Volume 29 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
GAO C Y,ZHAO F H,GAO L F,et al.,2023. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics,29(1):21−33 doi: 10.12090/j.issn.1006-6616.2022089
Citation: GAO C Y,ZHAO F H,GAO L F,et al.,2023. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics,29(1):21−33 doi: 10.12090/j.issn.1006-6616.2022089

The methods of fracture prediction based on structural strain analysis and its application

doi: 10.12090/j.issn.1006-6616.2022089
Funds:  This research is financially supported by the Forward-looking Basic Research Project of the China National Petroleum Corporation (Grant 2021DJ0205) and the Project of the Discipline Innovation Team of the Liaoning Technology University (Grant LNTU20TD-14).
More Information
  • Received: 2022-07-13
  • Revised: 2023-01-03
  • Accepted: 2023-01-03
  • Formation strain can directly affect the generation of structural fractures. According to the magnitude of structural strain, the location and intensity of structural fracture development can be predicted, and the chief fracture development areas in the study area can be divided. This paper takes the fourth member of the Yingcheng formation (referred to as the YING-4 section) in the Xuzhong area of the Xujiaweizi rift in the Songliao basin as the research object. Based on establishing a detailed 3D structural model of the study area, we used the “structural restoration” method to restore the paleo-structure of the study area and calculated finite strain values to predict the planar distribution of structural fractures. The research shows that the YING-4 section in the study area mainly includes three fracture-making periods, namely the end of the Yingcheng formation, the Quantou–to–Qingshankou formation, and the Nenjiang formation. Among them, the tectonic deformation at the end of the Yingcheng formation and the Quantou–to–Qingshankou formation is relatively strong, which is the main formation period of the fracture. The study area is divided into three types of fracture development zones according to the relationship between strain size and test gas production. Type I fracture development zone has been verified by well-drilling, indicating that the prediction results of fractures using structural strain are reliable. Type Ⅱ fracture development zone can be used as an important direction for the next step of deep natural gas exploration. Type Ⅲ fracture development zone has low productivity, and the fractures have limited effect on reservoir reconstruction.


  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BARTLETT W L, FRIEDMAN M, LOGAN J M, 1981. Experimental folding and faulting of rocks under confining pressure Part IX. Wrench faults in limestone layers[J]. Tectonophysics, 79(3-4): 255-277. doi: 10.1016/0040-1951(81)90116-5
    BORKOVIĆ A, KOVAČEVIĆ S, RADENKOVIĆ G, et al. , 2018. Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli–Euler beam[J]. Computer Methods in Applied Mechanics and Engineering, 334: 238-267. doi: 10.1016/j.cma.2018.02.002
    CARDOZO N, ALLMENDINGER R W, 2009. SSPX: A program to compute strain from displacement/velocity data[J]. Computers & Geosciences, 35(6): 1343-1357.
    CHEMENDA A I, CAVALIÉ O, VERGNOLLE M, et al. , 2016. Numerical model of formation of a 3-D strike-slip fault system[J]. Comptes Rendus Geoscience, 348(1): 61-69. doi: 10.1016/j.crte.2015.09.008
    CHEN S M, JIANG C J, LIU L, et al. , 2014. Fracture formation mechanism of volcanic rocks in Xujiaweizi fault depression of Songliao basin[J]. Journal of Jilin University (Earth Science Edition), 44(6): 1816-1826. (in Chinese with English abstract)
    CHENG G Y, PANG J Y, ZHANG C S, 1988. Predicting method of the reservoir fracture system of the maukou formation in southern Sichuan[J]. Oil & Gas Geology, 9(1): 32-39. (in Chinese with English abstract)
    CHO Y, GIBSON R L, VASILYEVA M, et al. , 2018. Generalized multiscale finite elements for simulation of elastic-wave propagation in fractured media[J]. Geophysics, 83(1): WA9-WA20. doi: 10.1190/geo2017-0076.1
    CIL M B, ALSHIBLI K A, KENESEI P, 2017. 3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-ray diffraction and tomography[J]. Journal of Geotechnical and Geoenvironmental Engineering, 143(9): 04017048. doi: 10.1061/(ASCE)GT.1943-5606.0001737
    DOOLEY T P, SCHREURS G, 2012. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results[J]. Tectonophysics, 574-575: 1-71. doi: 10.1016/j.tecto.2012.05.030
    DURIEZ J, SCHOLTÈS L, DONZÉ F V, 2016. Micromechanics of wing crack propagation for different flaw properties[J]. Engineering Fracture Mechanics, 153: 378-398. doi: 10.1016/j.engfracmech.2015.12.034
    FENG Z H, YIN C H, LU J M, et al. , 2013. Formation and accumulation of tight sandy conglomerate gas: a case from the Lower Cretaceous Yingcheng formation of Xujiaweizi fault depression, Songliao basin[J]. Petroleum Exploration and Development, 40(6): 650-656. (in Chinese with English abstract)
    FISK J C, MARFURT K J, COOKE D, 2010. Correlating heterogeneous production to seismic curvature attributes in an Australian coalbed methane field[C]//2010 SEG annual meeting. Denver: SEG Technical Program Expanded Abstracts: 2323-2328.
