Zhang Jinjiang, Zheng Yadong, 1995. KINEMATIC VORTICITY, POLAR MOHR CIRCLE AND THIER APPLICATION IN QUANTITATIVE ANALYSIS OF GENERAL SHEAR ZONES. Journal of Geomechanics, 1 (3): 55-64.
Citation: ZHAO Hailin, HUANG Bolin, ZHANG Quan, et al., 2020. Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043

Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass

doi: 10.12090/j.issn.1006-6616.2020.26.04.043
More Information
  • Columnar dangerous rock mass is a common hidden geological hazard in the Three Gorges reservoir area, and the surge induced by collapse causes great threat and damage to shipping, tourism, production and life, as well as personnel and property in the reservoir area. In this paper, based on the boundary conditions of the formation and movement of the columnar dangerous rock mass in the field, the physical experiment and numerical simulation of surge caused by the collapse of granular columns are carried out. The results show that the numerical model can well simulate the formation process, vector information and interaction with water, and the velocity curve shows the energy transfer quantitatively. The deviation of surge height between the physical test and the numerical simulation is about 3~4 cm; the stacking angle of the numerical simulation stacking area is 5% larger than that of the physical experiment; the moving distance of the leading edge is 7% smaller. It provides an important basis for prediction and early warning of surge disaster caused by the collapse of columnar dangerous rock mass.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • BAGNOLD R A.1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under Shear[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 225(1160):49-63. http://cn.bing.com/academic/profile?id=54a768d1c643a6790e85cfe5943b9b7b&encoded=0&v=paper_preview&mkt=zh-cn
    CHEN G D.2019. Study and application of numerical model of reservoir landslide surge[D]. Xi'an: Xi'an University of Technology. (in Chinese)
    DAI L.2018. Experimental research on impulse wave generated by subaerial landslide and related numerical simulation[D]. Tianjin: Tianjin University. (in Chinese with English abstract)
    DENG C J, DANG F L, CHEN X Z.2019. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam[J]. Journal of Hydraulic Engineering, 50(7):815-823. (in Chinese with English abstract)
    GRIMSTAD E, NESDAL S.1991. The Loen rock slides:a historical review[J]. Norwegian Geotechnical Institute, 182:1-6.
    GUO J, SHEN W, LI T L, et al., 2019. Establishment of dynamic model of a flow-like landslide-induced surge[J]. Advances in Water Science, 30(2):273-281. (in Chinese with English abstract) https://www.researchgate.net/publication/333728572_Establishment_of_dynamic_model_of_a_flow-like_landslide-induced_surge
    HAN L F, WANG P Y, WANG M L.2019. Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone[J]. Journal of Zhejiang University (Engineering Science), 53(12):2325-2334. (in Chinese with English abstract)
    HAO J J, MEN Y Q, WANG P Y, et al., 2014. Experimental research on dangerous rock-type landslide surge primary wave height of the river:Channel type reservoir in mountainous area[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 38(3):672-675. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=f0acd148bf2e323b7b1ac316f26935c0&encoded=0&v=paper_preview&mkt=zh-cn
    HE K, YIN Y P, LI B, et al., 2015. Video imaged based analysis of motion characteristic for tower rock collapse[J]. Journal of Engineering Geology, 23(1):86-95. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=1bf95bb0d3bee51741929e0bd8a90d95&encoded=0&v=paper_preview&mkt=zh-cn
    HU X B, FAN X Y, TANG J J.2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:A case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    HUANG B L, YIN Y P, LIU G N, et al., 2012. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23.2008[J]. Landslides, 9(3):395-405. doi: 10.1007/s10346-012-0331-y
    HUANG B L, WANG S C, CHEN X T, et al., 2013. Prototype physical similarity experimental study of impulsive wave generated by cataclastic rockmass failure[J]. Chinese Journal of Rock Mechanics and Engineering, 32(7):1417-1425. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=12902e0caced7761e81467b304f7968a&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LIU G N, et al., 2014. Comparison study of physical prototype model test and numerical simulation of Gongjiafang landslide in Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1):2677-2684. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=de44bb2521cee4b232cc0e6dec248ea2&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LI B, et al., 2020a. Rock mass deterioration and catastrophic effect of karst bank slope in Three Gorges reservoir area[J/OL].Hydrogeology and Engineering Geology:1-11[2020-05-24].https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055. (in Chinese)
