Citation: | GAO Haoyuan, GAO Yang, YIN Yueping, et al., 2022. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau. Journal of Geomechanics, 28 (6): 1090-1103. DOI: 10.12090/j.issn.1006-6616.20222831 |
The dynamic mechanism of high-elevation and long-runout landslides is always a tricky problem in geological disaster research. Due to the complex geological conditions in the Qinghai-Tibet Plateau, high-elevation and long-runout landslides show more complex and robust dynamic action, resulting in disaster chains of ultra-high elevation and ultra-long distance. The article presents a systematic review of the geological characteristics, physical model tests, and numerical analysis of three prominent dynamic effects of high-elevation and long-runout landslides in the Qinghai-Tibet Plateau, namely, dynamic fragmentation, dynamic erosion, and fluidization. Given the current research status of high-elevation and long-runout landslides in the Qinghai-Tibet Plateau, three significant aspects are proposed to be studied in the future: the mechanism of high-elevation and long-runout landslides in extreme geological environments, new methods for model tests based considering size effect, and basin-wide hazard chains induced by high-elevation and long-runout landslides.
ABELE G, 1997. Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments[J]. Zeitschrift für Geomorphologie, 41(1): 1-20. doi: 10.1127/zfg/41/1997/1
|
ARMANINI A, FRACCAROLLO L, ROSATTI G, 2009. Two-dimensional simulation of debris flows in erodible channels[J]. Computers & Geosciences, 35(5): 993-1006.
|
BAGNOLD R A, 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 225(1160): 49-63.
|
BAGNOLD R A, 1968. Deposition in the process of hydraulic transport[J]. Sedimentology, 10(1): 45-56. doi: 10.1111/j.1365-3091.1968.tb01910.x
|
BERGER C, MCARDELL B W, SCHLUNEGGER F, 2011. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland[J]. Journal of Geophysical Research: Earth Surface, 116(F1): F01002.
|
BISTACCHI A, MASSIRONI M, SUPERCHI L, et al, 2013. A 3D geological model of the 1963 Vajont landslide[J]. Italian Journal of Engineering Geology and Environment, 6: 531-539.
|
BOON C W, HOULSBY G T, UTILI S, 2014. New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses[J]. Géotechnique, 64(10): 800-816. doi: 10.1680/geot.14.P.041
|
BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2008. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica, 199(1-4): 181-208. doi: 10.1007/s00707-007-0534-9
|
BOWMAN E T, TAKE W A, RAIT K L, et al., 2012. Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 49(4): 460-476. doi: 10.1139/t2012-007
|
BOWMAN E T, 2014. Dynamic rock fragmentation: thresholds for long runout rock avalanches[J]. Frattura ed Integrità Strutturale, 8(30): 7-13. doi: 10.3221/IGF-ESIS.30.02
|
BREIEN H, DE BLASIO F V, ELVERHØI A, et al., 2008. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western norway[J]. Landslides, 5(3): 271-280. doi: 10.1007/s10346-008-0118-3
|
CAGNOLI B, ROMANO G P, 2010. Effect of grain size on mobility of dry granular flows of angular rock fragments: an experimental determination[J]. Journal of Volcanology and Geothermal Research, 193(1-2): 18-24. doi: 10.1016/j.jvolgeores.2010.03.003
|
CAMPBELL C S, 1989. Self-lubrication for long runout landslides[J]. The Journal of Geology, 97(6): 653-665. doi: 10.1086/629350
|
CHEN H, CROSTA G B, LEE C F, 2006. Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation[J]. Géotechnique, 56(5): 305-322. doi: 10.1680/geot.2006.56.5.305
|
CHEN H X, ZHANG L M, 2015. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes[J]. Geoscientific Model Development, 8(3): 829-844. doi: 10.5194/gmd-8-829-2015
|
CHENG Q G, ZHANG Z Y, HUANG R Q, 2007. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Science, 25(1): 72-84. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2007.01.007
|
CROSTA G B, FRANTTINI P, FUSI N, 2007. Fragmentation in the Val Pola rock avalanche, Italian Alps[J]. Journal of Geophysical Research: Earth Surface, 112(F1): F01006.
