Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
GAO Haoyuan, GAO Yang, YIN Yueping, et al., 2022. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau. Journal of Geomechanics, 28 (6): 1090-1103. DOI: 10.12090/j.issn.1006-6616.20222831
Citation: GAO Haoyuan, GAO Yang, YIN Yueping, et al., 2022. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau. Journal of Geomechanics, 28 (6): 1090-1103. DOI: 10.12090/j.issn.1006-6616.20222831

New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau

doi: 10.12090/j.issn.1006-6616.20222831
Funds:

the National Natural Science Foundation of China 42177172

the Project of the National Natural Science Foundation of China for Young Scholars 41907257

Geological Survey Project of the China Geological Survey DD20221816

More Information
  • Received: 2022-06-14
  • Revised: 2022-09-22
  • The dynamic mechanism of high-elevation and long-runout landslides is always a tricky problem in geological disaster research. Due to the complex geological conditions in the Qinghai-Tibet Plateau, high-elevation and long-runout landslides show more complex and robust dynamic action, resulting in disaster chains of ultra-high elevation and ultra-long distance. The article presents a systematic review of the geological characteristics, physical model tests, and numerical analysis of three prominent dynamic effects of high-elevation and long-runout landslides in the Qinghai-Tibet Plateau, namely, dynamic fragmentation, dynamic erosion, and fluidization. Given the current research status of high-elevation and long-runout landslides in the Qinghai-Tibet Plateau, three significant aspects are proposed to be studied in the future: the mechanism of high-elevation and long-runout landslides in extreme geological environments, new methods for model tests based considering size effect, and basin-wide hazard chains induced by high-elevation and long-runout landslides.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ABELE G, 1997. Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments[J]. Zeitschrift für Geomorphologie, 41(1): 1-20. doi: 10.1127/zfg/41/1997/1
    ARMANINI A, FRACCAROLLO L, ROSATTI G, 2009. Two-dimensional simulation of debris flows in erodible channels[J]. Computers & Geosciences, 35(5): 993-1006.
    BAGNOLD R A, 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 225(1160): 49-63.
    BAGNOLD R A, 1968. Deposition in the process of hydraulic transport[J]. Sedimentology, 10(1): 45-56. doi: 10.1111/j.1365-3091.1968.tb01910.x
    BERGER C, MCARDELL B W, SCHLUNEGGER F, 2011. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland[J]. Journal of Geophysical Research: Earth Surface, 116(F1): F01002.
    BISTACCHI A, MASSIRONI M, SUPERCHI L, et al, 2013. A 3D geological model of the 1963 Vajont landslide[J]. Italian Journal of Engineering Geology and Environment, 6: 531-539.
    BOON C W, HOULSBY G T, UTILI S, 2014. New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses[J]. Géotechnique, 64(10): 800-816. doi: 10.1680/geot.14.P.041
    BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2008. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica, 199(1-4): 181-208. doi: 10.1007/s00707-007-0534-9
    BOWMAN E T, TAKE W A, RAIT K L, et al., 2012. Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 49(4): 460-476. doi: 10.1139/t2012-007
    BOWMAN E T, 2014. Dynamic rock fragmentation: thresholds for long runout rock avalanches[J]. Frattura ed Integrità Strutturale, 8(30): 7-13. doi: 10.3221/IGF-ESIS.30.02
    BREIEN H, DE BLASIO F V, ELVERHØI A, et al., 2008. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western norway[J]. Landslides, 5(3): 271-280. doi: 10.1007/s10346-008-0118-3
    CAGNOLI B, ROMANO G P, 2010. Effect of grain size on mobility of dry granular flows of angular rock fragments: an experimental determination[J]. Journal of Volcanology and Geothermal Research, 193(1-2): 18-24. doi: 10.1016/j.jvolgeores.2010.03.003
    CAMPBELL C S, 1989. Self-lubrication for long runout landslides[J]. The Journal of Geology, 97(6): 653-665. doi: 10.1086/629350
    CHEN H, CROSTA G B, LEE C F, 2006. Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation[J]. Géotechnique, 56(5): 305-322. doi: 10.1680/geot.2006.56.5.305
    CHEN H X, ZHANG L M, 2015. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes[J]. Geoscientific Model Development, 8(3): 829-844. doi: 10.5194/gmd-8-829-2015
    CHENG Q G, ZHANG Z Y, HUANG R Q, 2007. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Science, 25(1): 72-84. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2007.01.007
    CROSTA G B, FRANTTINI P, FUSI N, 2007. Fragmentation in the Val Pola rock avalanche, Italian Alps[J]. Journal of Geophysical Research: Earth Surface, 112(F1): F01006.