    HUANG B L, ZHANG Q, WANG J, et al., 2020b. Study on depositing range of granular columns with different particle gradation[J/OL]. Journal of Yangtze River Scientific Research Institute:1-8[2020-07-02].http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html. (in Chinese with English abstract)
    HUANG B L, ZHANG Q, WANG J, et al., 2020. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles[J]. Physics of Fluids, 32:033301. doi: 10.1063/1.5138709
    HUO Z T, HUANG B L, ZHANG Q, et al., 2020. Analysis of surge induced by Heishiban Landslide in Three Gorges Reservoir Area[J]. Water Resources and Hydropower Engineering, 51(1):115-122. (in Chinese with English abstract)
    JING H X, CHEN G D, LI G D.2018. Numerical simulation of surge wave characteristics caused by underwater landslide[J]. Chinese Journal of Applied Mechanics, 35(3):503-509. (in Chinese with English abstract) doi: 10.1002/fld.1526/abstract
    LIU J.2016. Numerical simulation of landslide entry process based on fluent[J]. Water Conservancy Science and Technology and Economy, 22(6):5-6. (in Chinese)
    LIU W P.2017. Application of SPH method in numerical simulation of free surface flow[D]. Chongqing: Chongqing University. (in Chinese)
    LIU Y F, LIU G, CHEN X J, et al., 2019. Structural plane effect on the deformation and failure of the Heifangtai tableland slope[J]. China Earthquake Engineering Journal, 41(4):908-915. (in Chinese with English abstract)
    MIH W C.1999. High concentration granular shear flow[J]. Journal of Hydraulic Research, 37(2):229-248. doi: 10.1080/00221689909498308
    QIU X, XING A G, WANG G Z.2013. Numerical simulation analysis of water waves due to landslide based on FLUENT[J]. The Chinese Journal of Geological Hazard and Control, 24(3):26-31. (in Chinese with English abstract)
    ROBBE-SAULE M, MORIZE C, BERTHO Y, et al., 2017. Experimental study of wave generation by a granular collapse[J]. EPJ Web of Conferences, 140:14007. doi: 10.1051/epjconf/201714014007
    SUN Y F, HUANG B L, SONG Y P, et al., 2018. Granular flow coupling model for tsunami generated by submarine landslide[J]. Rock and Soil Mechanics, 39(9):3469-3476. (in Chinese with English abstract) http://jtp.cnki.net/bilingual/detail/html/YTLX201809044?view=2
    WANG J C, SUN J H.2019. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics, 25(6):1091-1098. (in Chinese with English abstract)
    WANG J, HUANG B L, ZHANG Q, et al., 2020. Study on generalized model of collapse-deposit characteristics of cataclastic and columnar dangerous rock mass[J]. Water Resources and Hydropower Engineering, 51(2):136-143. (in Chinese with English abstract)
    WANG S C, HUANG B L, TAN J M, et al., 2018. Numerical simulations of impulse waves based on water wave dynamics model on Guanmuling Slope[J]. South China Geology and Mineral Resources, 34(4):323-330. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0309170816300860
    WANG Y, LIU J Z X, ZHANG Y, et al., 2018. Review of wave amplitude prediction generatedby landslide based on physical experiments[J]. Geology and Mineral Resources of South China, 34(4):279-288. (in Chinese with English abstract)
    XIE H Q, JIANG C B, DENG B, et al., 2017. Formation and propagation regulation of water waves caused by the landslides in narrow reservoir's river channel[J]. Journal of Transport Science and Engineering, 33(4):45-50, 76. (in Chinese with English abstract)
    XU B, JIANG C B, DENG B, et al., 2011. Three-dimensional numerical simulations of water waves generated by landslides and its propagation process[J]. Journal of Transport Science and Engineering, 27(2):39-45. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=d85491a4af040c9498b5b1d042ef4f13&encoded=0&v=paper_preview&mkt=zh-cn
    YANG Q F, WANG P Y, YU T, et al., 2014. Experimental research on dangerous rock-type landslide run-up of the river-channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 25(3):43-48, 55. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=65caf32f24166251761c38507935c736&encoded=0&v=paper_preview&mkt=zh-cn
    ZHAO L H, HOU S C, MAO J.2016. Review of numerical simulation of landslides and surges in reservoir districts[J]. Advances in Science and Technology of Water Resources, 36(2):79-86. (in Chinese with English abstract)
    陈国鼎.2019.水库滑坡涌浪数值模型研究及应用[D].西安: 西安理工大学.