|
CROSTA G B, IMPOSIMATO S, RODDEMAN D, 2009. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology, 109(1-2): 135-145. doi: 10.1016/j.enggeo.2008.10.004
|
CRUDEN D M, HUNGR O, 1986. The debris of the frank slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 23(3): 425-432. doi: 10.1139/e86-044
|
CUI P, JIA Y, FENG S H, et al., 2017. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 32(9): 985-992. (in Chinese with English abstract)
|
DAVIES T R H, 1982. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 15(1): 9-24. doi: 10.1007/BF01239474
|
DAVIES T R H, MCSAVENEY M J, 1999. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 36(2): 313-320. doi: 10.1139/t98-108
|
DE BLASIO F V, CROSTA G B, 2015. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 42(20): 8463-8470. doi: 10.1002/2015GL064723
|
DENLINGER R P, IVERSON R M, 2004. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation[J]. Journal of Geophysical Research: Earth Surface, 109(F1): F01014.
|
DING L, ZHONG D L, PAN Y S, et al., 1995. Fission track evidence of rapid uplift since Pliocene in the eastern Himalaya tectonic junction[J]. Chinese Science Bulletin, 40(16): 1497-1500. (in Chinese) doi: 10.1360/csb1995-40-16-1497
|
DOYLE E E, CRONIN S J, THOURET J C, 2011. Defining conditions for bulking and debulking in lahars[J]. GSA Bulletin, 123(7-8): 1234-1246. doi: 10.1130/B30227.1
|
DUFRESNE A, 2009. Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling[D]. Christchurch: University of Canterbury.
|
DUFRESNE A, DAVIES T R, MCSAVENEY M J, 2010. Influence of runout-path material on emplacement of the round top rock avalanche, New Zealand[J]. Earth Surface Processes and Landforms, 35(2): 190-201.
|
DUFRESNE A, 2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37(14): 1527-1541. doi: 10.1002/esp.3296
|
DUFRESNE A, BÖSMEIER A, PRAGER C, 2016. Sedimentology of rock avalanche deposits-case study and review[J]. Earth-Science Reviews, 163: 234-259. doi: 10.1016/j.earscirev.2016.10.002
|
DUFRESNE A, DUNNING S A, 2017. Process dependence of grain size distributions in rock avalanche deposits[J]. Landslides, 14(5): 1555-1563. doi: 10.1007/s10346-017-0806-y
|
DUNNING S A, 2004. Rock avalanches in high mountains-a sedimentological approach[D]. Luton: University of Luton.
|
DUNNING S A, 2006. The grain size distribution of rock-avalanche deposits in valley-confined settings[J]. Italian Journal of Engineering Geology and Environment, 1: 117-121.
|
EISBACHER G H, 1979. Cliff collapse and rock avalanches (sturzstroms) in the Mackenzie Mountains, northwestern Canada[J]. Canadian Geotechnical Journal, 16(2): 309-334. doi: 10.1139/t79-032
|
ERISMANN T H, 1979. Mechanisms of large landslides[J]. Rock Mechanics, 12(1): 15-46. doi: 10.1007/BF01241087
|
ERISMANN T H, ABELE G, 2001. Dynamics of rockslides and rockfalls[M]. Berlin: Springer.
|
ESTEP J, DUFEK J, 2013. Discrete element simulations of bed force anomalies due to force chains in dense granular flows[J]. Journal of Volcanology & Geothermal Research, 254: 108-117.
|
EVANS S G, GUTHRIE R, ROBERTS N, et al., 2007. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain[J]. Natural Hazards and Earth System Sciences, 7(1): 89-101. doi: 10.5194/nhess-7-89-2007
|
EVANS S G, TUTUBALINA O V, DROBYSHEV V N, et al., 2009. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002[J]. Geomorphology, 105(3-4): 314-321. doi: 10.1016/j.geomorph.2008.10.008
|
GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.01.002
|
GAO Y, YIN Y P, LI B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan MS 8.0 earthquake[J]. Landslides, 14(4): 1361-1374. doi: 10.1007/s10346-016-0793-4
|
GAO Y, WEI T Y, LI B, et al., 2019. Dynamics process simulation of long run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology and Engineering Geology, 46(1): 129-138, 147. (in Chinese with English abstract)
|
GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng "7.23" landslide in Guizhou, China[J]. Landslides, 17(7): 1663-1677. doi: 10.1007/s10346-020-01377-8
|
GAO Y, LI B, GAO H Y, et al., 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics, 26(4): 510-519. (in Chinese with English abstract)
|
GAO Y, GAO H Y, LI B, et al., 2022a. Experimental preliminary analysis of the fluid drag effect in rapid and long-runout flow-like landslides[J]. Environmental Earth Sciences, 81(3): 93. doi: 10.1007/s12665-022-10207-0
|
GAO Y, GAO H Y, LI B, et al., 2022a. Study on calculation method of landslide impact and scraping variable[J]. Chinese Journal of Computational Mechanics, 39(1): 105-112. (in Chinese with English abstract)
|
GAO Y, YIN Y P, LI B, et al., 2022b. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides, 19(7): 1791-1805. doi: 10.1007/s10346-022-01858-y
|
GAO Y, YIN Y P, LI Z, et al., 2022b. Study on the dynamic disintegration effect of high position and long runout rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970. (in Chinese with English abstract)
|
GEORGE D L, IVERSON R M, 2011. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure[J]. Italian Journal of Engineering Geology and Environment, 43: 415-424.