    CROSTA G B, IMPOSIMATO S, RODDEMAN D, 2009. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology, 109(1-2): 135-145. doi: 10.1016/j.enggeo.2008.10.004
    CRUDEN D M, HUNGR O, 1986. The debris of the frank slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 23(3): 425-432. doi: 10.1139/e86-044
    CUI P, JIA Y, FENG S H, et al., 2017. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 32(9): 985-992. (in Chinese with English abstract)
    DAVIES T R H, 1982. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 15(1): 9-24. doi: 10.1007/BF01239474
    DAVIES T R H, MCSAVENEY M J, 1999. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 36(2): 313-320. doi: 10.1139/t98-108
    DE BLASIO F V, CROSTA G B, 2015. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 42(20): 8463-8470. doi: 10.1002/2015GL064723
    DENLINGER R P, IVERSON R M, 2004. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation[J]. Journal of Geophysical Research: Earth Surface, 109(F1): F01014.
    DING L, ZHONG D L, PAN Y S, et al., 1995. Fission track evidence of rapid uplift since Pliocene in the eastern Himalaya tectonic junction[J]. Chinese Science Bulletin, 40(16): 1497-1500. (in Chinese) doi: 10.1360/csb1995-40-16-1497
    DOYLE E E, CRONIN S J, THOURET J C, 2011. Defining conditions for bulking and debulking in lahars[J]. GSA Bulletin, 123(7-8): 1234-1246. doi: 10.1130/B30227.1
    DUFRESNE A, 2009. Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling[D]. Christchurch: University of Canterbury.
    DUFRESNE A, DAVIES T R, MCSAVENEY M J, 2010. Influence of runout-path material on emplacement of the round top rock avalanche, New Zealand[J]. Earth Surface Processes and Landforms, 35(2): 190-201.
    DUFRESNE A, 2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37(14): 1527-1541. doi: 10.1002/esp.3296
    DUFRESNE A, BÖSMEIER A, PRAGER C, 2016. Sedimentology of rock avalanche deposits-case study and review[J]. Earth-Science Reviews, 163: 234-259. doi: 10.1016/j.earscirev.2016.10.002
    DUFRESNE A, DUNNING S A, 2017. Process dependence of grain size distributions in rock avalanche deposits[J]. Landslides, 14(5): 1555-1563. doi: 10.1007/s10346-017-0806-y
    DUNNING S A, 2004. Rock avalanches in high mountains-a sedimentological approach[D]. Luton: University of Luton.
    DUNNING S A, 2006. The grain size distribution of rock-avalanche deposits in valley-confined settings[J]. Italian Journal of Engineering Geology and Environment, 1: 117-121.
    EISBACHER G H, 1979. Cliff collapse and rock avalanches (sturzstroms) in the Mackenzie Mountains, northwestern Canada[J]. Canadian Geotechnical Journal, 16(2): 309-334. doi: 10.1139/t79-032
    ERISMANN T H, 1979. Mechanisms of large landslides[J]. Rock Mechanics, 12(1): 15-46. doi: 10.1007/BF01241087
    ERISMANN T H, ABELE G, 2001. Dynamics of rockslides and rockfalls[M]. Berlin: Springer.
    ESTEP J, DUFEK J, 2013. Discrete element simulations of bed force anomalies due to force chains in dense granular flows[J]. Journal of Volcanology & Geothermal Research, 254: 108-117.
