Citation: | ZHANG Q,WU X J,ZHONG Z C,et al.,2025. Improving the inversion accuracy of shallow shear wave velocity structure based on microtremor method: A case study of Haikou Jiangdong New District[J]. Journal of Geomechanics,31(1):109−123 doi: 10.12090/j.issn.1006-6616.2024055 |
[1] |
AKI K, 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 35: 415-456.
|
[2] |
AKI K, 1965. A note on the use of microseisms in determining the shallow structures of the earth’s crust[J]. Geophysics, 30(4): 665-666. doi: 10.1190/1.1439640
|
[3] |
BEATY K S, SCHMITT D R, SACCHI M, 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 151(2): 622-631. doi: 10.1046/j.1365-246X.2002.01809.x
|
[4] |
CAI W, SONG X H, YUAN S C, et al., 2018. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms[J]. Chinese Journal of Geophysics, 61(6): 2409-2420. (in Chinese with English abstract
|
[5] |
CHO I, NAKKKANISHI I, LING S, et al., 1999. Application of forking genetic algorithm FGA to an exploration method using microtremors; Bidotansaho heno kotaigun tansaku bunkigata identeki arugorizumu fGA no tekiyo[J]. Geophysical Exploration, 52(3): 227-246.
|
[6] |
CHAVEZ-GARCIA F J, RODRIDUEZ M, STEPHENSON W R, 2005. Analternative approach to the SPAC analysis of microtremors: exploiting stationarity of noise[J]. Bull. Seism. Soc. Am.,95(1): 277-293.
|
[7] |
FU W, XU P F, LING S Q, et al., 2012. Application of the microtremor survey method to geothermal exploration[J]. Shanghai Land & Resources, 33(3): 71-75. (in Chinese with English abstract
|
[8] |
GAO Y H, HUANG S H, LIU D, et al., 2018. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 18(23): 146-155. (in Chinese with English abstract
|
[9] |
HE Z Q, DING Z F, JIA H, et al., 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492-498. (in Chinese with English abstract
|
[10] |
HE Z Q, HU G, LU L Y, et al., 2013. The shallow velocity structure for the Tonghai basin in Yunnan[J]. Chinese Journal of Geophysics, 56(11): 3819-3827. (in Chinese with English abstract
|
[11] |
HORIKE M, 1985. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas[J]. Journal of Physics of the Earth, 33(2): 59-96. doi: 10.4294/jpe1952.33.59
|
[12] |
HUANG H Q, 2011. Research on application of passive suface wave methods in the metallic ore zone[J]. Geology of Fujian, 30(4): 320-326. (in Chinese with English abstract
|
[13] |
LI Q L, LEI X D, LI C, et al., 2019. Exploring thick overburden structure by microtremor survey: a case study in the subsidiary administrative center[J]. Progress in Geophysics, 34(4): 1635-1643. (in Chinese with English abstract
|
[14] |
LIANG D Y, XU G Q, XIAO Y, et al., 2021. Neogene-quaternary stratigraphic standard and combined zoning of Haikou Jiangdong new district[J]. Science Technology and Engineering, 21(26): 11052-11063. (in Chinese with English abstract
|
[15] |
LIU H P, BOORE D M, JOYNER W B, et al., 2000. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles[J]. Bulletin of the Seismological Society of America, 90(3): 666-678. doi: 10.1785/0119980186
|
[16] |
LIU Y Z, MEI R W, YE P, et al., 2016. Data acquisition and processing system of WD intelligent natural source surface wave and its application test[J]. Geophysical and Geochemical Exploration, 40(5): 1007-1015. (in Chinese with English abstract
|
[17] |
LI X Y, CHEN X F, YANG Z T, et al., Application of high-order surface waves in shallow exploration: An example of the Suzhou river, Shanghai[J]. Chinese Journal of Geophysics, 63(1): 247-255.
|
[18] |
NI S D, LI Z W, SOMERVILLE P, 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismological Research Letters, 85(1): 82-90. doi: 10.1785/0220130128
|
[19] |
SONG X H, GU H M, ZHANG X Q, et al., 2008. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computers & Geosciences, 34(6): 611-624.