|
HE S M, LI X P, WU Y, 2008. Research on yield property of soil under rock-fall impat[J]. Chinese Journal of Rock Mechanics and Engineering, (S1): 2973-2977. (in Chinese with English abstract)
|
HEIM A, 1932. Bergsturz und menschenleben[M]. Vancouver: Bi-Tech Publishers.
|
HEWITT K, 2009. Catastrophic rock slope failures and late Quaternary development in the Nanga Parbat-Haramosh Massive, Upper Indus basin, northern Pakistan[J]. Quaternary Science Reviews, 28(11-12): 1055-1069. doi: 10.1016/j.quascirev.2008.12.019
|
HSÜ K J, 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Geological Society of America Bulletin, 86(1): 129-140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
|
HU G T, 1995. Landslide dynamics[M]. Beijing: Geology Press. (in Chinese)
|
HU H T, YANG M, 2000. Analysis and study on the hydrodynamic mechanism of Touzhai larg-scale high-speed long-range landslide[C]//Proceedings of the 6th National Conference on Engineering Geology. Nanning: Geological Society of China: 92-96. (in Chinese)
|
HUANG R Q, 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.03.001
|
HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J] Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063
|
HUNGR O, EVANS S G, 2004. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10): 1240-1252.
|
HUNGR O, 2007. Dynamics of rapid landslides[M]//SASSA K, FUKUOKA H, WANG F W, et al. Progress in Landslide Science. Berlin: Springer: 47-57.
|
HUNGR O, LEROUEIL S, PICARELLI L, 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
|
HUTCHINSON J N, BHANDARI R K, 1971. Undrained loading, a fundamental mechanism of mudflows and other mass movements[J]. Géotechnique, 21(4): 353-358. doi: 10.1680/geot.1971.21.4.353
|
HUTCHINSON J N, 1988. General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology[C]//International symposium on landslides. 5. 1988: 3-35.
|
IMRE B, LAUE J, SPRINGMAN S M, 2010. Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge[J]. Granular Matter, 12(3): 267-285. doi: 10.1007/s10035-009-0163-1
|
International Union of Geological Sciences Working Group on Landslides, 1995. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 52(1): 75-78. doi: 10.1007/BF02602683
|
IVERSON R M, 1997. The physics of debris flows[J]. Reviews of Geophysics, 35(3): 245-296. doi: 10.1029/97RG00426
|
IVERSON R M, DENLINGER R P, 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. Journal of Geophysical Research: Solid Earth, 106(B1): 537-552. doi: 10.1029/2000JB900329
|
IVERSON R M, LOGAN M, LAHUSEN R G, et al, 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments[J]. Journal of Geophysical Research: Earth Surface, 115(F3).
|
IVERSON R M, REID M E, LOGAN M, et al., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 4(2): 116-121. doi: 10.1038/ngeo1040
|
IVERSON R M, 2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research: Earth Surface, 117(F3): F03006.
|
IVERSON R M, 2013. Mechanics of debris flows and rock avalanches[J]. Handbook of Environmental Fluid Dynamics, 1: 573-587.
|
JOHNSON A M, RODINE J R, 1984. Debris flow[M]//BRUNSDEN D, PRIOR D B. Slope Instability. Chichester: John Wiley and Sons Ltd. : 257-361.