    EVANS S G, GUTHRIE R, ROBERTS N, et al., 2007. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain[J]. Natural Hazards and Earth System Sciences, 7(1): 89-101. doi: 10.5194/nhess-7-89-2007
    EVANS S G, TUTUBALINA O V, DROBYSHEV V N, et al., 2009. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002[J]. Geomorphology, 105(3-4): 314-321. doi: 10.1016/j.geomorph.2008.10.008
    GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.01.002
    GAO Y, YIN Y P, LI B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan MS 8.0 earthquake[J]. Landslides, 14(4): 1361-1374. doi: 10.1007/s10346-016-0793-4
    GAO Y, WEI T Y, LI B, et al., 2019. Dynamics process simulation of long run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology and Engineering Geology, 46(1): 129-138, 147. (in Chinese with English abstract)
    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng "7.23" landslide in Guizhou, China[J]. Landslides, 17(7): 1663-1677. doi: 10.1007/s10346-020-01377-8
    GAO Y, LI B, GAO H Y, et al., 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics, 26(4): 510-519. (in Chinese with English abstract)
    GAO Y, GAO H Y, LI B, et al., 2022a. Experimental preliminary analysis of the fluid drag effect in rapid and long-runout flow-like landslides[J]. Environmental Earth Sciences, 81(3): 93. doi: 10.1007/s12665-022-10207-0
    GAO Y, GAO H Y, LI B, et al., 2022a. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics, 39(1): 105-112. (in Chinese with English abstract)
    GAO Y, YIN Y P, LI B, et al., 2022b. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides, 19(7): 1791-1805. doi: 10.1007/s10346-022-01858-y
    GAO Y, YIN Y P, LI Z, et al., 2022b. Study on the dynamic disintegration effect of high position and long runout rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970. (in Chinese with English abstract)
    GEORGE D L, IVERSON R M, 2011. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure[J]. Italian Journal of Engineering Geology and Environment, 43: 415-424.
    HE S M, LI X P, WU Y, 2008. Research on yield property of soil under rock-fall impat[J]. Chinese Journal of Rock Mechanics and Engineering, (S1): 2973-2977. (in Chinese with English abstract)
    HEIM A, 1932. Bergsturz und menschenleben[M]. Vancouver: Bi-Tech Publishers.
    HEWITT K, 2009. Catastrophic rock slope failures and late Quaternary development in the Nanga Parbat-Haramosh Massive, Upper Indus basin, northern Pakistan[J]. Quaternary Science Reviews, 28(11-12): 1055-1069. doi: 10.1016/j.quascirev.2008.12.019
    HSÜ K J, 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Geological Society of America Bulletin, 86(1): 129-140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
    HU G T, 1995. Landslide dynamics[M]. Beijing: Geology Press. (in Chinese)
    HU H T, YANG M, 2000. Analysis and study on the hydrodynamic mechanism of Touzhai larg-scale high-speed long-range landslide[C]//Proceedings of the 6th National Conference on Engineering Geology. Nanning: Geological Society of China: 92-96. (in Chinese)
    HUANG R Q, 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.03.001
    HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J] Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063
    HUNGR O, EVANS S G, 2004. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10): 1240-1252.
    HUNGR O, 2007. Dynamics of rapid landslides[M]//SASSA K, FUKUOKA H, WANG F W, et al. Progress in Landslide Science. Berlin: Springer: 47-57.
    HUNGR O, LEROUEIL S, PICARELLI L, 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
    HUTCHINSON J N, BHANDARI R K, 1971. Undrained loading, a fundamental mechanism of mudflows and other mass movements[J]. Géotechnique, 21(4): 353-358. doi: 10.1680/geot.1971.21.4.353
    HUTCHINSON J N, 1988. General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology[C]//International symposium on landslides. 5. 1988: 3-35.
    IMRE B, LAUE J, SPRINGMAN S M, 2010. Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge[J]. Granular Matter, 12(3): 267-285. doi: 10.1007/s10035-009-0163-1
    International Union of Geological Sciences Working Group on Landslides, 1995. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 52(1): 75-78. doi: 10.1007/BF02602683
    IVERSON R M, 1997. The physics of debris flows[J]. Reviews of Geophysics, 35(3): 245-296. doi: 10.1029/97RG00426
    IVERSON R M, DENLINGER R P, 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 106(B1): 537-552. doi: 10.1029/2000JB900329
    IVERSON R M, LOGAN M, LAHUSEN R G, et al, 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research: Earth Surface, 115(F3).
    IVERSON R M, REID M E, LOGAN M, et al., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 4(2): 116-121. doi: 10.1038/ngeo1040
    IVERSON R M, 2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research: Earth Surface, 117(F3): F03006.
    IVERSON R M, 2013. Mechanics of debris flows and rock avalanches[J]. Handbook of Environmental Fluid Dynamics, 1: 573-587.