    FOSSEN H, SCHULTZ R A, SHIPTON Z K, et al. , 2007. Deformation bands in sandstone: a review[J]. Journal of the Geological Society, 164(4): 755-769. doi: 10.1144/0016-76492006-036
    FU X F, SHA W, YU D, et al. , 2010. Lateral sealing of faults and gas reservoir formation in volcanic rocks in Xujiaweizi fault depression[J]. Geological Review, 56(1): 60-70. (in Chinese with English abstract)
    GIBBS A D, 1983. Balanced cross-section construction from seismic sections in areas of extensional tectonics[J]. Journal of Structural Geology, 5(2): 153-160. doi: 10.1016/0191-8141(83)90040-8
    GONG L, FU X F, WANG Z S, et al. , 2019. A new approach for characterization and prediction of natural fracture occurrence in tight oil sandstones with intense anisotropy[J]. AAPG Bulletin, 103(6): 1383-1400. doi: 10.1306/12131818054
    GONG L, GAO S, WU J P, et al. , 2017. Natural gas accumulation and fractures in volcanic rocks of Yingcheng formation in Xujiaweizi fault depression[J]. Geotectonica et Metallogenia, 41(2): 283-290. (in Chinese with English abstract)
    HASAN A, ALSHIBLI K, 2012. Three dimensional fabric evolution of sheared sand[J]. Granular Matter, 14(4): 469-482. doi: 10.1007/s10035-012-0353-0
    HOU G T, FENG D C, WANG W M, et al. , 2004. Reverse structures and their impacts on hydrocarbon accumulation in Songliao basin[J]. Oil & Gas Geology, 25(1): 49-53. (in Chinese with English abstract)
    HU M, FU G, LV Y F, et al. , 2010. The fault activity period and its relationship to deep gas accumulation in the Xujiaweizi depression, Songliao basin[J]. Geological Review, 56(5): 710-718. (in Chinese with English abstract)
    HUDSON J A, HARRISON J P, POPESCU M E, 2002. Engineering rock mechanics: an introduction to the principles[J]. Applied Mechanics Reviews, 55(2): B30.
    JACOBI R, STARR J, ECKERT C, et al. , 2021. Relay ramps and rhombochasms in the northern Appalachian Basin: extensional and strike-slip tectonics in the Marcellus Formation and Utica Group[J]. AAPG Bulletin, 105(10): 2093-2124.