    戴磊.2018.滑坡涌浪试验研究及数值模拟[D].天津: 天津大学.
    邓成进, 党发宁, 陈兴周.2019.库区滑坡涌浪传播及其与大坝相互作用机理研究[J].水利学报, 50(7):815-823.
    郭剑, 沈伟, 李同录, 等.2019.一种流动性滑坡涌浪动力学模型[J].水科学进展, 30(2):273-281.
    韩林峰, 王平义, 王梅力.2019.碎裂岩体滑坡运动特征及近场涌浪变化规律[J].浙江大学学报(工学版), 53(12):2325-2334.
    郝建娟, 门永强, 王平义, 等.2014.山区河道型水库陡岩滑坡涌浪首浪试验研究[J].武汉理工大学学报(交通科学与工程版), 38(3):672-675. doi: 10.3963/j.issn.2095-3844.2014.03.046
    贺凯, 殷跃平, 李滨, 等.2015.塔柱状岩体崩塌运动特征分析[J].工程地质学报, 23(1):86-95. doi: 10.13544/j.cnki.jeg.2015.01.013
    胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535.
    黄波林, 王世昌, 陈小婷, 等.2013.碎裂岩体失稳产生涌浪原型物理相似试验研究[J].岩石力学与工程学报, 32(7):1417-1425. doi: 10.3969/j.issn.1000-6915.2013.07.017
    黄波林, 殷跃平, 刘广宁, 等.2014.三峡库区龚家方崩滑体涌浪物理原型试验与数值模拟对比研究[J].岩石力学与工程学报, 33(S1):2677-2684.
    黄波林, 殷跃平, 李滨, 等.2020a.三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J/OL].水文地质工程地质:1-11[2020-05-24]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055.
    黄波林, 张全, 王健, 等.2020b.不同颗粒级配颗粒柱体堆积范围研究[J/OL].长江科学院院报:1-8[2020-07-02]. http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html.
    霍志涛, 黄波林, 张全, 等.2020.三峡库区黑石板滑坡涌浪分析[J].水利水电技术, 51(1):115-122.
    荆海晓, 陈国鼎, 李国栋.2018.水下滑坡产生涌浪波特性的数值模拟研究[J].应用力学学报, 35(3):503-509.
    刘杰.2016.基于Fluent的滑坡入水过程数值模拟[J].水利科技与经济, 22(6):5-6.
    刘维平.2017. SPH方法在自由表面流动数值模拟中的应用[D].重庆: 重庆大学.
    刘亚峰, 刘高, 陈小军, 等.2019.黑方台台塬斜坡变形破坏的结构面效应研究[J].地震工程学报, 41(4):908-915.
    邱昕, 邢爱国, 王国章.2013.基于FLUENT数值模拟的滑坡涌浪分析[J].中国地质灾害与防治学报, 24(3):26-31.
    孙永福, 黄波林, 宋玉鹏, 等.2018.海底滑坡海啸的颗粒流耦合模型[J].岩土力学, 39(9):3469-3476. doi: 10.16285/j.rsm.2016.2612
    王军朝, 孙金辉.2019.川东红层缓倾角岩质崩塌特征与稳定性分析[J].地质力学学报, 25(6):1091-1098.