    JOHNSON A M, RODINE J R, 1984. Debris flow[M]//BRUNSDEN D, PRIOR D B. Slope Instability. Chichester: John Wiley and Sons Ltd. : 257-361.
    KAFUI K D, THORNTON C, 2000. Numerical simulations of impact breakage of a spherical crystalline agglomerate[J]. Powder Technology, 109(1-3): 113-132. doi: 10.1016/S0032-5910(99)00231-4
    KENT P E, 1966. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 74(1): 79-83. doi: 10.1086/627142
    KILBURN C R J, PETLEY D N, 2003. Forecasting giant, catastrophic slope collapse: lessons from Vajont, northern Italy[J]. Geomorphology, 54(1-2): 21-32. doi: 10.1016/S0169-555X(03)00052-7
    KOZIK S M, 1962. Raschet dvizheniya snezhnykh lavin [M]. Leningrad: Gidrometeoizdat: 76.
    LANGLOIS V J, QUIQUEREZ A, ALLEMAND P, 2015. Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide[J]. Journal of Geophysical Research: Earth Surface, 120(9): 1866-1880. doi: 10.1002/2014JF003330
    LI B, GAO Y, WAN J W, et al., 2020. The chain of the major geological disasters and related strategies in the Yalu-Zangbu River canyon region[J]. Hydropower and Pumped Storage, 6(2): 11-14, 35. (in Chinese with English abstract)
    LI K, CHENG Q G, LIN Q W, et al., 2022. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 47(3): 893-912. (in Chinese with English abstract)
    LI X L, TANG H M, XIONG C R, 2012. Influence of substrate ploughing and erosion effect on process of rock avalanche[J]. Rock and Soil Mechanics, 33(5): 1527-1534, 1541. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.05.039
    LIN Q W, CHENG Q G, LI K, et al., 2021. Review on fragmentation-related dynamics of rock avalanches[J/OL]. Journal of Engineering Geology: 1-15[2022-10-09]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ2021062100B. (in Chinese with English abstract)
    LIN Q W, CHENG Q G, XIE Y, et al., 2021. Simulation of the fragmentation and propagation of jointed rock masses in rockslides: DEM modeling and physical experimental verification[J]. Landslides, 18(3): 993-1009. doi: 10.1007/s10346-020-01542-z
    LIU C Z, 2017. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review, 63(6): 1563-1575. (in Chinese with English abstract)
    LIU C Z, LV J T, TONG L Q, et al., 2019. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 46(2): 219-234. (in Chinese with English abstract)
    LIU Y J, 2002. Study on fluidifying theory of large highspeed rockslide[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
    LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)
    LOCAT P, COUTURE R, LEROUEIL S, et al., 2006. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal, 43(8): 830-851. doi: 10.1139/t06-045
    LU P Y, HOU T X, YANG X G, et al., 2016. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6): 1225-1232. (in Chinese with English abstract)
    MANGENEY A, ROCHE O, HUNGR O, et al., 2010. Erosion and mobility in granular collapse over sloping beds[J]. Journal of Geophysical Research: Earth Surface, 115(F3): F03040.
    MCDOUGALL S, HUNGR O, 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42(5): 1437-1448. doi: 10.1139/t05-064
    MCSAVENEY M J, DAVIES T R H, 2006. Inferences from the morphology and internal structure of rockslides and rock avalanches rapid rock mass flow with dynamic fragmentation[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from Massive Rock Slope Failure. Dordrecht: Springer, 285-304.
    MELOSH H J, 1979. Acoustic fluidization: a new geologic process?[J]. Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520. doi: 10.1029/JB084iB13p07513
    MORIWAKI H, INOKUCHI T, HATTANJI T, et al., 2004. Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 1(4): 277-288. doi: 10.1007/s10346-004-0034-0
    MÜLLER L, 1964. The rock slide in the Vajont Valley[J]. Rock Mechanics and Engineering Geology, 2(3-4): 148-212.