|
[20] |
SONG X H, TANG L, LV X C, et al., 2012. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 84: 1-13. doi: 10.1016/j.jappgeo.2012.05.011
|
[21] |
TIAN B Q, DU Y N, YOU Z W, et al., 2019. Measuring the sediment thickness in urban areas using revised H/V spectral ratio method[J]. Engineering Geology, 260: 105223. doi: 10.1016/j.enggeo.2019.105223
|
[22] |
TSAI V C, MOSCHETTI M P, 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 182(1): 454-460.
|
[23] |
XIA J H, MILLER R D, PARK C B, 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578
|
[24] |
XIE P, WANG Q L, LI J G, et al., 2019. Application of SPAC method on stratification of stratigraphic structure in Jianghan Plain[J]. China Earthquake Engineering Journal, 41(3): 717-723. (in Chinese with English abstract
|
[25] |
XU H, WU X P, SHENG Y, et al., 2021. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 45(6): 1512-1519. (in Chinese with English abstract
|
[26] |
XU P F, LI C J, LING S Q, et al., 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 52(7): 1923-1930. (in Chinese with English abstract
|
[27] |
XU P F, LING S Q, LI C J, et al., 2012. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 188(1): 115-122. doi: 10.1111/j.1365-246X.2011.05266.x
|
[28] |
XU P F, SHI W, LING S Q, et al., 2012. Mapping spherically weathered “boulders” using 2D microtremor profiling method: a case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128. (in Chinese with English abstract
|
[29] |
XU P F, LI S H, DU J G, et al., 2013a. Microtremor survey method: a new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 29(5): 1841-1845. (in Chinese with English abstract
|
[30] |
XU P F, LI S H, LING S Q, et al., 2013b. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Chinese Journal of Geophysics, 56(11): 3846-3854. (in Chinese with English abstract
|
[31] |
XU P F, DU Y N, LING S Q, et al., 2020. Microtremor survey method based on inversion of the SPAC coefficient of multi-mode Rayleigh waves and its application[J]. Chinese Journal of Geophysics, 63(10): 3857-3867. (in Chinese with English abstract
|
[32] |
XU Y X, ZHANG B L, LUO Y H, et al., 2013b. Surface-wave observations after integrating active and passive source data[J]. The Leading Edge, 32(6): 634-637. doi: 10.1190/tle32060634.1
|
[33] |
XU Y X, LUO Y H, 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 58(8): 2618-2636, doi: 10.6038/cjg20150803. (in Chinese with English abstract
|
[34] |
YANG T C, HE J S, LU S L, et al., 2004a. Dispersion curves of Rayleigh wave in three-layer media[J]. Geophysical and Geochemical Exploration, 28(1): 41-45. (in Chinese with English abstract
|
[35] |
YANG T C, HE J S, LV S L, et al., 2004b. Multimodes of Rayleigh guided waves and their dispersion and displacement characteristics in three-layer media[J]. Computing Techniques for Geophysical and Geochemical Exploration, 26(1): 20-26. (in Chinese with English abstract
|
[36] |
YANG T C, XIAO Q L, 2009. Dispersion characteristics of Rayleigh waves in multilayered media[J]. Geophysical and Geochemical Exploration, 33(3): 299-303. (in Chinese with English abstract
|
[37] |
ZHANG B X, LU L Y, BAO G S, 2002. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 45(2): 263-274. (in Chinese with English abstract
|
[38] |
ZHAO D, 2010. Passive surface waves: methods and applications[J]. Geophysical and Geochemical Exploration, 34(6): 759-764. (in Chinese with English abstract
|
[39] |
ZHAO H P, HE D K, HONG Y, 2022. Inversion of microtremor recordings dispersion curve based on geological unit[J]. Journal of Mining Science and Technology, 7(6): 662-669. (in Chinese with English abstract
|
[40] |
ZHONG Z C, CAI S K, LIU Q X, et al., 2023. Application of SPAC method on to the fine division of Neogene-quaternary strata in Haikou Jiangdong new district[J]. Science Technology and Engineering, 23(36): 15393-15403. (in Chinese with English abstract
|
[41] |
蔡伟,宋先海,袁士川,等,2018. 基于萤火虫和蝙蝠群智能算法的瑞雷波频散曲线反演[J]. 地球物理学报,61(6):2409-2420. doi: 10.6038/cjg2018L0322
|
[42] |
付微,徐佩芬,凌苏群,等,2012. 微动勘探方法在地热勘查中的应用[J]. 上海国土资源,33(3):71-75.
