Zhang Jinjiang, Zheng Yadong, 1995. KINEMATIC VORTICITY, POLAR MOHR CIRCLE AND THIER APPLICATION IN QUANTITATIVE ANALYSIS OF GENERAL SHEAR ZONES. Journal of Geomechanics, 1 (3): 55-64.
Citation: ZHAO Hailin, HUANG Bolin, ZHANG Quan, et al., 2020. Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26 (4): 500-509. DOI: 10.12090/j.issn.1006-6616.2020.26.04.043

Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass

doi: 10.12090/j.issn.1006-6616.2020.26.04.043
More Information
  • Columnar dangerous rock mass is a common hidden geological hazard in the Three Gorges reservoir area, and the surge induced by collapse causes great threat and damage to shipping, tourism, production and life, as well as personnel and property in the reservoir area. In this paper, based on the boundary conditions of the formation and movement of the columnar dangerous rock mass in the field, the physical experiment and numerical simulation of surge caused by the collapse of granular columns are carried out. The results show that the numerical model can well simulate the formation process, vector information and interaction with water, and the velocity curve shows the energy transfer quantitatively. The deviation of surge height between the physical test and the numerical simulation is about 3~4 cm; the stacking angle of the numerical simulation stacking area is 5% larger than that of the physical experiment; the moving distance of the leading edge is 7% smaller. It provides an important basis for prediction and early warning of surge disaster caused by the collapse of columnar dangerous rock mass.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • BAGNOLD R A.1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under Shear[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 225(1160):49-63. http://cn.bing.com/academic/profile?id=54a768d1c643a6790e85cfe5943b9b7b&encoded=0&v=paper_preview&mkt=zh-cn
    CHEN G D.2019. Study and application of numerical model of reservoir landslide surge[D]. Xi'an: Xi'an University of Technology. (in Chinese)
    DAI L.2018. Experimental research on impulse wave generated by subaerial landslide and related numerical simulation[D]. Tianjin: Tianjin University. (in Chinese with English abstract)
    DENG C J, DANG F L, CHEN X Z.2019. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam[J]. Journal of Hydraulic Engineering, 50(7):815-823. (in Chinese with English abstract)
    GRIMSTAD E, NESDAL S.1991. The Loen rock slides:a historical review[J]. Norwegian Geotechnical Institute, 182:1-6.
    GUO J, SHEN W, LI T L, et al., 2019. Establishment of dynamic model of a flow-like landslide-induced surge[J]. Advances in Water Science, 30(2):273-281. (in Chinese with English abstract) https://www.researchgate.net/publication/333728572_Establishment_of_dynamic_model_of_a_flow-like_landslide-induced_surge
    HAN L F, WANG P Y, WANG M L.2019. Motion characteristics of cataclastic rockslides and change rules of impulse waves in near-field zone[J]. Journal of Zhejiang University (Engineering Science), 53(12):2325-2334. (in Chinese with English abstract)
    HAO J J, MEN Y Q, WANG P Y, et al., 2014. Experimental research on dangerous rock-type landslide surge primary wave height of the river:Channel type reservoir in mountainous area[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 38(3):672-675. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=f0acd148bf2e323b7b1ac316f26935c0&encoded=0&v=paper_preview&mkt=zh-cn
    HE K, YIN Y P, LI B, et al., 2015. Video imaged based analysis of motion characteristic for tower rock collapse[J]. Journal of Engineering Geology, 23(1):86-95. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=1bf95bb0d3bee51741929e0bd8a90d95&encoded=0&v=paper_preview&mkt=zh-cn
    HU X B, FAN X Y, TANG J J.2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:A case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    HUANG B L, YIN Y P, LIU G N, et al., 2012. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23.2008[J]. Landslides, 9(3):395-405. doi: 10.1007/s10346-012-0331-y
    HUANG B L, WANG S C, CHEN X T, et al., 2013. Prototype physical similarity experimental study of impulsive wave generated by cataclastic rockmass failure[J]. Chinese Journal of Rock Mechanics and Engineering, 32(7):1417-1425. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=12902e0caced7761e81467b304f7968a&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LIU G N, et al., 2014. Comparison study of physical prototype model test and numerical simulation of Gongjiafang landslide in Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1):2677-2684. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=de44bb2521cee4b232cc0e6dec248ea2&encoded=0&v=paper_preview&mkt=zh-cn
