Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
HAN Shuai, WU Zhonghai, WANG Shifeng, et al., 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block. Journal of Geomechanics, 30 (2): 298-313. DOI: 10.12090/j.issn.1006-6616.2023086
Citation: HAN Shuai, WU Zhonghai, WANG Shifeng, et al., 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block. Journal of Geomechanics, 30 (2): 298-313. DOI: 10.12090/j.issn.1006-6616.2023086

Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block

doi: 10.12090/j.issn.1006-6616.2023086
Funds:

the National Natural Science Foundation of China 42202259

the Fundamental Research Fund of the Institute of Geomechanics, Chinese Academy of Geological Sciences 56

the Geological Survey Project of the China Geological Survey DD20221644

More Information
  • Received: 2023-05-30
  • Revised: 2023-12-04
  • Accepted: 2023-12-04
  • Available Online: 2023-12-07
  • Published: 2024-04-28
  •   Objective  The Bangong-Nujiang Suture Zone (BNSZ) serves as a boundary between the Qiangtang and Lhasa terranes of the Tibetan Plateau. The geometric structure and deformation characteristics of the "V" -shaped conjugate strike-slip faults along this late Quaternary boundary are important for understanding the spatially variable responses and tectonic models formed within the plateau as a result of the India-Eurasia plate collision. However, previous studies have primarily focused on the kinematic properties and activity rates of strike-slip faults in the eastern segment of the suture zone. The scarcity of information on the activity characteristics of strike-slip faults and paleoseismic events in the western segment of the suture zone has hindered our understanding of regional tectonic deformation and seismic activity. The Bue Co fault system, located in the western section of the BNSZ, is a (conjugate) strike-slip fault system consisting of the NE-trending Bue Co and NW-trending Lamu Co faults.  Methods  This study employs a combination of remote sensing interpretation and field surveys, utilizing high-resolution Digital Surface Models (DSM) collected by unmanned aerial vehicles (UAV) to conduct a detailed analysis of surface ruptures and systematically decipher the geometric morphologies and late Quaternary deformation evidence of the NE-trending Bue Co Fault and the NW-trending Lamu Co Fault in the western section of the BNSZ.  Results  This study revealed significant fault activity since the late Quaternary period, with evidence of recent large earthquakes that caused surface ruptures extending >60 km along both faults. The Bue Co fault exhibits left-lateral strike-slip, with recent seismic displacements ranging from 3.7 to 4.2 m, whereas the Lamu Co fault shows right-lateral strike-slip with minimum displacements of 2.7 m. Both faults display normal faulting components in their surface rupture zones, and the vertical displacements are cumulative across landforms of various ages, indicating long-term fault activity. The latest activity intensities of the NW and NE faults in the western BNSZ were similar, suggesting that the deformation of the southern boundary of the Qiangtang block may be controlled by both fault sets, which extend into the interior of the block.  Conclusion  These findings reveal that (1) both the Bue Co and Lamu Co faults can generate strong earthquakes of magnitude ≥7, indicating active tectonic deformation and a high seismic hazard potential in the western section of the BNSZ; (2) the deformation in the western BNSZ is concentrated along the NW-trending strike-slip faults and active along the NE-trending strike-slip faults, which may jointly control the southern boundary of the eastward extrusion of the Qiangtang terrane and have extended into the interior of the terrane; and (3) the continuous deformation pattern is supported, revealing that material within the Tibetan Plateau is driven by mid-lower crustal flow extruding eastward, with the southern boundary of the extrusion potentially continuing northward through a series of strike-slip and normal faults.  Significance  These conclusions deepen our understanding of the activity and seismic potential of strike-slip faults in the western BNSZ and provide novel insights into the internal tectonic deformation patterns and dynamic background of the Tibetan Plateau. Furthermore, this study provides an essential theoretical foundation for regional stability assessments and disaster mitigation planning.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ARMIJO R, TAPPONNIER P, MERCIER J L, et al., 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872.
    ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838.
    BAI M K, CHEVALIER M L, PAN J W, et al., 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 485: 19-31.
    CHEN Q Z, FREYMUELLER J T, WANG Q, et al., 2004. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 109(B1): B01403, doi: 10.1029/2002JB002151.
    CHEVALIER M L, TAPPONNIER P, VAN DER WOERD J, et al., 2012. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka[J]. Tectonophysics, 530-531: 152-179.
    CHEVALIER M L, VAN DER WOERD J, TAPPONNIER P, et al., 2016. Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum fault, western Tibet[J]. GSA Bulletin, 128(1-2): 284-314.
    CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    ELLIOTT J R, WALTERS R J, ENGLAND P C, et al., 2010. Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x
    ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. doi: 10.1029/JB094iB12p17561
    GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416.
    GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract)
    GARTHWAITE M C, Wang H and Wright T J, 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. Journal of Geophysical Research: Solid Earth 118: 5071-5083.
    HAN M M, CHEN L C, ZENG D, et al., 2022. Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone[J]. Journal of Geomechanics, 28(6): 969-980. (in Chinese with English abstract)
    HAN S, LI H B, PAN J W, et al., 2019. Co-seismic surface ruptures in Qiangtang Terrane: Insight into Late Cenozoic deformation of central Tibet[J]. Tectonophysics, 750: 359-378.
    HARRISON T M, COPELAND P, KIDD W S F, et al., 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670.
    LIU F C, PAN J W, LI H B, et al., 2022. Characteristics of Quaternary Activities along the Riganpei Co Fault and Seismogenic Structure of the July 23, 2020 Mw6.4 Nima Earthquake, Central Tibet [J]. Acta Geoscientica Sinica, 43(2): 173-188. (in Chinese with English abstract)
    MÉRIAUX S A, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404.
    MEADE B J L, 2007. Present-day kinematics at the India-Asia collision zone[J]. Geology, 35(1): 81-84.
    MERCIER J L, ARMIJO R, TAPPONNIER P, et al., 1987. Change from late tertiary compression to quaternary extension in southern Tibet during the India-Asia Collision[J]. Tectonics, 6(3): 275-304.
    MOLNAR P, DAYEM K E, 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 6(4): 444-467.
    MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: Effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426.
    MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375.
    PAN G T, DING J, YAO D S, et al., 2004. The Qinghai-Tibet Plateau and its adjacent areas geological map 1 ∶ 150 million[M]. Chengdu: Chengdu Cartographic Publishing House: 1-140 (in Chinese).
    RATSCHBACHER L, KRUMREI I, BLUMENWITZ M, et al., 2011. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 353(1): 127-163.
    SHI X H, KIRBY E, LU H J, et al., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 5829-5837.
    STYRON R, TAYLOR M, SUNDELL K, 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 8(2): 131-134.
    SUNDELL K E, TAYLOR M H, STYRON R H, et al., 2013. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 32(5): 1454-1479.
    TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324.
    TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930.
    TAPPONNIER P, RYERSON F J, VAN DER WOERD J, et al., 2001a. Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard[J]. Comptes Rendus de l' Academie des Sciences-Series IIA-Earth and Planetary Science, 333(9): 483-494.
    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001b. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
    TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044.
    TAYLOR M, PELTZER G, 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111(B12): B12402.
    TAYLOR M, YIN A, 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214.
    TAYLOR M H, KAPP P A, HORTON B K, 2011. Basin response to active extension and strike‐slip deformation in the hinterland of the Tibetan Plateau[M]//BUSBY C, AZOR A. Tectonics of sedimentary basins: recent advances. Oxford: Blackwell Publishing Ltd: 445-460.
    VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 1998. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)[J]. Geology, 26(26): 695-698.
    VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 2000. Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics[J]. Geophysical Research Letters, 27(16): 2353-2356.
    WANG D, YIN G M, WANG X L, et al., 2016. OSL dating of the late Quaternary slip rate on the Gyaring Co Fault in central Tibet[J]. Geochronometria, 43(1): 162-173.
    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002.
    WU Z H, ZHAO X T, WU Z H, et al., 2006. Quaternary geology and faulting in the Damxung-Yangbajain Basin, Southern Tibet[J]. Journal of Geomechanics, 12(3): 305-316. (in Chinese with English abstract)
    WU Z H, ZHANG X D, HAN S, et al., 2022. Quaternary faulting and deformation mechanism of the western Qiangtang block in northern Ngari, Tibet[J]. Acta Geologica Sinica, 96(11): 3760-3783. (in Chinese with English abstract)
    YANG P X, CHEN Z W, ZHANG J, et al., 2012. The tension-shear of Gyaring Co Fault and the implication for dynamic model in South-central Tibet[J]. Chinese Journal of Geophysics, 55(10): 3285-3295. (in Chinese with English abstract)
    YIN A, KAPP P A, MURPHY M A, et al., 1999. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787-790.
    YIN A, 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759.
    YIN A, HARRISON T M, 2003. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280.
    YIN A, TAYLOR M H, 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. GSA Bulletin, 123(9-10): 1798-1821.
    ZHANG J J, DING L, 2003. East-west extension in Tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189. (in Chinese with English abstract)
    ZHANG J J, WANG J M, WANG X X, et al., 2013. A new model for the Himalayan orogeny[J]. Chinese Journal of Geology, 48(2): 362-383. (in Chinese with English abstract)
    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract)
    高云鹏, 刘静, 韩龙飞, 等, 2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报, 29(5): 704-719. doi: 10.12090/j.issn.1006-6616.2023034
    韩明明, 陈立春, 曾蒂, 等, 2022. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论[J]. 地质力学学报, 28(6): 969-980. doi: 10.12090/j.issn.1006-6616.20222824
    刘富财, 潘家伟, 李海兵, 等, 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛MW 6.4地震发震构造分析[J]. 地球学报, 43(2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202202004.htm
    潘桂棠, 丁俊, 姚东生, 等, 2004. 青藏高原及邻区地质图(1 ∶ 1500000)说明书[M]. 成都: 成都地图出版社: 1-140.
    吴中海, 赵希涛, 吴珍汉, 等, 2006. 西藏当雄-羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报, 12(3): 305-316. https://journal.geomech.ac.cn/article/id/3ec85626-b773-448f-a430-a308b533aadd
    吴中海, 张旭东, 韩帅, 等, 2022. 西藏阿里北部羌塘地块内部的第四纪活动断层及其变形机制[J]. 地质学报, 96(11): 3760-3783. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211008.htm
    杨攀新, 陈正位, 张俊, 等, 2012. 西藏中南部格仁错断裂张剪性质及其区域动力学意义[J]. 地球物理学报, 55(10): 3285-3295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210012.htm
    张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200302005.htm
    张进江, 王佳敏, 王晓先, 等, 2013. 喜马拉雅造山带造山模式探讨[J]. 地质科学, 48(2): 362-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302006.htm
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型, 特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002
  • 加载中

Catalog

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1498) PDF downloads(297) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return