    MÜLLER-SALZBURG L, 1987. The Vajont slide[J]. Engineering Geology, 24(1-4): 513-523. doi: 10.1016/0013-7952(87)90082-2
    OKURA Y, KITAHARA H, OCHIAI H, et al., 2002. Landslide fluidization process by flume experiments[J]. Engineering Geology, 66(1-2): 65-78. doi: 10.1016/S0013-7952(02)00032-7
    PAPA M, EGASHIRA S, ITOH T, 2004. Critical conditions of bed sediment entrainment due to debris flow[J]. Natural Hazards and Earth System Sciences, 4(3): 469-474. doi: 10.5194/nhess-4-469-2004
    PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract)
    PENG S Q, XU Q, ZHENG G, et al., 2020. Recognition and analysis of deposit body grain of Baige landslide-debris flow[J]. Water Resources and Hydropower Engineering, 51(2): 144-154. (in Chinese with English abstract)
    PERINOTTO H, SCHNEIDER J, BACHÈLERY P, et al., 2015. The extreme mobility of debris avalanches: a new model of transport mechanism[J]. Journal of Geophysical Research: Solid Earth, 120(12): 8110-8119. doi: 10.1002/2015JB011994
    PINYOL N M, ALONSO E E, 2010. Criteria for rapid sliding Ⅱ. : thermo-hydro-mechanical and scale effects in Vaiont case[J]. Engineering Geology, 114(3-4): 211-227. doi: 10.1016/j.enggeo.2010.04.017
    PITMAN E B, NICHITA C C, PATRA A K, et al., 2003. A model of granular flows over an erodible surface[J]. Discrete and Continuous Dynamical Systems-B, 3(4): 589-599. doi: 10.3934/dcdsb.2003.3.589
    PITMAN E B, LE L, 2005. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1832): 1573-1601. doi: 10.1098/rsta.2005.1596
    PLAFKER G, ERICKSEN G E, 1978. Nevados Huascaran avalanches, Peru[J]. Developments in Geotechnical Engineering, 14: 277-314.
    POLLET N, SCHNEIDER J L M, 2004. Dynamic disintegration processes accompanying transport of the Holocene Flims Sturzstrom (SwissAlps)[J]. Earth and Planetary Science Letters, 221(1-4): 433-448. doi: 10.1016/S0012-821X(04)00071-8
    PREUTH T, BARTELT P, KORUP O, et al., 2010. A random kinetic energy model for rock avalanches: eight case studies[J]. Journal of Geophysical Research: Earth Surface, 115(F3): F03036.
    PUDASAINI S P, HSIAU S S, WANG Y Q, et al., 2005. Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions[J]. Physics of Fluids, 17(9): 093301. doi: 10.1063/1.2007487
    RAIT K L, BOWMAN E T, LAMBERT C, 2012. Dynamic fragmentation of rock clasts under normal compression in sturzstrom[J]. Géotechnique Letters, 2(3): 167-172. doi: 10.1680/geolett.12.00038
    RICKENMANN D, WEBER D, STEPANOV B, 2003. Erosion by debris flows in field and laboratory experiments[C]//Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction and Assessment. Rotterdam: Millpress: 883-894.
    SALM B, 1966. Contribution to avalanche dynamics[J]. IASH-AIHS Pub., 69: 199-214.
    SASSA K, 1989. Geotechnical model for the motion of landslides (Special lecture)[C]//Proc. 5th Inter. Symp. On landslide, 1: 37-56.
    SASSA K, FUKUOKA H, WANG G H, et al., 2004. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 1(1): 7-19. doi: 10.1007/s10346-003-0004-y
    SAVAGE S B, HUTTER K, 1989. The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics, 199: 177-215. doi: 10.1017/S0022112089000340
    SCHEIDEGGER A E, 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 5(4): 231-236. doi: 10.1007/BF01301796
    SEED H B, 1968. The fourth Terzaghi lecture: landslides during earthquakes due to liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. doi: 10.1061/JSFEAQ.0001182
    SHREVE R L, 1968. Leakage and fluidization in air-layer lubricated avalanches[J]. Geological Society of America Bulletin, 79(5): 653-658. doi: 10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2
    STINY J, 1910. Die Muren[M]. Innsbruck: Verlag der Wagner'schen Universitätsbuchhandlung.
    STROM A L, 1994. Mechanism of stratification and abnormal crushing of rockslide deposits[C]//Proceedings of the 7th International IAEG Congress. Rotterdam: Balkema: 1287-1295.
    STROM A L, 2006. Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from Massive Rock Slope Failure. Dordrecht: Springer: 305-326.