    HUANG B L, YIN Y P, LI B, et al., 2020a. Rock mass deterioration and catastrophic effect of karst bank slope in Three Gorges reservoir area[J/OL].Hydrogeology and Engineering Geology:1-11[2020-05-24].https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055. (in Chinese)
    HUANG B L, ZHANG Q, WANG J, et al., 2020b. Study on depositing range of granular columns with different particle gradation[J/OL]. Journal of Yangtze River Scientific Research Institute:1-8[2020-07-02].http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html. (in Chinese with English abstract)
    HUANG B L, ZHANG Q, WANG J, et al., 2020. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles[J]. Physics of Fluids, 32:033301. doi: 10.1063/1.5138709
    HUO Z T, HUANG B L, ZHANG Q, et al., 2020. Analysis of surge induced by Heishiban Landslide in Three Gorges Reservoir Area[J]. Water Resources and Hydropower Engineering, 51(1):115-122. (in Chinese with English abstract)
    JING H X, CHEN G D, LI G D.2018. Numerical simulation of surge wave characteristics caused by underwater landslide[J]. Chinese Journal of Applied Mechanics, 35(3):503-509. (in Chinese with English abstract) doi: 10.1002/fld.1526/abstract
    LIU J.2016. Numerical simulation of landslide entry process based on fluent[J]. Water Conservancy Science and Technology and Economy, 22(6):5-6. (in Chinese)
    LIU W P.2017. Application of SPH method in numerical simulation of free surface flow[D]. Chongqing: Chongqing University. (in Chinese)
    LIU Y F, LIU G, CHEN X J, et al., 2019. Structural plane effect on the deformation and failure of the Heifangtai tableland slope[J]. China Earthquake Engineering Journal, 41(4):908-915. (in Chinese with English abstract)
    MIH W C.1999. High concentration granular shear flow[J]. Journal of Hydraulic Research, 37(2):229-248. doi: 10.1080/00221689909498308
    QIU X, XING A G, WANG G Z.2013. Numerical simulation analysis of water waves due to landslide based on FLUENT[J]. The Chinese Journal of Geological Hazard and Control, 24(3):26-31. (in Chinese with English abstract)
    ROBBE-SAULE M, MORIZE C, BERTHO Y, et al., 2017. Experimental study of wave generation by a granular collapse[J]. EPJ Web of Conferences, 140:14007. doi: 10.1051/epjconf/201714014007
    SUN Y F, HUANG B L, SONG Y P, et al., 2018. Granular flow coupling model for tsunami generated by submarine landslide[J]. Rock and Soil Mechanics, 39(9):3469-3476. (in Chinese with English abstract) http://jtp.cnki.net/bilingual/detail/html/YTLX201809044?view=2
    WANG J C, SUN J H.2019. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics, 25(6):1091-1098. (in Chinese with English abstract)
    WANG J, HUANG B L, ZHANG Q, et al., 2020. Study on generalized model of collapse-deposit characteristics of cataclastic and columnar dangerous rock mass[J]. Water Resources and Hydropower Engineering, 51(2):136-143. (in Chinese with English abstract)
    WANG S C, HUANG B L, TAN J M, et al., 2018. Numerical simulations of impulse waves based on water wave dynamics model on Guanmuling Slope[J]. South China Geology and Mineral Resources, 34(4):323-330. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0309170816300860
    WANG Y, LIU J Z X, ZHANG Y, et al., 2018. Review of wave amplitude prediction generatedby landslide based on physical experiments[J]. Geology and Mineral Resources of South China, 34(4):279-288. (in Chinese with English abstract)
    XIE H Q, JIANG C B, DENG B, et al., 2017. Formation and propagation regulation of water waves caused by the landslides in narrow reservoir's river channel[J]. Journal of Transport Science and Engineering, 33(4):45-50, 76. (in Chinese with English abstract)
    XU B, JIANG C B, DENG B, et al., 2011. Three-dimensional numerical simulations of water waves generated by landslides and its propagation process[J]. Journal of Transport Science and Engineering, 27(2):39-45. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=d85491a4af040c9498b5b1d042ef4f13&encoded=0&v=paper_preview&mkt=zh-cn
    YANG Q F, WANG P Y, YU T, et al., 2014. Experimental research on dangerous rock-type landslide run-up of the river-channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 25(3):43-48, 55. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=65caf32f24166251761c38507935c736&encoded=0&v=paper_preview&mkt=zh-cn
    ZHAO L H, HOU S C, MAO J.2016. Review of numerical simulation of landslides and surges in reservoir districts[J]. Advances in Science and Technology of Water Resources, 36(2):79-86. (in Chinese with English abstract)
    陈国鼎.2019.水库滑坡涌浪数值模型研究及应用[D].西安: 西安理工大学.