    JIANG D W, ZHANG S M, DING R, 2020. Surface deformation and tectonic background of the 2019 Ms 6.0 Changning earthquake, Sichuan basin, SW China[J]. Journal of Asian Earth Sciences, 200: 104493. doi: 10.1016/j.jseaes.2020.104493
    JIANG R, ZHAO L, XU A Z, et al. , 2022. Sweet spots prediction through fracture genesis using multi-scale geological and geophysical data in the karst reservoirs of Cambrian Longwangmiao carbonate formation, Moxi-Gaoshiti area in Sichuan basin, South China[J]. Journal of Petroleum Exploration and Production Technology, 12(5): 1313-1328. doi: 10.1007/s13202-021-01390-0
    LAUBACH S E, EICHHUBL P, HARGROVE P, et al. , 2014. Fault core and damage zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition[J]. Journal of Structural Geology, 68: 207-226. doi: 10.1016/j.jsg.2014.08.007
    LIU G P, ZENG L B, LEI M S, et al. , 2016. Fracture development characteristics and main controlling factors of the volcanic reservoir in Xujiaweizi fault depression[J]. Geology in China, 43(1): 329-337. (in Chinese with English abstract)
    LIU J Z, HAN L, SHI L, et al. , 2021. Seismic prediction of tight sandstone reservoir fractures in XC area, western Sichuan Basin[J]. Oil & Gas Geology, 42(3): 747-754. (in Chinese with English abstract)
    LIU K, LI Y F, GUO H W, et al. , 2021. Determination of surface rupture length and analysis of Riedel shearstructure of the Litang M7.3 earthquake in west Sichuan in 1948[J]. Acta Geologica Sinica, 95(8): 2346-2360. (in Chinese with English abstract)
    LIU X Y, JI Y F, HUANG S M, et al. , 2011. Analysis of invariants in strain tensor matrixes of crustal deformation[J]. Journal of Geodesy and Geodynamics, 31(4): 66-70. (in Chinese with English abstract)
    LUO J, EVANS S G, PEI X J, et al. , 2020. Anomalous co-seismic surface effects produced by the 2014 Mw 6.2 Ludian earthquake, Yunnan, China: an example of complex faulting related to Riedel shear structures[J]. Engineering Geology, 266: 105476. doi: 10.1016/j.enggeo.2020.105476
    LYU W Y, MIAO F B, ZHANG B J, et al. , 2020. Fracture characteristics and their influence on natural gas production: a case study of the tight conglomerate reservoir in the Upper Triassic Xujiahe formation in Jian’gearea, Sichuan basin[J]. Oil & Gas Geology, 41(3): 484-491, 557. (in Chinese with English abstract)
    MA R H, WANG A Z, 2006. Mapping palaeostructural evolution with tectonic reconstruction theory[J]. Natural Gas Industry, 26(1): 34-36. (in Chinese with English abstract)
    MARRETT R, GALE J F W, GÓMEZ L A, et al. , 2018. Correlation analysis of fracture arrangement in space[J]. Journal of Structural Geology, 108: 16-33. doi: 10.1016/j.jsg.2017.06.012
    MEANS W D, 1976. Stress and strain[M]. New York: Springer.
    OLIVEIRA L S B, NOGUEIRA F C C, VASCONCELOS D L, 2022. Mechanical stratigraphy influences deformation band pattern in arkosic sandstones, Rio do Peixe Basin, Brazil[J]. Journal of Structural Geology, 155: 104510. doi: 10.1016/j.jsg.2022.104510
    OZKAYA S I, 2019. Validating predicted fracture corridors by statistical comparison with well data[J]. SPE Reservoir Evaluation & Engineering, 22(4): 1385-1398.