|
KAFUI K D, THORNTON C, 2000. Numerical simulations of impact breakage of a spherical crystalline agglomerate[J]. Powder Technology, 109(1-3): 113-132. doi: 10.1016/S0032-5910(99)00231-4
|
KENT P E, 1966. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 74(1): 79-83. doi: 10.1086/627142
|
KILBURN C R J, PETLEY D N, 2003. Forecasting giant, catastrophic slope collapse: lessons from Vajont, northern Italy[J]. Geomorphology, 54(1-2): 21-32. doi: 10.1016/S0169-555X(03)00052-7
|
KOZIK S M, 1962. Raschet dvizheniya snezhnykh lavin [M]. Leningrad: Gidrometeoizdat: 76.
|
LANGLOIS V J, QUIQUEREZ A, ALLEMAND P, 2015. Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide[J]. Journal of Geophysical Research: Earth Surface, 120(9): 1866-1880. doi: 10.1002/2014JF003330
|
LI B, GAO Y, WAN J W, et al., 2020. The chain of the major geological disasters and related strategies in the Yalu-Zangbu River canyon region[J]. Hydropower and Pumped Storage, 6(2): 11-14, 35. (in Chinese with English abstract)
|
LI K, CHENG Q G, LIN Q W, et al., 2022. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 47(3): 893-912. (in Chinese with English abstract)
|
LI X L, TANG H M, XIONG C R, 2012. Influence of substrate ploughing and erosion effect on process of rock avalanche[J]. Rock and Soil Mechanics, 33(5): 1527-1534, 1541. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.05.039
|
LIN Q W, CHENG Q G, LI K, et al., 2021. Review on fragmentation-related dynamics of rock avalanches[J/OL]. Journal of Engineering Geology: 1-15[2022-10-09]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ2021062100B. (in Chinese with English abstract)
|
LIN Q W, CHENG Q G, XIE Y, et al., 2021. Simulation of the fragmentation and propagation of jointed rock masses in rockslides: DEM modeling and physical experimental verification[J]. Landslides, 18(3): 993-1009. doi: 10.1007/s10346-020-01542-z
|
LIU C Z, 2017. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review, 63(6): 1563-1575. (in Chinese with English abstract)
|
LIU C Z, LV J T, TONG L Q, et al., 2019. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 46(2): 219-234. (in Chinese with English abstract)
|
LIU Y J, 2002. Study on fluidifying theory of large highspeed rockslide[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
|
LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)
|
LOCAT P, COUTURE R, LEROUEIL S, et al., 2006. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal, 43(8): 830-851. doi: 10.1139/t06-045
|
LU P Y, HOU T X, YANG X G, et al., 2016. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6): 1225-1232. (in Chinese with English abstract)
|
MANGENEY A, ROCHE O, HUNGR O, et al., 2010. Erosion and mobility in granular collapse over sloping beds[J]. Journal of Geophysical Research: Earth Surface, 115(F3): F03040.
|
MCDOUGALL S, HUNGR O, 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42(5): 1437-1448. doi: 10.1139/t05-064
|
MCSAVENEY M J, DAVIES T R H, 2006. Inferences from the morphology and internal structure of rockslides and rock avalanches rapid rock mass flow with dynamic fragmentation[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from Massive Rock Slope Failure. Dordrecht: Springer, 285-304.
|
MELOSH H J, 1979. Acoustic fluidization: a new geologic process?[J]. Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520. doi: 10.1029/JB084iB13p07513
|
MORIWAKI H, INOKUCHI T, HATTANJI T, et al., 2004. Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides, 1(4): 277-288. doi: 10.1007/s10346-004-0034-0
|
MÜLLER L, 1964. The rock slide in the Vajont Valley[J]. Rock Mechanics and Engineering Geology, 2(3-4): 148-212.