    戴磊.2018.滑坡涌浪试验研究及数值模拟[D].天津: 天津大学.
    邓成进, 党发宁, 陈兴周.2019.库区滑坡涌浪传播及其与大坝相互作用机理研究[J].水利学报, 50(7):815-823.
    郭剑, 沈伟, 李同录, 等.2019.一种流动性滑坡涌浪动力学模型[J].水科学进展, 30(2):273-281.
    韩林峰, 王平义, 王梅力.2019.碎裂岩体滑坡运动特征及近场涌浪变化规律[J].浙江大学学报(工学版), 53(12):2325-2334.
    郝建娟, 门永强, 王平义, 等.2014.山区河道型水库陡岩滑坡涌浪首浪试验研究[J].武汉理工大学学报(交通科学与工程版), 38(3):672-675. doi: 10.3963/j.issn.2095-3844.2014.03.046
    贺凯, 殷跃平, 李滨, 等.2015.塔柱状岩体崩塌运动特征分析[J].工程地质学报, 23(1):86-95. doi: 10.13544/j.cnki.jeg.2015.01.013
    胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535.
    黄波林, 王世昌, 陈小婷, 等.2013.碎裂岩体失稳产生涌浪原型物理相似试验研究[J].岩石力学与工程学报, 32(7):1417-1425. doi: 10.3969/j.issn.1000-6915.2013.07.017
    黄波林, 殷跃平, 刘广宁, 等.2014.三峡库区龚家方崩滑体涌浪物理原型试验与数值模拟对比研究[J].岩石力学与工程学报, 33(S1):2677-2684.
    黄波林, 殷跃平, 李滨, 等.2020a.三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J/OL].水文地质工程地质:1-11[2020-05-24]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202003055.
    黄波林, 张全, 王健, 等.2020b.不同颗粒级配颗粒柱体堆积范围研究[J/OL].长江科学院院报:1-8[2020-07-02]. http://kns.cnki.net/kcms/detail/42.1171.TV.20191115.1727.006.html.
    霍志涛, 黄波林, 张全, 等.2020.三峡库区黑石板滑坡涌浪分析[J].水利水电技术, 51(1):115-122.
    荆海晓, 陈国鼎, 李国栋.2018.水下滑坡产生涌浪波特性的数值模拟研究[J].应用力学学报, 35(3):503-509.
    刘杰.2016.基于Fluent的滑坡入水过程数值模拟[J].水利科技与经济, 22(6):5-6.
    刘维平.2017. SPH方法在自由表面流动数值模拟中的应用[D].重庆: 重庆大学.
    刘亚峰, 刘高, 陈小军, 等.2019.黑方台台塬斜坡变形破坏的结构面效应研究[J].地震工程学报, 41(4):908-915.
    邱昕, 邢爱国, 王国章.2013.基于FLUENT数值模拟的滑坡涌浪分析[J].中国地质灾害与防治学报, 24(3):26-31.
    孙永福, 黄波林, 宋玉鹏, 等.2018.海底滑坡海啸的颗粒流耦合模型[J].岩土力学, 39(9):3469-3476. doi: 10.16285/j.rsm.2016.2612
    王军朝, 孙金辉.2019.川东红层缓倾角岩质崩塌特征与稳定性分析[J].地质力学学报, 25(6):1091-1098.
    王健, 黄波林, 张全, 等.2020.碎裂化柱状危岩体崩塌-堆积特征概化模型研究[J].水利水电技术, 51(2):136-143.