    王健, 黄波林, 张全, 等.2020.碎裂化柱状危岩体崩塌-堆积特征概化模型研究[J].水利水电技术, 51(2):136-143.
    王世昌, 黄波林, 谭建民, 等.2018.基于水波动力学模型的棺木岭危岩体涌浪数值分析[J].华南地质与矿产, 34(4):323-330.
    汪洋, 刘继芝娴, 张宇, 等.2018.基于物理模拟试验的滑坡涌浪波幅预测研究综述[J].华南地质与矿产, 34(4):279-288.
    谢海清, 蒋昌波, 邓斌, 等.2017.狭窄型库区河道滑坡涌浪的形成及其传播规律[J].交通科学与工程, 33(4):45-50, 76.
    徐波, 蒋昌波, 邓斌, 等.2011.三维滑坡涌浪的产生及其传播过程的数值研究[J].交通科学与工程, 27(2):39-45. doi: 10.3969/j.issn.1674-599X.2011.02.008
    杨渠锋, 王平义, 喻涛, 等.2014.三峡库区陡岩滑坡涌浪爬高试验分析[J].中国地质灾害与防治学报, 25(3):43-48, 55.
    赵兰浩, 侯世超, 毛佳.2016.库区滑坡涌浪数值模拟方法研究进展[J].水利水电科技进展, 36(2):79-86. doi: 10.3880/j.issn.1006-7647.2016.02.015
  • Relative Articles

    ZHENG Wenjun, SUN Xin, LEI Qiyun, GONG Zhikang, WANG Yin, LIU Xingwang, LI Chuanyou, FENG Zijian. 2024: Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China. Journal of Geomechanics, 30(2): 206-224. doi: 10.12090/j.issn.1006-6616.2023154
    XIN Peng, WANG Tao, LIU Jiamei, LIU Feng, DU Jianjun, ZHAO Jianlei. 2022: The geological structure and sliding mode of the slopes in the Yigong landslide source area, Tibet. Journal of Geomechanics, 28(6): 1012-1023. doi: 10.12090/j.issn.1006-6616.2022072
    ZHANG Han, GAO Yang, LI Bin, LI Jun, WU Weile. 2022: Numerical simulation analysis of the solid-liquid coupling process in a hybrid landslide: A case study of the Wushanping landslide. Journal of Geomechanics, 28(6): 1104-1114. doi: 10.12090/j.issn.1006-6616.20222832
    WANG Huiqing, FENG Chengjun, QI Bangshen, WANG Jiming, SUN Mingqian, YANG Xiaoxiao, WAN Jiawei, FAN Yulu, ZHANG Peng, MENG Jing, TAN Chengxuan. 2020: Analysis of the stability of the Lisizhuang landslide in Shunping County, Hebei Province. Journal of Geomechanics, 26(4): 595-603. doi: 10.12090/j.issn.1006-6616.2020.26.04.052
    ZHAO Hailin, HUANG Bolin, ZHANG Quan, ZHENG Jiahao, FENG Wanli, CHEN Xiaoting. 2020: Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26(4): 500-509. doi: 10.12090/j.issn.1006-6616.2020.26.04.043
    LIU Zheng, LI Bin, HE Kai, GAO Yang, WANG Chenhui. 2020: Research of dynamic response patterns of high steep rock slope under earthquake effects. Journal of Geomechanics, 26(1): 115-124. doi: 10.12090/j.issn.1006-6616.2020.26.01.012
    WANG Junchao, SUN Jinhui. 2019: CHARACTERISTICS AND STABILITY ANALYSIS OF ROCK COLLAPSE OF LOW-ANGLED RED-BED SLOPE IN EAST SICHUAN. Journal of Geomechanics, 25(6): 1091-1098. doi: 10.12090/j.issn.1006-6616.2019.25.06.092
