Volume 28 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
YAO Chuangchuang, YAO Xin, GU Zhenkui, et al., 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083
Citation: YAO Chuangchuang, YAO Xin, GU Zhenkui, et al., 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083

Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification

doi: 10.12090/j.issn.1006-6616.2021083

the Geological Survey Project of China Geological Survey DD20190717

the National Key Research and Development Project 2018YFC1505002

the Project of Three Gorges Corporation YMJ(XLD)(19)110

More Information
  • Received: 2021-07-16
  • Revised: 2021-12-15
  • Active geological disasters induced by earthquakes, rainfalls and human engineering activities occur frequently in the Loess Plateau. However, there is a lack of systematic understanding of the development and distribution of active geological disasters in the Loess Plateau due to the wide area, active structure, diverse landforms and great difference in loess characteristics. InSAR technology can observe surface deformation in a wide range. Based on 40 sentinal-1 SAR data from January 1, 2019 to March 31, 2020, a total of 3286 active geological disasters in the Loess Plateau of 624, 600 km2 were interpreted by InSAR, including 1135 landslides, 1691 mining collapses, 368 subsidences and 92 landfills. Combined with geomorphological and optical image characteristics, four types of active geological hazards were interpreted, which reveals that they are mainly distributed in eight regions, including four landslide areas, three mining collapse areas and one subsidence area. The spatial distribution of active landslides is obviously regional and clustered, concentrating in the middle and west of China; while that of mining collapse and land subsidence densely developed in groups in the middle and west of China. There is a relationship between landslide development density and topography. The development of these geological disasters has an obvious spatio-temporal regularity. Regionally, the development intensity of geological disasters is controlled by topography and mineral resources; and in terms of scale, disasters identified by InSAR are all above medium size, which is different from traditional statistical methods. InSAR identification results objectively reflect the distribution of geological disasters in the Loess Plateau, and deepened our understanding on that as well. InSAR technique, meanwhile, can effectively detect the surface damage induced by underground coal mining, including its distribution, scope, strength, and monitor the depth and scope of opencast coal mine, and then infer the intensity of coal production activities.