    王世昌, 黄波林, 谭建民, 等.2018.基于水波动力学模型的棺木岭危岩体涌浪数值分析[J].华南地质与矿产, 34(4):323-330.
    汪洋, 刘继芝娴, 张宇, 等.2018.基于物理模拟试验的滑坡涌浪波幅预测研究综述[J].华南地质与矿产, 34(4):279-288.
    谢海清, 蒋昌波, 邓斌, 等.2017.狭窄型库区河道滑坡涌浪的形成及其传播规律[J].交通科学与工程, 33(4):45-50, 76.
    徐波, 蒋昌波, 邓斌, 等.2011.三维滑坡涌浪的产生及其传播过程的数值研究[J].交通科学与工程, 27(2):39-45. doi: 10.3969/j.issn.1674-599X.2011.02.008
    杨渠锋, 王平义, 喻涛, 等.2014.三峡库区陡岩滑坡涌浪爬高试验分析[J].中国地质灾害与防治学报, 25(3):43-48, 55.
    赵兰浩, 侯世超, 毛佳.2016.库区滑坡涌浪数值模拟方法研究进展[J].水利水电科技进展, 36(2):79-86. doi: 10.3880/j.issn.1006-7647.2016.02.015
  • Relative Articles

    LU Shiming, WU Zhonghai, HUANG Ting. 2025: Characteristics of geological hazard development and disaster-inducing environment of the MS6.2 earthquake in Jishishan, Gansu Province. Journal of Geomechanics, 31(1): 139-155. doi: 10.12090/j.issn.1006-6616.2024069
    SUN Dong, QIN Liang, MENG Minghui, YANG Tao, ZHANG Xu, HU Xiao. 2024: Analysis of the development characteristics of co-seismic geological hazards and their controlling factors in the Maerkang MS 6.0 earthquake swarm, Sichuan, on June 10, 2022. Journal of Geomechanics, 30(3): 443-461. doi: 10.12090/j.issn.1006-6616.2023038
    LIU Shuai, HE Bin, WANG Tao, LIU Jiamei, CAO Jiawen, WANG Haojie, ZHANG Shuai, LI Kun, LI Ran, ZHANG Yongjun, DOU Xiaodong, WU Zhonghai, CHEN Peng, FENG Chengjun. 2024: Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China. Journal of Geomechanics, 30(2): 314-331. doi: 10.12090/j.issn.1006-6616.2024009
    WU Haoyuan, ZHAO Yanbing, YANG Yong, XIA Lei, SUN Yuanyuan. 2023: Regional stress effect monitoring and precursory characteristics of dynamic disasters in deep coal mining. Journal of Geomechanics, 29(3): 355-364. doi: 10.12090/j.issn.1006-6616.20232905
    GAO Chenyang, ZHAO Fuhai, GAO Lianfeng, LI Bingxi, LEI Maosheng, DING Kai. 2023: The methods of fracture prediction based on structural strain analysis and its application. Journal of Geomechanics, 29(1): 21-33. doi: 10.12090/j.issn.1006-6616.2022089
    SUN Yao, PENG Hua, JIANG Jingjie, MA Xiumin, HAO Fei, ZHANG Bin. 2023: Development of TY-series high-precision volumetric strain gauge: Analysis and application of its seismic reflection capability. Journal of Geomechanics, 29(3): 324-338. doi: 10.12090/j.issn.1006-6616.20232903
    2020: Chief Editor’s Address. Journal of Geomechanics, 26(4): .
    LI Bin, ZHANG Qing, WANG Wenpei, ZHAO Qisu, WANG Chenhui, HE Kai, GAO Yang, ZHANG Xiaofei. 2020: Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area. Journal of Geomechanics, 26(4): 556-564. doi: 10.12090/j.issn.1006-6616.2020.26.04.048
    GAO Yang, LI Bin, FENG Zhen, ZUO Xiao. 2017: GLOBAL CLIMATE CHANGE AND GEOLOGICAL DISASTER RESPONSE ANALYSIS. Journal of Geomechanics, 23(1): 65-77.
    FENG Zhen, LI Bin, ZHAO Chao-ying, WANG Li, WANG Lei. 2016: GEOLOGICAL HAZARDS MONITORING AND APPLICATION IN MOUNTAINOUS TOWN OF THREE GORGES RESERVOIR. Journal of Geomechanics, 22(3): 685-694.