    CHEN Zhenkun, SU Jinbao, LU Yi. 2019: APPLICATION AND TREND OF NUMERICAL SIMULATION IN DYNAMIC STUDY OF OROGENIC BELT IN CHINA. Journal of Geomechanics, 25(2): 151-165. doi: 10.12090/j.issn.1006-6616.2019.25.02.014
    WANG Miaomiao, FENG Chengjun, QI Bangshen, MENG Jing, ZHANG Peng, REN Siqi, TAN Chengxuan. 2018: REAEARCH ON THE MECHANISM OF THE INFLUENCE OF DYNAMIC LOAD OF HIGH-SPEED TRAIN ON LAND SUBSIDENCE SUBJECTED TO FAULT EFFECT: A CASE STUDY OF THE HUAILAI SECTION OF THE BEIJING-ZHANGJIAKOU HIGH-SPEED RAILWAY. Journal of Geomechanics, 24(3): 407-415. doi: 10.12090/j.issn.1006-6616.2018.24.03.042
    LIU Lei, LIU Xueling, ZHOU Jinxi. 2018: NUMERICAL ANALYSIS ON DYNAMIC RESPONSE OF THE OBLIQUE METRO TUNNEL IN GROUND FISSURE AREA. Journal of Geomechanics, 24(2): 238-243. doi: 10.12090/j.issn.1006-6616.2018.24.02.025
    LI Nan, WANG Banqiao, MEN Yuming, ZHANG Miaozhi. 2018: STUDY ON DYNAMIC RESPONSE OF LANDSLIDE SUPPORTED BY PRESSURE-TYPE ANCHOR UNDER EARTHQUAKE. Journal of Geomechanics, 24(4): 490-497. doi: 10.12090/j.issn.1006-6616.2018.24.04.051
    REN Sanshao, GUO Changbao, WU Ruian, SHEN Yaqi, ZHANG Tao. 2017: DEVELOPMENT CHARACTERISTICS AND STABILITY ANALYSIS OF THE HONGHUATUN ANCIENT LANDSLIDE AT SONGPAN TUNNEL ENTRANCE OF CHENGDU-LANZHOU RAILWAY. Journal of Geomechanics, 23(5): 754-765.
    ZHANG Miao, ZHANG Chun-shan, YANG Wei-min, WANG Qiu-mei, LIU Xuan, LIU Ting. 2014: THE FORMATION CONDITIONS AND STABILITY OF CHAHANDUSI RESERVOIR LANDSLIDE IN XUNHUA COUNTY, QINGHAI PROVINCE. Journal of Geomechanics, 20(3): 274-284.
    TAO Qian, LIU Chao, ZHU Zhi-ming, YANG Yong, ZOU Zuyin. 2012: NUMERICAL SIMULATION OF LANDSLIDE MECHANISM AT ERMANSHAN IN HANYUAN UNDER DIFFERENT CONDITIONS. Journal of Geomechanics, 18(4): 440-450.
    SHI Wei, TIAN Mi, MA Yin-sheng, GONG Ming-quan, DU Jian-jun, LIU Yuan. 2011: A NUMERICAL SIMULATING RESEARCH ON NEOTECTONICS IN THE LOP NUR BASIN. Journal of Geomechanics, 17(3): 223-231.
    CHEN Xiao-yang, ZHANG Hong-yang, JI Dong, MAO Shi-long. 2011: DEFORMATION MONITORING AND STABILITY ANALYSIS OF AN UNSTABLE SLOPE IN CHONGQING CITY. Journal of Geomechanics, 17(4): 402-409.
    DU Yu-ben, ZHENG Guang, JIANG Liang-wen, XU Qiang. 2010: 3D NUMERICAL SIMULATION OF SLOPE STABILITY OF LANCANGJIANG BRIDGE ON DALI-RUILI RAILWAY. Journal of Geomechanics, 16(1): 108-114.
    JIANG Wa-li, XIE Xin-sheng. 2006: CHARACTERISTICS OF SEGMENTS OF SURFACE RUPTURES OF STRONG EARTHQUAKES ALONG THE EAST KUNLUN ACTIVE FAULT ZONE. Journal of Geomechanics, 12(2): 132-139.