    TAKAHASHI T, 1978. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division, 104(8): 1153-1169. doi: 10.1061/JYCEAJ.0005046
    TAKAHASHI T, 1981. Debris flow[J]. Annual Review of Fluid Mechanics, 13(1): 57-77. doi: 10.1146/annurev.fl.13.010181.000421
    TAKARADA S, UI T, YAMAMOTO Y, 1999. Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan[J]. Bulletin of Volcanology, 60(7): 508-522. doi: 10.1007/s004450050248
    VARNES D J, 1978. Slope movement types and processes[M]//SCHUSTER R L, KRIZEK R J. Landslides, Analysis and Control, Transportation Research Board, Special Report No. 176. Washington: National Academy of Sciences: 11-33.
    VOELLMY A, 1955. Uber die Zerstorungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg., 73, 159-162.
    WANG Y F, CHENG Q G, ZHU Q, 2012. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1089-1106. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.06.002
    WANG Y F, XU Q, CHENG Q G, et al., 2016. Experimental study of dynamical shearing behaviors of rock avalanche debris under the effect of entrapped gas[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 268-274. (in Chinese with English abstract)
    WANG Y F, CHENG Q G, LIN Q W, et al., 2018. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 317: 170-183. doi: 10.1016/j.geomorph.2018.05.025
    WANG Y F, CHENG Q G, SHI A W, et al., 2019. Characteristics and transport mechanism of the Nyixoi Chongco rock avalanche on the Tibetan Plateau, China[J]. Geomorphology, 343: 92-105. doi: 10.1016/j.geomorph.2019.07.002
    WANG Y F, LIN Q W, LI K, et al., 2021. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 43(1): 164-181. (in Chinese with English abstract)
    WASSMER P, SCHNEIDER J L, POLLET N, et al., 2004. Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz Paleo-Lake, Swiss Alps[J]. Geomorphology, 61(1-2): 3-17. doi: 10.1016/j.geomorph.2003.11.003
    WEIDINGER J T, KORUP O, MUNACK H, et al., 2014. Giant rockslides from the inside[J]. Earth and Planetary Science Letters, 389: 62-73. doi: 10.1016/j.epsl.2013.12.017
    XING A G, WANG G H, LI B, et al., 2015. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China[J]. Canadian Geotechnical Journal, 52(7): 971-981. doi: 10.1139/cgj-2014-0122
    XU W J, ZHOU Q, DONG X Y, 2022. SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part Ⅱ: reproduction of the Vajont landslide tsunami[J]. Acta Geotechnica, 17(6): 2121-2137. doi: 10.1007/s11440-021-01387-3
    XU Z Q, LI H Q, HOU L W, et al., 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 26(10): 1262-1276. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2007.10.005
    YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4): 8-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003
    YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.04.001
    YIN Y P, WANG F W, SUN P, 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
    YIN Y P, ZHU J L, YANG S Y, 2010. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 18(4): 445-454. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.04.002
    YIN Y P, XING A G, 2012. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 71: 149-160. doi: 10.1007/s10064-011-0348-9
    YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5): 827-841. (in Chinese with English abstract)
    YIN Y P, XING A G, WANG G H, et al., 2017. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, Southwestern China[J]. Landslides, 14(2): 649-659. doi: 10.1007/s10346-016-0729-z
    YIN Y P, WANG W P, 2020. A dynamic erosion plowing model of long run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1513-1521. (in Chinese with English abstract)
    ZHANG J P, CHEN X H, ZOU X Y, et al., 2001. The eco-environmental problems ans its countermeasures in Tibet[J]. Journal of Mountain Science, 19(1): 81-86. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2001.01.016
    ZHANG M, YIN Y P, MCSAVENEY M, 2016. Dynamics of the 2008 earthquake-triggered Wenjiagou creek rock avalanche, Qingping, Sichuan, China[J]. Engineering Geology, 200: 75-87. doi: 10.1016/j.enggeo.2015.12.008
    ZHANG M, MCSAVENEY M, 2017. Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophysical Research Letters, 44(17): 8814-8821. doi: 10.1002/2017GL073774
    ZHANG T, YIN Y, LI B, et al., 2022. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya[J/OL]. Journal of Rock Mechanics and Geotechnical Engineering, 2022(2022-05-14). https://www.sciencedirect.com/science/article/pii/S1674775522000956.
    ZHANG W J, 1985. Some features of the surge glacier in the Mt. Namjagbarwa[J]. Journal of Mountain Research(4): 234-238. (in Chinese with English abstract)
    ZHANG Y S, GUO C B, YAO X, et al., 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277-286. (in Chinese with English abstract)
    ZHAO T, 2014. Investigation of landslide-induced debris flows by the DEM and CFD[D]. Oxford: University of Oxford.