    DONG Pei-yu, REN Tian-xiang, YANG Shao-hua, PANG Ya-jin, SHI Yao-lin. 2015: A PROBLEM AND EXPLANATION FOR BOREHOLE STRAIN METER RECORDS OF CO-SEISMIC STRAIN STEPS. Journal of Geomechanics, 21(3): 359-370.
    PENG Hua, MA Xiu-min, WANG Zhen, CUI Liu-zhu, JIANG Yi. 2013: A FIBRE OPTIC EXTRINSIC FABRY-PEROT INTERFEROMETER WITH TEMPERATURE COMPENSATION FOR FAULT MEASUREMENT. Journal of Geomechanics, 19(3): 315-324.
    PENG Hua, MA Xiu-min, JIANG Jing-jie. 2011: IN-SITU STRESS MEASUREMENT BY DIFFERENTIAL STRAIN ANALYSIS METHOD IN WFSD-1. Journal of Geomechanics, 17(3): 249-261.
    LI Bo, ZHANG Ting-shan, WANG Zhan-lei, DONG Yin-lei. 2009: ANALYSES ON GRAIN SHAPE AND LIMITED RESPONSE USING GIS. Journal of Geomechanics, 15(3): 218-225.
    XU Shun-shan, Nieto-Samaniego AF, Alaniz-Álvarez SA. 2008: METHODS TO CALCULATE THE FAULT-RELATED STRAIN. Journal of Geomechanics, 14(4): 320-327.
    PENG Hua, MA Xiu-min, JIANG Jing-jie. 2008: ANALYSIS OF THE VOLUME STRAIN DATA FROM THE SHANDAN IN-SITU STRESS MONITORING STATION. Journal of Geomechanics, 14(2): 97-108.
    LIAO Chun-ting. 1999: GEOLOGICAL HAZARD MONITORING AND MONITORING SYSTEM. Journal of Geomechanics, 5(3): 76-83.
    Zhang Fan, Pan Lizhou. 1996: NUMERICAL TREATMENT OF MEASURING GROUND STRESS BY THE BOREHOLE DEFORMATION METHOD USING PRE-PRESSED PROBES OF CONTACT TYPE. Journal of Geomechanics, 2(2): 75-82.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.5 %FULLTEXT: 10.5 %META: 84.7 %META: 84.7 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %Absecon: 0.1 %Absecon: 0.1 %China: 0.1 %China: 0.1 %三明: 0.6 %三明: 0.6 %上海: 0.5 %上海: 0.5 %中卫: 0.5 %中卫: 0.5 %临汾: 0.1 %临汾: 0.1 %丽水: 0.3 %丽水: 0.3 %乐山: 0.8 %乐山: 0.8 %亳州: 0.1 %亳州: 0.1 %佛山: 0.2 %佛山: 0.2 %六安: 0.2 %六安: 0.2 %兰州: 0.1 %兰州: 0.1 %包头: 0.4 %包头: 0.4 %北京: 9.9 %北京: 9.9 %南京: 0.5 %南京: 0.5 %南平: 0.3 %南平: 0.3 %南昌: 0.1 %南昌: 0.1 %南通: 0.4 %南通: 0.4 %厦门: 0.3 %厦门: 0.3 %台州: 1.3 %台州: 1.3 %合肥: 0.3 %合肥: 0.3 %吕梁: 0.1 %吕梁: 0.1 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.6 %唐山: 0.6 %嘉兴: 0.9 %嘉兴: 0.9 %大同: 0.3 %大同: 0.3 %大连: 1.1 %大连: 1.1 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %宁德: 0.5 %宁德: 0.5 %安庆: 0.2 %安庆: 0.2 %安康: 0.4 %安康: 0.4 %安阳: 0.1 %安阳: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宜春: 0.5 %宜春: 0.5 %宿迁: 1.4 %宿迁: 1.4 %常德: 0.9 %常德: 0.9 %广州: 2.1 %广州: 2.1 %延安: 2.7 %延安: 2.7 %开封: 0.1 %开封: 0.1 %张家口: 1.6 %张家口: 1.6 %徐州: 1.4 %徐州: 1.4 %怀化: 0.1 %怀化: 0.1 %成都: 0.4 %成都: 0.4 %扬州: 1.1 %扬州: 1.1 %抚州: 0.8 %抚州: 0.8 %抚顺: 0.6 %抚顺: 0.6 %拉合尔: 0.1 %拉合尔: 0.1 %无锡: 0.7 %无锡: 0.7 %日照: 0.5 %日照: 0.5 %昆明: 0.4 %昆明: 0.4 %本溪: 0.1 %本溪: 0.1 %杭州: 1.1 %杭州: 1.1 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 2.1 %榆林: 2.1 %武汉: 0.7 %武汉: 0.7 %汕头: 0.8 %汕头: 0.8 %池州: 0.3 %池州: 0.3 %沈阳: 0.6 %沈阳: 0.6 %泰州: 0.8 %泰州: 0.8 %泸州: 0.2 %泸州: 0.2 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.8 %济南: 0.8 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %湖州: 1.4 %湖州: 1.4 %湘潭: 0.7 %湘潭: 0.7 %湘西: 0.8 %湘西: 0.8 %漯河: 0.1 %漯河: 0.1 %漳州: 0.5 %漳州: 0.5 %烟台: 0.2 %烟台: 0.2 %玉溪: 0.2 %玉溪: 0.2 %盐城: 0.6 %盐城: 0.6 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.4 %秦皇岛: 0.4 %纽约: 0.3 %纽约: 0.3 %绍兴: 1.4 %绍兴: 1.4 %自贡: 0.2 %自贡: 0.2 %舟山: 0.6 %舟山: 0.6 %芒廷维尤: 8.8 %芒廷维尤: 8.8 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.5 %苏州: 0.5 %荆门: 0.6 %荆门: 0.6 %萍乡: 0.2 %萍乡: 0.2 %营口: 0.7 %营口: 0.7 %葫芦岛: 0.2 %葫芦岛: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.1 %衡水: 0.1 %衢州: 1.0 %衢州: 1.0 %襄阳: 0.5 %襄阳: 0.5 %西宁: 12.1 %西宁: 12.1 %西安: 2.2 %西安: 2.2 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 2.6 %诺沃克: 2.6 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.1 %赣州: 0.1 %辽阳: 0.8 %辽阳: 0.8 %运城: 0.8 %运城: 0.8 %连云港: 1.3 %连云港: 1.3 %邯郸: 0.4 %邯郸: 0.4 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.2 %郑州: 0.2 %郴州: 1.4 %郴州: 1.4 %酒泉: 0.1 %酒泉: 0.1 %重庆: 1.0 %重庆: 1.0 %金华: 0.2 %金华: 0.2 %铁岭: 1.1 %铁岭: 1.1 %铜陵: 0.8 %铜陵: 0.8 %锦州: 0.2 %锦州: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 0.5 %长沙: 0.5 %阜新: 0.1 %阜新: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.9 %鞍山: 0.9 %驻马店: 0.1 %驻马店: 0.1 %鹰潭: 0.8 %鹰潭: 0.8 %黄山: 0.6 %黄山: 0.6 %黄石: 0.5 %黄石: 0.5 %黔西南: 0.7 %黔西南: 0.7 %其他AbseconChina三明上海中卫临汾丽水乐山亳州佛山六安兰州包头北京南京南平南昌南通厦门台州合肥吕梁呼伦贝尔呼和浩特哥伦布唐山嘉兴大同大连天津太原宁德安庆安康安阳宜宾宜春宿迁常德广州延安开封张家口徐州怀化成都扬州抚州抚顺拉合尔无锡日照昆明本溪杭州株洲格兰特县榆林武汉汕头池州沈阳泰州泸州洛杉矶济南海口淄博湖州湘潭湘西漯河漳州烟台玉溪盐城盘锦石家庄福州秦皇岛纽约绍兴自贡舟山芒廷维尤芜湖芝加哥苏州荆门萍乡营口葫芦岛蚌埠衡水衢州襄阳西宁西安西雅图诺沃克贵阳赣州辽阳运城连云港邯郸邵阳郑州郴州酒泉重庆金华铁岭铜陵锦州长春长沙阜新青岛鞍山驻马店鹰潭黄山黄石黔西南

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (588) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return