    XU Jian-cong, SHANG Yue-quan, TIAN Xiao-juan. 2006: LANDSLIDE STABILITY ANALYSIS BY THE 3D ELASTIC PLASTIC CONTACT FINITE ELEMENT ALGORITHM. Journal of Geomechanics, 12(2): 150-159.
    ZHANG Yong-shuang, WANG Hong-cai. 2004: NUMERICAL SIMULATION OF THE STABILITY OF HIGH SAND LOESS SLOPES. Journal of Geomechanics, 10(4): 357-365.
  • Cited by

    Periodical cited type(4)

    1. 孟珍珠,胡林生,沈优,蔡崇杰,谷静. 基于改进PIV技术的库区滑坡涌浪试验研究. 水利水电科技进展. 2024(02): 30-36 .
    2. 李秋旺,冯万里,黄波林,董星辰,陈云飞. 三峡库区涉水滑坡涌浪预测分析. 岩土力学. 2024(S1): 424-432 .
    3. 袁振霞,孟珍珠,张志创. 基于随机系数面板数据模型的滑坡涌浪时序预测研究. 中国农村水利水电. 2023(12): 188-194 .
    4. 石继忠. 水电站蓄水期库岸变形的不同维度特征及预测. 山西建筑. 2021(22): 168-171 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 76.9 %META: 76.9 %PDF: 4.3 %PDF: 4.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.9 %其他: 4.9 %其他: 0.1 %其他: 0.1 %China: 0.8 %China: 0.8 %Seattle: 0.3 %Seattle: 0.3 %United States: 0.8 %United States: 0.8 %上海: 0.4 %上海: 0.4 %东莞: 0.4 %东莞: 0.4 %中卫: 0.8 %中卫: 0.8 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %乐山: 0.4 %乐山: 0.4 %九江: 0.1 %九江: 0.1 %云浮: 0.1 %云浮: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 13.3 %北京: 13.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.6 %南京: 0.6 %南充: 0.1 %南充: 0.1 %台州: 1.5 %台州: 1.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈里亚纳: 0.3 %哈里亚纳: 0.3 %大同: 8.0 %大同: 8.0 %大连: 0.3 %大连: 0.3 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %宜昌: 0.3 %宜昌: 0.3 %宣城: 0.1 %宣城: 0.1 %广州: 0.6 %广州: 0.6 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.4 %延安: 0.4 %张家口: 7.4 %张家口: 7.4 %成都: 0.4 %成都: 0.4 %扬州: 0.1 %扬州: 0.1 %抚顺: 0.3 %抚顺: 0.3 %昆明: 1.3 %昆明: 1.3 %昌吉: 0.1 %昌吉: 0.1 %昭通: 0.3 %昭通: 0.3 %杭州: 1.6 %杭州: 1.6 %林芝地区: 0.1 %林芝地区: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 1.6 %武汉: 1.6 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %济南: 0.6 %济南: 0.6 %深圳: 0.4 %深圳: 0.4 %湖州: 0.4 %湖州: 0.4 %湛江: 0.1 %湛江: 0.1 %漯河: 0.3 %漯河: 0.3 %珠海: 0.3 %珠海: 0.3 %甘孜: 0.1 %甘孜: 0.1 %益阳: 0.1 %益阳: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 25.1 %西宁: 25.1 %西安: 0.4 %西安: 0.4 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.4 %达州: 0.4 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %银川: 0.1 %银川: 0.1 %防城港: 0.1 %防城港: 0.1 %青岛: 0.1 %青岛: 0.1 %香港: 0.1 %香港: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaSeattleUnited States上海东莞中卫临汾临沂乐山九江云浮兰州北京十堰南京南充台州呼和浩特哈里亚纳大同大连天津太原宜昌宣城广州廊坊延安张家口成都扬州抚顺昆明昌吉昭通杭州林芝地区格兰特县武汉法尔肯施泰因济南深圳湖州湛江漯河珠海甘孜益阳石家庄福州自贡芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵阳达州运城连云港邯郸郑州重庆银川防城港青岛香港齐齐哈尔

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (587) PDF downloads(21) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return