|
MÜLLER-SALZBURG L, 1987. The Vajont slide[J]. Engineering Geology, 24(1-4): 513-523. doi: 10.1016/0013-7952(87)90082-2
|
OKURA Y, KITAHARA H, OCHIAI H, et al., 2002. Landslide fluidization process by flume experiments[J]. Engineering Geology, 66(1-2): 65-78. doi: 10.1016/S0013-7952(02)00032-7
|
PAPA M, EGASHIRA S, ITOH T, 2004. Critical conditions of bed sediment entrainment due to debris flow[J]. Natural Hazards and Earth System Sciences, 4(3): 469-474. doi: 10.5194/nhess-4-469-2004
|
PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract)
|
PENG S Q, XU Q, ZHENG G, et al., 2020. Recognition and analysis of deposit body grain of Baige landslide-debris flow[J]. Water Resources and Hydropower Engineering, 51(2): 144-154. (in Chinese with English abstract)
|
PERINOTTO H, SCHNEIDER J, BACHÈLERY P, et al., 2015. The extreme mobility of debris avalanches: a new model of transport mechanism[J]. Journal of Geophysical Research: Solid Earth, 120(12): 8110-8119. doi: 10.1002/2015JB011994
|
PINYOL N M, ALONSO E E, 2010. Criteria for rapid sliding Ⅱ. : thermo-hydro-mechanical and scale effects in Vaiont case[J]. Engineering Geology, 114(3-4): 211-227. doi: 10.1016/j.enggeo.2010.04.017
|
PITMAN E B, NICHITA C C, PATRA A K, et al., 2003. A model of granular flows over an erodible surface[J]. Discrete and Continuous Dynamical Systems-B, 3(4): 589-599. doi: 10.3934/dcdsb.2003.3.589
|
PITMAN E B, LE L, 2005. A two-fluid model for avalanche and debris flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1832): 1573-1601. doi: 10.1098/rsta.2005.1596
|
PLAFKER G, ERICKSEN G E, 1978. Nevados Huascaran avalanches, Peru[J]. Developments in Geotechnical Engineering, 14: 277-314.
|
POLLET N, SCHNEIDER J L M, 2004. Dynamic disintegration processes accompanying transport of the Holocene Flims Sturzstrom (SwissAlps)[J]. Earth and Planetary Science Letters, 221(1-4): 433-448. doi: 10.1016/S0012-821X(04)00071-8
|
PREUTH T, BARTELT P, KORUP O, et al., 2010. A random kinetic energy model for rock avalanches: eight case studies[J]. Journal of Geophysical Research: Earth Surface, 115(F3): F03036.
|
PUDASAINI S P, HSIAU S S, WANG Y Q, et al., 2005. Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions[J]. Physics of Fluids, 17(9): 093301. doi: 10.1063/1.2007487
|
RAIT K L, BOWMAN E T, LAMBERT C, 2012. Dynamic fragmentation of rock clasts under normal compression in sturzstrom[J]. Géotechnique Letters, 2(3): 167-172. doi: 10.1680/geolett.12.00038
|
RICKENMANN D, WEBER D, STEPANOV B, 2003. Erosion by debris flows in field and laboratory experiments[C]//Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction and Assessment. Rotterdam: Millpress: 883-894.
|
SALM B, 1966. Contribution to avalanche dynamics[J]. IASH-AIHS Pub., 69: 199-214.
|
SASSA K, 1989. Geotechnical model for the motion of landslides (Special lecture)[C]//Proc. 5th Inter. Symp. On landslide, 1: 37-56.
|
SASSA K, FUKUOKA H, WANG G H, et al., 2004. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 1(1): 7-19. doi: 10.1007/s10346-003-0004-y
|
SAVAGE S B, HUTTER K, 1989. The motion of a finite mass of granular material down a rough incline[J]. Journal of Fluid Mechanics, 199: 177-215. doi: 10.1017/S0022112089000340
|
SCHEIDEGGER A E, 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 5(4): 231-236. doi: 10.1007/BF01301796
|
SEED H B, 1968. The fourth Terzaghi lecture: landslides during earthquakes due to liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122. doi: 10.1061/JSFEAQ.0001182
|
SHREVE R L, 1968. Leakage and fluidization in air-layer lubricated avalanches[J]. Geological Society of America Bulletin, 79(5): 653-658. doi: 10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2
|
STINY J, 1910. Die Muren[M]. Innsbruck: Verlag der Wagner'schen Universitätsbuchhandlung.
|
STROM A L, 1994. Mechanism of stratification and abnormal crushing of rockslide deposits[C]//Proceedings of the 7th International IAEG Congress. Rotterdam: Balkema: 1287-1295.
|
STROM A L, 2006. Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from Massive Rock Slope Failure. Dordrecht: Springer: 305-326.