  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CAO J L, WANG R F, ZHANG J P, et al., 2004. Environmental geological problems in mining areas in Shanxi Province and present state of their study[J]. Geological Bulletin of China, 23(11): 1119-1126. (in Chinese with English abstract)
    CHENG T, SHAN X J, DONG W T, et al., 2008. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology and Engineering Geology, 35(1): 98-101. (in Chinese with English abstract)
    GUO S C, HOU H P, ZHANG S L, et al., 2017. Surface deformation monitoring of the mining area in Loess Plateau based on D-InSAR[J]. Science of Surveying and Mapping, 42(6): 207-212. (in Chinese with English abstract)
    HAN S F, ZHAO B Q, YIN Z M, et al., 2020. The identification of potential geological hazards on the Loess Plateau based on PS InSAR technology[J]. Journal of Lanzhou University: Natural Sciences, 56(1): 1-7. (in Chinese with English abstract)
    HE Y, 2016. Identification and Monitoring of the loess landslide by using of high resolution remote sensing and InSAR[D] Xi'an: Chang'an University. (in Chinese with English abstract)
    HU S, 2019. Spatial pattern of landslide in Loess Plateau and its influence on geomorphologic evolution[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    HUANG T K, JEN C S, JIANG C F, et al., 1977. An outline of the tectonic characteristics of China[J]. Acta Geological Sinica (2): 117-135. (in Chinese with English abstract)
    LEI X Y, 2001. Geological disasters and human activities on the Loess Plateau of China[M]. Beijing: Geological Press. (in Chinese)
    LI M, DU J W, GAO W Y, 2009. Study on the relationship between geological disasters and precipitation in the Loess Plateau in north Shaanxi Province[J]. Arid Zone Research, 26(4): 599-606. (in Chinese with English abstract)
    LI Y, MENG H, DONG Y, et al., 2004. Main Types and characterisitics of geo-hazard in China: Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 15(2): 29-34. (in Chinese with English abstract)
    LIU X H, YAO X, ZHOU Z K, et al., 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
    MIN L R, 1984. The Tectonic movement of quaternary in Loess Plateau of China[J]. Bulletin of the Chinese Academy of Geological Sciences (9): 225-236. (in Chinese with English abstract)
    PENG D L, XU Q, LIU F Z, et al., 2018. Distribution and failure modes of the Landslides in Heitai Terrace, China[J]. Engineering Geology, 236: 97-110. doi: 10.1016/j.enggeo.2017.09.016
    PENG J B, LIN H Z, WANG Q Y, et al., 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22(4): 684-691. (in Chinese with English abstract)
    PENG J B, WANG S K, WANG Q Y, et al., 2019. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 170: 329-350. doi: 10.1016/j.jseaes.2018.11.015
    PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 26(5): 714-730. (in Chinese with English abstract)
    SUN P P, ZHANG M S, CHENG X J, et al., 2019. On the regularity of geological hazards on the Loess Plateau in China[J]. Mountain Research, 37(5): 737-746. (in Chinese with English abstract)
    WANG N Q, 2004. Study on the growing laws and controlling measures for loess landslide[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    WANG S K, 2020. Study on the mechanisms for geohazards of macro loess discontinuities[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    WANG Z X, 2017. Boundary data of Loess Plateau region[J]. Journal of Global Change Data & Discovery, 1(1): 113, 236. (in Chinese with English abstract)
    XU C, WU X Y, XU X W, 2018. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 26(S1): 260-273. (in Chinese with English abstract)
    XU L, DAI F C, TU X B, et al., 2014. Landslides in a Loess Platform, North-West China[J]. Landslides, 11(6): 993-1005. doi: 10.1007/s10346-013-0445-x
    XU L P, 2008. Influence and reciprocal effects of vegetation rehabilitation on regional climate in Loess Plateau[D] Yangling: Northwest A & F University. (in Chinese with English abstract)
    XU Z J, LIN Z G, ZHANG M S, 2007. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 26(7): 1297-1312. (in Chinese with English abstract)
    YAO X, DENG J H, LIU X H, et al., 2020. Primary recognition of active landslides and development rule analysis for pan Three-river-parallel Territory of Tibet Plateau[J]. Advanced Engineering Sciences, 52(5): 16-37. (in Chinese with English abstract)
    YUAN L X, 2006. Forming mechanism of the Loess Landslides in Xiji of Ningxia with Low-Angle, High speed and far-distance[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(2): 219-223. (in Chinese)
    ZHAO C Y, LIU X J, ZHANG Q, et al., 2019. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 44(7): 996-1007. (in Chinese with English abstract)
    ZHAO D L, LANCUO Z M, HOU G L, et al., 2021. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 27(1): 83-95. (in Chinese with English abstract)
    ZHOU J X, ZHU C Y, ZHENG J M, et al., 2002. Landslide disaster in the loess Area of China[J]. Journal of Forestry Research, 13(2): 157-161. doi: 10.1007/BF02857244
    ZHU Z Y, 1992. Neotectonics and Neotectonic movement of the Loess Plateau and its adjacent regions[J]. Quaternary Sciences, 12(3): 252-264. (in Chinese with English abstract)
    曹金亮, 王润福, 张建萍, 等, 2004. 山西省矿山环境地质问题及其研究现状[J]. 地质通报, 23(11): 1119-1126. doi: 10.3969/j.issn.1671-2552.2004.11.012
    程滔, 单新建, 董文彤, 等, 2008. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质, 35(1): 98-101. doi: 10.3969/j.issn.1000-3665.2008.01.022
    郭山川, 侯湖平, 张绍良, 等, 2017. D-InSAR的黄土高原矿区地表形变监测[J]. 测绘科学, 42(6): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201706036.htm
    韩守富, 赵宝强, 殷宗敏, 等, 2020. 基于PS InSAR技术的黄土高原地质灾害隐患识别[J]. 兰州大学学报: 自然科学版, 56(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202001001.htm
    何杨, 2016. 高分遥感与InSAR技术在黄土滑坡识别和监测中的应用研究[D]. 西安: 长安大学.
    胡胜, 2019. 黄土高原滑坡空间格局及其对地貌演化的影响[D]. 西安: 西北大学.
    黄汲清, 任纪舜, 姜春发, 等, 1977. 中国大地构造基本轮廓[J]. 地质学报(2): 117-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm
    雷祥义, 2001. 黄土高原地质灾害与人类活动[M]. 北京: 地质出版社.
    李明, 杜继稳, 高维英, 2009. 陕北黄土高原区地质灾害与降水关系[J]. 干旱区研究, 26(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200904025.htm
    李媛, 孟晖, 董颖, 等, 2004. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005
    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
    闵隆瑞, 1984. 中国黄土高原第四纪构造运动[J]. 中国地质科学院院报(9): 225-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402019.htm
    彭建兵, 林鸿州, 王启耀, 等, 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm
    彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26(5): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
    孙萍萍, 张茂省, 程秀娟, 等, 2019. 黄土高原地质灾害发生规律[J]. 山地学报, 37(5): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htm
    王念秦, 2004. 黄土滑坡发育规律及其防治措施研究[D]. 成都: 成都理工大学.
    王少凯, 2020. 黄土宏观界面及其控灾机制研究[D]. 西安: 长安大学.
    王正兴, 2017. 黄土高原地区[J]. 全球变化数据学报(中英文), 1(1): 113, 236. https://www.cnki.com.cn/Article/CJFDTOTAL-QQSJ201701018.htm
    许冲, 吴熙彦, 徐锡伟, 2018. 黄土高原及邻区的地震滑坡[J]. 工程地质学报, 26(S1): 260-273. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201810001038.htm
    徐丽萍, 2008. 黄土高原地区植被恢复对气候的影响及其互动效应[D]. 杨凌: 西北农林科技大学.
    徐张建, 林在贯, 张茂省, 2007. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001
    姚鑫, 邓建辉, 刘星洪, 等, 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术, 52(5): 16-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005003.htm
    袁丽侠, 2006. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 26(2): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm
    赵超英, 刘晓杰, 张勤, 等, 2019. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 44(7): 996-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907005.htm
    赵东亮, 兰措卓玛, 侯光良, 等, 2021. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报, 27(1): 83-95. doi: 10.12090/j.issn.1006-6616.2021.27.01.009
    朱照宇, 1992. 黄土高原及邻区新构造与新构造运动[J]. 第四纪研究, 12(3): 252-264. doi: 10.3321/j.issn:1001-7410.1992.03.007
  • 加载中


    Figures(5)  / Tables(2)

    Article Metrics

    Article views (938) PDF downloads(127) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint