(4): 58-66. (in Chinese with English abstract)
|
ZHONGCUN H Z, 1990. Discussion on reservoir landslide[J]. WANG G X, trans. Bulletin of Soil and Water Conservation, 10(1): 53-64. (in Chinese)
|
ZHANG M, ZHANG C S, YANG W M, et al, 2014. The formation conditions and stability of Chahandusi Reservoir landslide in Xunhua Country, Qinghai Province[J]. Journal of Geomechanics, 20(3): 274-284. (in Chinese with English abstract)
|
ZHAN W J, LI Z W, WEI J C, et al., 2015. A strategy for modeling and estimating atmospheric phase of SAR interferogram[J]. Chinese Journal of Geophysics, 58(7): 2320-2329. (in Chinese with English abstract)
|
ZHANG F, 2018. Study and Engineering Implementation on Problem Areas Detection Technology for Spaceborne InSAR[D]. Xi'an: Xidian University. (in Chinese with English abstract)
|
ZHANG T T, YANG H L, LI DM, et al., 2019. Identification of layover and shadows regions in SAR images: taking Badong as an example[J]. Bulletin of Surveying and Mapping, (11): 85-88. (in Chinese with English abstract)
|
ZHENG J H, HUANG B L, ZHANG Q, et al, 2020. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges reservoir area[J]. Journal of Geomechanics, 26(4): 533-543. (in Chinese with English abstract)
|
陈洪凯, 周晓涵, 2016. 库岸滑坡破坏模式识别方法研究—以三峡水库青石滑坡为例[J]. 重庆师范大学学报(自然科学版), 33(5): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201605008.htm
|
陈廷照, 戴福初, 2018. 溪洛渡库区蓄水后滑坡时空分布特征分析[J]. 工业建筑, 48(Sup): 634-639. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GYJZ201806003157.htm
|
邓宏艳, 王成华, 2011. 溪洛渡库区库岸老滑坡工程地质特征及成因机制分析[J]. 中国水土保持, (5): 59-62. doi: 10.3969/j.issn.1000-0941.2011.05.023
|
高改萍, 杨建宏, 2003. GIS在地质灾害研究中的应用[J]. 人民长江, 34(6): 32-33. doi: 10.3969/j.issn.1001-4179.2003.06.011
|
蒋弥, 李志伟, 丁晓利, 等, 2009. InSAR可检测的最大最小变形梯度的函数模型研究[J]. 地球物理学报, 52(7): 1715-1724. doi: 10.3969/j.issn.0001-5733.2009.07.006
|
廖明生, 唐婧, 王腾, 等, 2012. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学: 地球科学, 42(2): 217-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202009.htm
|
廖明生, 王腾, 2014. 时间序列InSAR技术与应用[M]. 北京: 科学出版社.
|
刘国祥, 陈强, 罗小军, 等, 2019. InSAR原理与应用[M]. 北京: 科学出版社.
|
刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
|
李滨, 张青, 王文沛, 等, 2020. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报, 26(4): 556-564. doi: 10.12090/j.issn.1006-6616.2020.26.04.048
|
李晓恩, 周亮, 苏奋振, 等, 2021. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 25(2): 614-629. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102008.htm
|
欧阳伦曦, 李新情, 惠凤鸣, 等, 2017. 哨兵卫星Sentinel-1A数据特性及应用潜力分析[J]. 极地研究, 29(2): 286-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201702013.htm
|
任云, 2013. InSAR叠掩与阴影检测技术[D]. 长沙: 国防科学技术大学.
|
唐晓松, 郑颖人, 唐辉明, 等, 2013. 水库滑坡变形特征和预测预报的数值研究[J]. 岩土工程学报, 35(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305023.htm
|
王桂杰, 谢谟文, 邱骋, 等, 2011. 差分干涉合成孔径雷达技术在广域滑坡动态辨识上的实验研究[J]. 北京科技大学学报, 33(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201102000.htm
|
王志勇, 张金芝, 2013. 基于InSAR技术的滑坡灾害监测[J]. 大地测量与地球动力学, 33(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303019.htm
|
徐帅, 王尚晓, 牛瑞卿, 2020. 基于InSAR技术的三峡库区巫山—奉节段潜在滑坡识别[J]. 安全与环境工程, 27(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001006.htm
|
游新兆, 李澍荪, 杨少敏, 等, 2001. 长江三峡工程库首区InSAR测量的初步研究[J]. 地壳形变与地震, 21(4): 58-66. doi: 10.3969/j.issn.1671-5942.2001.04.008
|
中村浩之, 1990. 论水库滑坡[J]. 王恭先, 译, 水土保持通报, 10(1): 53-64.
|
张淼, 张春山, 杨为民, 等, 2014. 青海循化县查汗都斯水库滑坡形成条件与稳定性分析[J]. 地质力学学报, 20(3): 274-284. doi: 10.3969/j.issn.1006-6616.2014.03.006
|
占文俊, 李志伟, 韦建超, 等, 2015. 一种InSAR大气相位建模与估计方法[J]. 地球物理学报, 58(7): 2320-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507010.htm
|
张芳, 2018. 星载InSAR问题区域检测技术研究以及工程化实现[D]. 西安: 西安电子科技大学.
|
中国地质灾害防治工程行业协会, 2018. 地质灾害InSAR监测技术指南: T∕CAGHP 013-2018 [S]. 北京: 中国地质大学出版社.
|
张同同, 杨红磊, 李东明, 等, 2019. SAR影像中叠掩与阴影区域的识别—以湖北巴东为例[J]. 测绘通报, (11): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911017.htm
|
郑嘉豪, 黄波林, 张全, 等, 2020. 三峡库区龙门寨危岩体崩塌产生涌浪研究[J]. 地质力学学报, 26(4): 533-543. doi: 10.12090/j.issn.1006-6616.2020.26.04.046
|