|
TAKAHASHI T, 1978. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division, 104(8): 1153-1169. doi: 10.1061/JYCEAJ.0005046
|
TAKAHASHI T, 1981. Debris flow[J]. Annual Review of Fluid Mechanics, 13(1): 57-77. doi: 10.1146/annurev.fl.13.010181.000421
|
TAKARADA S, UI T, YAMAMOTO Y, 1999. Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan[J]. Bulletin of Volcanology, 60(7): 508-522. doi: 10.1007/s004450050248
|
VARNES D J, 1978. Slope movement types and processes[M]//SCHUSTER R L, KRIZEK R J. Landslides, Analysis and Control, Transportation Research Board, Special Report No. 176. Washington: National Academy of Sciences: 11-33.
|
VOELLMY A, 1955. Uber die Zerstorungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg., 73, 159-162.
|
WANG Y F, CHENG Q G, ZHU Q, 2012. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1089-1106. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.06.002
|
WANG Y F, XU Q, CHENG Q G, et al., 2016. Experimental study of dynamical shearing behaviors of rock avalanche debris under the effect of entrapped gas[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 268-274. (in Chinese with English abstract)
|
WANG Y F, CHENG Q G, LIN Q W, et al., 2018. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 317: 170-183. doi: 10.1016/j.geomorph.2018.05.025
|
WANG Y F, CHENG Q G, SHI A W, et al., 2019. Characteristics and transport mechanism of the Nyixoi Chongco rock avalanche on the Tibetan Plateau, China[J]. Geomorphology, 343: 92-105. doi: 10.1016/j.geomorph.2019.07.002
|
WANG Y F, LIN Q W, LI K, et al., 2021. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 43(1): 164-181. (in Chinese with English abstract)
|
WASSMER P, SCHNEIDER J L, POLLET N, et al., 2004. Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz Paleo-Lake, Swiss Alps[J]. Geomorphology, 61(1-2): 3-17. doi: 10.1016/j.geomorph.2003.11.003
|
WEIDINGER J T, KORUP O, MUNACK H, et al., 2014. Giant rockslides from the inside[J]. Earth and Planetary Science Letters, 389: 62-73. doi: 10.1016/j.epsl.2013.12.017
|
XING A G, WANG G H, LI B, et al., 2015. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China[J]. Canadian Geotechnical Journal, 52(7): 971-981. doi: 10.1139/cgj-2014-0122
|
XU W J, ZHOU Q, DONG X Y, 2022. SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part Ⅱ: reproduction of the Vajont landslide tsunami[J]. Acta Geotechnica, 17(6): 2121-2137. doi: 10.1007/s11440-021-01387-3
|
XU Z Q, LI H Q, HOU L W, et al., 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 26(10): 1262-1276. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2007.10.005
|
YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4): 8-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003
|
YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.04.001
|
YIN Y P, WANG F W, SUN P, 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
|
YIN Y P, ZHU J L, YANG S Y, 2010. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 18(4): 445-454. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.04.002
|
YIN Y P, XING A G, 2012. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 71: 149-160. doi: 10.1007/s10064-011-0348-9
|
YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5): 827-841. (in Chinese with English abstract)
|
YIN Y P, XING A G, WANG G H, et al., 2017. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, Southwestern China[J]. Landslides, 14(2): 649-659. doi: 10.1007/s10346-016-0729-z
|
YIN Y P, WANG W P, 2020. A dynamic erosion plowing model of long run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1513-1521. (in Chinese with English abstract)
|
ZHANG J P, CHEN X H, ZOU X Y, et al., 2001. The eco-environmental problems ans its countermeasures in Tibet[J]. Journal of Mountain Science, 19(1): 81-86. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2001.01.016
|
ZHANG M, YIN Y P, MCSAVENEY M, 2016. Dynamics of the 2008 earthquake-triggered Wenjiagou creek rock avalanche, Qingping, Sichuan, China[J]. Engineering Geology, 200: 75-87. doi: 10.1016/j.enggeo.2015.12.008
|
ZHANG M, MCSAVENEY M, 2017. Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophysical Research Letters, 44(17): 8814-8821. doi: 10.1002/2017GL073774
|
ZHANG T, YIN Y, LI B, et al., 2022. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya[J/OL]. Journal of Rock Mechanics and Geotechnical Engineering, 2022(2022-05-14). https://www.sciencedirect.com/science/article/pii/S1674775522000956.
|
ZHANG W J, 1985. Some features of the surge glacier in the Mt. Namjagbarwa[J]. Journal of Mountain Research(4): 234-238. (in Chinese with English abstract)
|
ZHANG Y S, GUO C B, YAO X, et al., 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277-286. (in Chinese with English abstract)
|
ZHAO T, 2014. Investigation of landslide-induced debris flows by the DEM and CFD[D]. Oxford: University of Oxford.