|
[43] |
高艳华,黄溯航,刘丹,等,2018. 微动探测技术及其工程应用进展[J]. 科学技术与工程,18(23):146-155. doi: 10.3969/j.issn.1671-1815.2018.23.020
|
[44] |
何正勤,丁志峰,贾辉,等,2007. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报,50(2):492-498. doi: 10.3321/j.issn:0001-5733.2007.02.021
|
[45] |
何正勤,胡刚,鲁来玉,等,2013. 云南通海盆地的浅层速度结构[J]. 地球物理学报,56(11):3819-3827. doi: 10.6038/cjg20131123
|
[46] |
黄海清,2011. 被动源面波勘探在金属矿区的应用探索[J]. 福建地质,30(4):320-326. doi: 10.3969/j.issn.1001-3970.2011.04.008
|
[47] |
李巧灵,雷晓东,李晨,等,2019. 微动测深法探测厚覆盖层结构:以北京城市副中心为例[J]. 地球物理学进展,34(4):1635-1643. doi: 10.6038/pg2019CC0128
|
[48] |
李雪燕,陈晓非,杨振涛,等,2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,63(1):247-255.
|
[49] |
梁定勇,许国强,肖瑶,等,2021. 海口江东新区新近纪-第四纪标准地层与组合分区[J]. 科学技术与工程,21(26):11052-11063. doi: 10.3969/j.issn.1671-1815.2021.26.008
|
[50] |
刘云祯,梅汝吾,叶佩,等,2016. WD智能天然源面波数据采集处理系统及其应用试验[J]. 物探与化探,40(5):1007-1015.
|
[51] |
谢朋,王秋良,李井冈,等,2019. SPAC法在江汉平原地层结构分层中的应用[J]. 地震工程学报,41(3):717-723. doi: 10.3969/j.issn.1000-0844.2019.03.717
|
[52] |
徐浩,吴小平,盛勇,等,2021. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探,45(6):1512-1519.
|
[53] |
徐佩芬,李传金,凌甦群,等,2009. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,52(7):1923-1930. doi: 10.3969/j.issn.0001-5733.2009.07.028
|
[54] |
徐佩芬,侍文,凌苏群,等,2012. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报,55(6):2120-2128. doi: 10.6038/j.issn.0001-5733.2012.06.034
|
[55] |
徐佩芬,李世豪,杜建国,等,2013a. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报,29(5):1841-1845.
|
[56] |
徐佩芬,李世豪,凌甦群,等,2013b. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报,56(11):3846-3854.
|
[57] |
徐佩芬,杜亚楠,凌甦群,等,2020. 微动多阶瑞雷波SPAC系数反演方法及应用研究[J]. 地球物理学报,63(10):3857-3867. doi: 10.6038/cjg2020O0148
|
[58] |
徐义贤,罗银河,2015. 噪声地震学方法及其应用[J]. 地球物理学报,58(8):2618-2636
|
[59] |
杨天春,何继善,吕绍林,等,2004a. 三层层状介质中瑞利波的频散曲线特征[J]. 物探与化探,28(1):41-45.
|
[60] |
杨天春,何继善,吕绍林,等,2004b. 三层层状介质中的多导波模式及其频散和位移特征[J]. 物探化探计算技术,26(1):20-26.
|
[61] |
杨天春,肖巧玲,2009. 多层层状介质的瑞利面波频散特性[J]. 物探与化探,33(3):299-303.
|
[62] |
张碧星,鲁来玉,鲍光淑,2002. 瑞利波勘探中“之”字形频散曲线研究[J]. 地球物理学报,45(2):263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013
|
[63] |
赵东,2010. 被动源面波勘探方法与应用[J]. 物探与化探,34(6):759-764.
|
[64] |
赵红鹏,何登科,洪雨,2022. 基于地质单元体的微动信号频散曲线反演[J]. 矿业科学学报,7(6):662-669.
|
[65] |
钟宙灿,蔡水库,刘巧霞,等,2023. SPAC法在海口江东新区新近纪-第四纪地层精细划分中的应用[J]. 科学技术与工程,23(36):15393-15403. doi: 10.12404/j.issn.1671-1815.2300424
|