Citation: | JIANG Chenyi, PAN Jiawei, ZHANG Lijun, et al., 2024. Application of UAV SfM technology in active tectonic research: A case study of the Longmu Co Fault, Northwestern Qinghai-Tibet Plateau. Journal of Geomechanics, 30 (2): 332-347. DOI: 10.12090/j.issn.1006-6616.2023192 |
AGÜERA-VEGA F, CARVAJAL-RAMÍREZ F, MARTÍNEZ-CARRICONDO P, 2017. Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry[J]. Journal of Surveying Engineering, 143(2): 04016025. doi: 10.1061/(ASCE)SU.1943-5428.0000206
|
ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. doi: 10.1029/JB094iB03p02787
|
BEMIS S P, MICKLETHWAITE S, TURNER D, et al., 2014. Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 69: 163-178. doi: 10.1016/j.jsg.2014.10.007
|
BI H Y, ZHENG W J, REN Z K, et al., 2017. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry[J]. International Journal of Remote Sensing, 38(8-10): 2495-2510. doi: 10.1080/01431161.2016.1249308
|
BI H Y, ZHENG W J, ZENG J Y, et al., 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 39(4): 656-674. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.04.003
|
CAO P J, CHENG S Y, LIN H X, et al., 2021. DEM in quantitative analysis of structural geomorphology: application and prospect[J]. Journal of Geomechanics, 27(6): 949-962. (in Chinese with English abstract)
|
CHEN X Y, SHI Y Z, YANG Y, et al., 2023. Accuracy evaluation of structure from motion (SfM) photogrammetry on the measurement of typical gullies in the Loess Plateau[J]. Journal of Shaanxi Normal University (Natural Science Edition), 51(6): 25-36. (in Chinese with English abstract)
|
CHEVALIER M L, PAN J W, LI H B, et al., 2017. First tectonic-geomorphology study along the Longmu-Gozha Co fault system, western Tibet[J]. Gondwana Research, 41: 411-424. doi: 10.1016/j.gr.2015.03.008
|
DENG Q D, CHEN L C, RAN Y K, 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4): 383-392. (in Chinese with English abstract)
|
FONSTAD M A, DIETRICH J T, COURVILLE B C, et al., 2013. Topographic structure from motion: a new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 38(4): 421-430. doi: 10.1002/esp.3366
|
GUO Q H, HU T Y, LIU J, et al., 2021. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography, 40(9): 1550-1569. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2021.09.010
|
HAN S, WU Z H, WANG S F, et al., 2023. Surface deformation and tectonic implication of the late Quaternary Bue Co strike-slip fault system, mid-western Qiangtang block [J/OL]. Journal of Geomechanics, DOI:
|
HARWIN S, LUCIEER A, 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery[J]. Remote Sensing, 4(6): 1573-1599. doi: 10.3390/rs4061573
|
JAMES M R, ROBSON S, 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 117(F3): F03017.
|
JIMÉNEZ-JIMÉNEZ S I, OJEDA-BUSTAMANTE W, DE JESÚSMARCIAL-PABLO M, et al., 2021. Digital terrain models generated with low-cost UAV photogrammetry: methodology and accuracy[J]. ISPRS International Journal of Geo-Information, 10(5): 285. doi: 10.3390/ijgi10050285
|
JOHNSON K, NISSEN E, SARIPALLI S, et al., 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1
|
KANG W J, XU X W, YU G H, et al., 2020. Comparison study of two kinds of codes to measure fault-offsets based on matlab: a case study on eastern Altyn Tagh Fault[J]. Seismology and Geology, 42(3): 732-747. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2020.03.013
|
KOZMUS TRAJKOVSKI K, GRIGILLO D, PETROVIČ D, 2020. Optimization of UAV flight missions in steep terrain[J]. Remote Sensing, 12(8): 1293. doi: 10.3390/rs12081293
|
LI H, CHEVALIER M L, TAPPONNIER P, et al., 2021. Block tectonics across western Tibet and multi-millennial recurrence of great earthquakes on the Karakax Fault[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022033. doi: 10.1029/2021JB022033
|
LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841.