|
ZHAO T, CROSTA G B, UTILI S, et al., 2017. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses[J]. Journal of Geophysical Research: Earth Surface, 122(3): 678-695. doi: 10.1002/2016JF004060
|
ZHAO T, CROSTA G B, DATTOLA G, et al., 2018. Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses[J]. Journal of Geophysical Research: Solid Earth, 123(4): 3250-3269. doi: 10.1002/2017JB015210
|
ZHONG D L, DING L, 1996. Uplift process and mechanism of Qinghai-Tibet Plateau[J]. Science in China (Series D), 26(4): 289-295. (in Chinese) doi: 10.3321/j.issn:1006-9267.1996.04.001
|
程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007
|
崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm
|
丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16): 1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018
|
高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
|
高杨, 卫童瑶, 李滨, 等, 2019. 深圳"12.20"渣土场远程流化滑坡动力过程分析[J]. 水文地质工程地质, 46(1): 129-138, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901018.htm
|
高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报, 26(4): 510-519. doi: 10.12090/j.issn.1006-6616.2020.26.04.044
|
高杨, 高浩源, 李滨, 等, 2022a. 滑坡冲击铲刮变量的计算方法研究[J]. 计算力学学报, 39(1): 105-112.
|
高杨, 殷跃平, 李壮, 等, 2022b. 高位远程岩质滑坡动力解体效应研究[J]. 岩石力学与工程学报, 41(10): 1958-1970, doi: 10.13722/j.cnki.jrme.2022.0010.
|
何思明, 李新坡, 吴永, 2008. 滚石冲击荷载作用下土体屈服特性研究[J]. 岩石力学与工程学报, (S1): 2973-2977. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1059.htm
|
胡广韬, 1995. 滑坡动力学[M]. 北京: 地质出版社.
|
胡厚田, 杨明, 2000. 头寨大型高速远程滑坡流体动力学机制的分析研究[C]//第六届全国工程地质大会论文集. 南宁: 中国地质学会: 92-96.
|
黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
|
李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策[J]. 水电与抽水蓄能, 6(2): 11-14, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202002003.htm
|
李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 47(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
|
李祥龙, 唐辉明, 熊承仁, 等, 2012. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学, 33(5): 1527-1534, 1541. doi: 10.3969/j.issn.1000-7598.2012.05.039
|
林棋文, 程谦恭, 李坤, 等, 2021. 高速远程滑坡碎屑化运动机理研究综述[J/OL]. 工程地质学报: 1-15[2022-10-09]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ2021062100B.
|
刘传正, 2017. 论崩塌滑坡-碎屑流高速远程问题[J]. 地质论评, 63(6): 1563-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706012.htm
|
刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
|
刘涌江, 2002. 大型高速岩质滑坡流体化理论研究[D]. 成都: 西南交通大学.
|
刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
|
陆鹏源, 侯天兴, 杨兴国, 等, 2016. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 35(6): 1225-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201606015.htm
|
彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
|
彭双麒, 许强, 郑光, 等, 2020. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 51(2): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm
|
王玉峰, 程谦恭, 朱圻, 2012. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 31(6): 1089-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206003.htm
|
王玉峰, 许强, 程谦恭, 等, 2016. 高速远程滑坡裹气流态化动力学特性实验研究[J]. 岩石力学与工程学报, 35(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602008.htm
|
王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm
|
许志琴, 李化启, 侯立炜, 等, 2007. 青藏高原东缘龙门-锦屏造山带的崛起: 大型拆离断层和挤出机制[J]. 地质通报, 26(10): 1262-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200710007.htm
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm
|
殷跃平, 2008. 汶川八级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200804000.htm
|
殷跃平, 朱继良, 杨胜元, 2010. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报, 18(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm
|
殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
|
殷跃平, 王文沛, 2020. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报, 39(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008001.htm
|
张建平, 陈学华, 邹学勇, 等, 2001. 西藏自治区生态环境问题及对策[J]. 山地学报, 19(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200101016.htm
|
张文敬, 1985. 南迦巴瓦峰跃动冰川的某些特征[J]. 山地研究(4): 234-238. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198504006.htm
|
张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
|
钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm
|