    QIU Y X, 2000. On the method of tectonic sieving[J]. Journal of Geomechanics, 6(1): 33-43. (in Chinese with English abstract)
    RAO G, LI A M, YAN B, et al. , 2011. Co-seismic Riedel shear structures produced by the 2010 Mw 6.9 Yushu earthquake, central Tibetan Plateau, China[J]. Tectonophysics, 507(1-4): 86-94. doi: 10.1016/j.tecto.2011.05.011
    REN H L, LIU C L, LIU W P, et al. , 2020. Stress field simulation and fracture development prediction of the Wufeng formation—Longmaxi formation in the Fushun-Yongchuan block, Sichuan basin[J]. Journal of Geomechanics, 26(1): 74-83. (in Chinese with English abstract)
    RENANI H R, MARTIN C D, 2018. Cohesion degradation and friction mobilization in brittle failure of rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 106: 1-13. doi: 10.1016/j.ijrmms.2018.04.003
    SCHULTZ R A, FOSSEN H, 2008. Terminology for structural discontinuities[J]. AAPG Bulletin, 92(7): 853-867. doi: 10.1306/02200807065
    SUN Q C, SUN X M, WANG P J, et al. , 2007. Joint structure features, distribution regularity and reservoir prediction of Yingcheng formation in Eastern Songliao basin[J]. Journal of Jilin University (Earth Science Edition), 37(6): 1091-1096. (in Chinese with English abstract)
    WANG X D, WANG R, SHI W Z, et al. , 2022. Tectonic characteristics and evolution of typical rift basins in eastern China: a case study in the Gudian area, Songliao basin[J]. Bulletin of Geological Science and Technology, 41(3): 85-95. (in Chinese with English abstract)
    WANG Z S, DONG S Q, MENG N N, et al. , 2020. Fracture network in the low-permeability fault block reservoirs in deep-buried Gaoshangpu oilfield, Bohai Bay basin, and its controlling factors[J]. Oil & Gas Geology, 41(3): 534-542, 626. (in Chinese with English abstract)
    WEN H J, SHU P, FAN C W, et al. , 2008. Reservoir space type and control factors of the deep conglomerate reservoir in Xingcheng gas field[J]. Journal of Daqing Petroleum Institute, 32(3): 101-104. (in Chinese with English abstract)
    WITHJACK M O, PETERSON E T, 1993. Prediction of normal-fault geometries-a sensitivity analysis[J]. AAPG Bulletin, 77(11): 1860-1873.
    WU M, YANG F L, LU J L, 2010. Predication of fractures in the volcanic reservoirs in the east of the Songliao basin[J]. Special Oil & Gas Reservoirs, 17(5): 60-62. (in Chinese with English abstract)
    XIAO F S, CHEN K, RAN Q, et al. , 2018. New understandings of the seismic modes of high productivity wells in the Sinian Dengying Fm gas reservoirs in the Gaoshiti area, Sichuan Basin[J]. Natural Gas Industry B, 5(5): 499-507. doi: 10.1016/j.ngib.2018.02.004
    XIE J T, QIN Q R, FAN C H, 2019. Quantitative prediction of fracture distribution of the Longmaxi formation in the Dingshan area, China using FEM numerical simulation[J]. Acta Geologica Sinica, 93(6): 1662-1672. doi: 10.1111/1755-6724.13815
    ZENG L B, QI J F, WANG Y X, 2007. Origin type of tectonic fractures and geological conditions in low-permeability reservoirs[J]. Acta Petrolei Sinica, 28(4): 52-56. (in Chinese with English abstract)
    ZENG L B, SU H, TANG X M, et al. , 2013a. Fractured tight sandstone oil and gas reservoirs: a new play type in the Dongpu depression, Bohai bay basin, China[J]. AAPG Bulletin, 97(3): 363-377. doi: 10.1306/09121212057
    ZENG W T, ZHANG J C, DING W L, et al. , 2013b. Fracture development in Paleozoic shale of Chongqing area (South China). Part one: fracture characteristics and comparative analysis of main controlling factors[J]. Journal of Asian Earth Sciences, 75: 251-266. doi: 10.1016/j.jseaes.2013.07.014
    ZHANG J B, LIU S L, DAI J S, et al. , 2019. The quantitative prediction of structural fractures in ordovician reservoir in Yu-bei area, Tarim basin[J]. Journal of Geomechanics, 25(2): 177-186. (in Chinese with English abstract)
    ZHANG Y G, CHEN S M, ZHANG E H, et al. , 2010. The new progress of Xujiaweizi fault depression characteristics of structural geology research[J]. Acta Petrologica Sinica, 26(1): 142-148. (in Chinese with English abstract)
    陈树民, 姜传金, 刘立, 等, 2014. 松辽盆地徐家围子断陷火山岩裂缝形成机理[J]. 吉林大学学报(地球科学版), 44(6): 1816-1826.
    程光瑛, 庞加研, 张长盛, 1988. 川南地区茅口组储层裂缝系统预测方法探讨[J]. 石油与天然气地质, 9(1): 32-39.