|
LIAO C, LIANG M J, ZHOU W Y, et al., 2024. Quantitative parameter extraction of seismic surface rupture based on SfM method and LaDiCaoz: take the typical surface rupture in Luho Zhajiao Village Area as an example[J]. Journal of Geodesy and Geodynamics, 44(2): 183-188. (in Chinese with English abstract)
|
MA X X, WU Z H, LI J C, 2016. LiDAR technology and its application and prospect in geological environment[J]. Journal of Geomechanics, 22(1): 93-103. (in Chinese with English abstract)
|
MICHELETTI N, CHANDLER J H, LANE S N, 2015. Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone[J]. Earth Surface Processes and Landforms, 40(4): 473-486. doi: 10.1002/esp.3648
|
MOREELS P, PERONA P, 2007. Evaluation of features detectors and descriptors based on 3D objects[J]. International Journal of Computer Vision, 73(3): 263-284. doi: 10.1007/s11263-006-9967-1
|
NESBIT P R, HUGENHOLTZ C H, 2019. Enhancing UAV-SFM 3D model accuracy in high-relief landscapes by incorporating oblique images[J]. Remote Sensing, 11(3): 239. doi: 10.3390/rs11030239
|
OSKIN M E, LE K, STRANE M D, 2007. Quantifying fault-zone activity in arid environments with high-resolution topography[J]. Geophysical Research Letters, 34(23): L23S05.
|
PERRIN C, MANIGHETTI I, AMPUERO J P, et al., 2016. Location of largest earthquake slip and fast rupture controlled by along‐strike change in fault structural maturity due to fault growth[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3666-3685. doi: 10.1002/2015JB012671
|
RATERMAN N S, COWGILL E, LIN D, 2007. Variable structural style along the Karakoram fault explained using triple-junction analysis of intersecting faults[J]. Geosphere, 3(2): 71-85. doi: 10.1130/GES00067.1
|
REN Z K, CHEN T, ZHANG H P, et al., 2014. LiDAR survey in active tectonics studies: an introduction and overview[J]. Acta Geologica Sinica, 88(6): 1196-1207. (in Chinese with English abstract)
|
ROSAS M A, CLAPUYT F, VIVEEN W, et al., 2023. Quantifying geomorphic change in Andean river valleys using UAV-PPK-SfM techniques: an example from the western Peruvian Andes[J]. Geomorphology, 435: 108766. doi: 10.1016/j.geomorph.2023.108766
|
ROSNELL T, HONKAVAARA E, 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera[J]. Sensors, 12(1): 453-480. doi: 10.3390/s120100453
|
SANZ-ABLANEDO E, CHANDLER J H, RODRÍGUEZ-PÉREZ J R, et al., 2018. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used[J]. Remote Sensing, 10(10): 1606. doi: 10.3390/rs10101606
|
SEFERCIK U G, NAZAR M, 2023. Consistency analysis of RTK and Non-RTK UAV DSMs in vegetated areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 5759-5768. doi: 10.1109/JSTARS.2023.3288947
|
SIMIC MILAS A, CRACKNELL A P, WARNER T A, 2018. Drones-the third generation source of remote sensing data[J]. International Journal of Remote Sensing, 39(21): 7125-7137. doi: 10.1080/01431161.2018.1523832
|
TURNER D, LUCIEER A, WATSON C, 2012. An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds[J]. Remote Sensing, 4(5): 1392-1410. doi: 10.3390/rs4051392
|
THOMAS A F, AMY E F, ADAM J M, et al., 2020. Impacts of abrupt terrain changes and grass cover on vertical accuracy of UAS-SfM derived elevation models[J]. Papers in Applied Geography, 6(4): 336-51. doi: 10.1080/23754931.2020.1782254
|
WANG J W, LI C L, WANG Z Y, et al., 2021. Analysis on the influence of images on measurement accuracy of three-dimensional model reconstructed by SFM[J]. Laser Journal, 42(3): 63-69. (in Chinese with English abstract)
|
WANG P T, SHAO Y X, ZHANG H P, et al., 2016. The application of sUAV photogrammetry in active tectonics: Shanmagou site of Haiyuan Fault, for example[J]. Quaternary Sciences, 36(2): 433-442. (in Chinese with English abstract)
|
WESTOBY M J, BRASINGTON J, GLASSER N F, et al., 2012. 'Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314. doi: 10.1016/j.geomorph.2012.08.021
|
YANG H B, YANG X P, HUANG X N, et al., 2016. Data comparative analysis between SfM data and DGPs data: a case study from fault scarp in the East Bank of Hongshuiba River, northern margin of the Qilian Shan[J]. Seismology and Geology, 38(4): 1030-1046. (in Chinese with English abstract)
|
ZHANG D, LI J C, WU Z H, et al., 2021. Using terrestrial LiDAR to accurately measure the micro-geomorphologic geometry of active fault: a case study of fault scarp on the Maoyaba Fault zone[J]. Journal of Geomechanics, 27(1): 63-72. (in Chinese with English abstract)
|
ZHANG H P, LIU S F, SUN Y P, et al., 2006. The acquisition of local topographic relief and its application: an SRTM-DEM analysis[J]. Remote Sensing for Land & Resources, (1): 31-35. (in Chinese with English abstract)
|
ZIELKE O, ARROWSMITH J R, 2012. LaDiCaoz and LiDARimager—MATLAB GUIs for LiDAR data handling and lateral displacement measurement[J]. Geosphere, 8(1): 206-221. doi: 10.1130/GES00686.1
|
毕海芸, 郑文俊, 曾江源, 等, 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 39(4): 656-674. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201704003.htm
|
曹鹏举, 程三友, 林海星, 等, 2021. DEM在构造地貌定量分析中的应用与展望[J]. 地质力学学报, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077?viewType=HTML
|
陈薪伊, 史扬子, 杨扬, 等, 2023. SfM摄影测量法对黄土高原典型切沟的测量精度评价[J]. 陕西师范大学学报(自然科学版), 51(6): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXSZ202306003.htm
|
邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404006.htm
|
郭庆华, 胡天宇, 刘瑾, 等, 2021. 轻小型无人机遥感及其行业应用进展[J]. 地理科学进展, 40(9): 1550-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109011.htm
|
韩帅, 吴中海, 王世锋, 等, 2023. 羌塘地块中西部布木错走滑断裂系晚第四纪以来地表变形特征与构造意义[J/OL]. 地质力学学报, DOI:
|
康文君, 徐锡伟, 于贵华, 等, 2020. 2种基于Matlab平台的断层位移测量软件对比分析: 以阿尔金断裂东段为例[J]. 地震地质, 42(3): 732-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202003013.htm
|
李红强, 袁道阳, 苏琦, 等, 2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报, 29(6): 824-841. doi: 10.12090/j.issn.1006-6616.2023123?viewType=HTML
|
廖程, 梁明剑, 周文英, 等, 2024. 基于无人机SfM及LaDiCaoz的地震地表破裂定量参数提取: 以炉霍扎交村一带地震典型地表破裂为例[J]. 大地测量与地球动力学, 44(2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202402014.htm
|
马晓雪, 吴中海, 李家存, 2016. LiDAR技术在地质环境中的主要应用与展望[J]. 地质力学学报, 22(1): 93-103. https://journal.geomech.ac.cn/article/id/0f502c82-0ca8-4348-9b7a-ba4406be4e74?viewType=HTML
|
任治坤, 陈涛, 张会平, 等, 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6): 1196-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htm
|
王佳文, 李彩林, 王志勇, 等, 2021. 影像数量对SFM三维重建模型测量精度的影响分析[J]. 激光杂志, 42(3): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202103012.htm
|
王朋涛, 邵延秀, 张会平, 等, 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例[J]. 第四纪研究, 36(2): 433-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201602018.htm
|
杨海波, 杨晓平, 黄雄南, 等, 2016. 移动摄影测量数据与差分GPS数据的对比分析: 以祁连山北麓洪水坝河东岸断层陡坎为例[J]. 地震地质, 38(4): 1030-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201604018.htm
|
张迪, 李家存, 吴中海, 等, 2021. 利用地面LiDAR精细化测量活断层微地貌形态: 以毛垭坝断裂禾尼处断层崖为例[J]. 地质力学学报, 27(1): 63-72. doi: 10.12090/j.issn.1006-6616.2021.27.01.007?viewType=HTML
|
张会平, 刘少峰, 孙亚平, 等, 2006. 基于SRTM-DEM区域地形起伏的获取及应用[J]. 国土资源遥感, (1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200601006.htm
|