    ZHAO T, CROSTA G B, UTILI S, et al., 2017. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses[J]. Journal of Geophysical Research: Earth Surface, 122(3): 678-695. doi: 10.1002/2016JF004060
    ZHAO T, CROSTA G B, DATTOLA G, et al., 2018. Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses[J]. Journal of Geophysical Research: Solid Earth, 123(4): 3250-3269. doi: 10.1002/2017JB015210
    ZHONG D L, DING L, 1996. Uplift process and mechanism of Qinghai-Tibet Plateau[J]. Science in China (Series D), 26(4): 289-295. (in Chinese) doi: 10.3321/j.issn:1006-9267.1996.04.001
    程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007
    崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm
    丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16): 1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018
    高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
    高杨, 卫童瑶, 李滨, 等, 2019. 深圳"12.20"渣土场远程流化滑坡动力过程分析[J]. 水文地质工程地质, 46(1): 129-138, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901018.htm
    高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报, 26(4): 510-519. doi: 10.12090/j.issn.1006-6616.2020.26.04.044
    高杨, 高浩源, 李滨, 等, 2022a. 滑坡冲击铲刮变量的计算方法研究[J]. 计算力学学报, 39(1): 105-112.
    高杨, 殷跃平, 李壮, 等, 2022b. 高位远程岩质滑坡动力解体效应研究[J]. 岩石力学与工程学报, 41(10): 1958-1970, doi: 10.13722/j.cnki.jrme.2022.0010.
    何思明, 李新坡, 吴永, 2008. 滚石冲击荷载作用下土体屈服特性研究[J]. 岩石力学与工程学报, (S1): 2973-2977. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1059.htm
    胡广韬, 1995. 滑坡动力学[M]. 北京: 地质出版社.
    胡厚田, 杨明, 2000. 头寨大型高速远程滑坡流体动力学机制的分析研究[C]//第六届全国工程地质大会论文集. 南宁: 中国地质学会: 92-96.
    黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策[J]. 水电与抽水蓄能, 6(2): 11-14, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202002003.htm
    李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 47(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
    李祥龙, 唐辉明, 熊承仁, 等, 2012. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学, 33(5): 1527-1534, 1541. doi: 10.3969/j.issn.1000-7598.2012.05.039
    林棋文, 程谦恭, 李坤, 等, 2021. 高速远程滑坡碎屑化运动机理研究综述[J/OL]. 工程地质学报: 1-15[2022-10-09]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ2021062100B.
    刘传正, 2017. 论崩塌滑坡-碎屑流高速远程问题[J]. 地质论评, 63(6): 1563-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706012.htm
    刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
    刘涌江, 2002. 大型高速岩质滑坡流体化理论研究[D]. 成都: 西南交通大学.
    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
    陆鹏源, 侯天兴, 杨兴国, 等, 2016. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 35(6): 1225-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201606015.htm
    彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
    彭双麒, 许强, 郑光, 等, 2020. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 51(2): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm
    王玉峰, 程谦恭, 朱圻, 2012. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 31(6): 1089-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206003.htm
    王玉峰, 许强, 程谦恭, 等, 2016. 高速远程滑坡裹气流态化动力学特性实验研究[J]. 岩石力学与工程学报, 35(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602008.htm
    王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm
    许志琴, 李化启, 侯立炜, 等, 2007. 青藏高原东缘龙门-锦屏造山带的崛起: 大型拆离断层和挤出机制[J]. 地质通报, 26(10): 1262-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200710007.htm
    殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm
    殷跃平, 2008. 汶川八级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200804000.htm
    殷跃平, 朱继良, 杨胜元, 2010. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报, 18(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm
    殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
    殷跃平, 王文沛, 2020. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报, 39(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008001.htm
    张建平, 陈学华, 邹学勇, 等, 2001. 西藏自治区生态环境问题及对策[J]. 山地学报, 19(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200101016.htm
    张文敬, 1985. 南迦巴瓦峰跃动冰川的某些特征[J]. 山地研究(4): 234-238. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198504006.htm
    张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
    钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm
  • 加载中

Catalog

    Figures(2)

    Article Metrics

    Article views (631) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return