    冯子辉, 印长海, 陆加敏, 等, 2013. 致密砂砾岩气形成主控因素与富集规律: 以松辽盆地徐家围子断陷下白垩统营城组为例[J]. 石油勘探与开发, 40(6): 650-656.
    付晓飞, 沙威, 于丹, 等, 2010. 松辽盆地徐家围子断陷火山岩内断层侧向封闭性及与天然气成藏[J]. 地质论评, 56(1): 60-70.
    巩磊, 高帅, 吴佳朋, 等, 2017. 徐家围子断陷营城组火山岩裂缝与天然气成藏[J]. 大地构造与成矿学, 41(2): 283-290.
    侯贵廷, 冯大晨, 王文明, 等, 2004. 松辽盆地的反转构造作用及其对油气成藏的影响[J]. 石油与天然气地质, 25(1): 49-53.
    胡明, 付广, 吕延防, 等, 2010. 松辽盆地徐家围子断陷断裂活动时期及其与深层气成藏关系分析[J]. 地质论评, 56(5): 710-718.
    刘国平, 曾联波, 雷茂盛, 等, 2016. 徐家围子断陷火山岩储层裂缝发育特征及主控因素[J]. 中国地质, 43(1): 329-337.
    刘俊州, 韩磊, 时磊, 等, 2021. 致密砂岩储层多尺度裂缝地震预测技术: 以川西XC地区为例[J]. 石油与天然气地质, 42(3): 747-754.
    刘亢, 李岩峰, 郭辉文, 等, 2021. 1948年川西理塘M7.3地震地表破裂特征及Riedel剪切构造分析[J]. 地质学报, 95(8): 2346-2360.
    刘序俨, 季颖锋, 黄声明, 等, 2011. 地形变应变张量矩阵的不变量分析[J]. 大地测量与地球动力学, 31(4): 66-70. doi: 10.3969/j.issn.1671-5942.2011.04.015
    吕文雅, 苗凤彬, 张本键, 等, 2020. 四川盆地剑阁地区须家河组致密砾岩储层裂缝特征及对天然气产能的影响[J]. 石油与天然气地质, 41(3): 484-491, 557.
    马如辉, 王安志, 2006. 利用构造恢复原理制作古构造演化图[J]. 天然气工业, 26(1): 34-36.
    丘元禧, 2000. 论构造筛分[J]. 地质力学学报, 6(1): 33-43.
    任浩林, 刘成林, 刘文平, 等, 2020. 四川盆地富顺-永川地区五峰组: 龙马溪组应力场模拟及裂缝发育区预测[J]. 地质力学学报, 26(1): 74-83.
    孙庆春, 孙晓猛, 王璞珺, 等, 2007. 松辽盆地东缘营城组节理构造特征、分布规律及其储层预测[J]. 吉林大学学报(地球科学版), 37(6): 1091-1096.
    王向东, 王任, 石万忠, 等, 2022. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 41(3): 85-95.
    王兆生, 董少群, 孟宁宁, 等, 2020. 渤海湾盆地高尚堡深层低渗透断块油藏缝网系统及其主控因素[J]. 石油与天然气地质, 41(3): 534-542, 626.
    文慧俭, 舒萍, 范传闻, 等, 2008. 兴城气田深层砾岩储层储集空间类型及控制因素[J]. 大庆石油学院学报, 32(3): 101-104.
    吴满, 杨风丽, 陆建林, 2010. 松辽盆地东部地区火山岩储层裂缝预测研究[J]. 特种油气藏, 17(5): 60-62.
    曾联波, 漆家福, 王永秀, 2007. 低渗透储层构造裂缝的成因类型及其形成地质条件[J]. 石油学报, 28(4): 52-56. doi: 10.3321/j.issn:0253-2697.2007.04.010
    张继标, 刘士林, 戴俊生, 等, 2019. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测[J]. 地质力学学报, 25(2): 177-186.
    张元高, 陈树民, 张尔华, 等, 2010. 徐家围子断陷构造地质特征研究新进展[J]. 岩石学报, 26(1): 142-148.
  • 加载中


    Figures(8)  / Tables(1)

    Article Metrics

    Article views (714) PDF downloads(151) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint