
Citation: | LYU Y,2024. Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai–Tibetan Plateau and their application in evaluating resources in the Damxung Co salt lake[J]. Journal of Geomechanics,30(1):107−128 doi: 10.12090/j.issn.1006-6616.2023135 |
活动地块是指被形成于晚新生代、第四纪晚期至现今仍强烈活动的构造带所分割和围限、具有相对统一运动方式的地质单元(张培震等,2003; 郑文俊等,2020; 2022),而活动地块假说明确指出了控制陆内地震发生的主要位置是活动地块边界带。活动地块边界带是指分隔不同活动地块的构造或构造带,一般宽约数百米、数千米到百余千米不等,由活动断层、活动褶皱、活动盆地、活动造山带等一种或多种构造形态组成(张培震等,2003; 郑文俊等,2020; 2022)。强震记录显示,发生在中国大陆及周边地区的近乎100%的8级以上强震、约80%的7级以上强震都位于活动地块边界带上(张培震等, 2003, 2013; 郑文俊等,2020; 2022),近年来发生在中国大陆及周边地块的几乎全部7级以上强震也都位于活动地块边界带(郑文俊等,2022)。
鄂尔多斯地块是位于中国大陆中心位置的一个典型的活动地块,由于受西南部青藏地块和东部太平洋板块共同作用的影响,鄂尔多斯活动地块在整体运动和变形状态下,其边界带构造活动显著,并具有明显的特殊性和差异性。有历史记载以来,围绕该地块周缘发生过50次以上的M≥6.5强震,其中M8以上大地震有5次之多(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。鄂尔多斯活动地块位于“丝绸之路”经济带的东端,也是国家中西部发展战略的核心区域,而且围绕该活动地块边界带分布了7个省份的多个大中型城市,百万人口以上的城市近20个,且中西部重要经济区和工业区也围绕该地块分布,重大民生工程和交通干道纵横穿越,同时,鄂尔多斯活动地块内部及周缘也是中国主要的能源基地。
作为强震发生主要场所的活动地块边界带,虽然由一条或多条断裂组成,但活动地块假说强调地块的整体运动和变形是活动地块边界带强震孕育和发生的主要动力学机制。文章总结了多年来围绕鄂尔多斯活动地块边界带的活动断裂主要研究结果,在强调活动地块整体运动和变形的基础上,考虑鄂尔多斯活动地块周缘各边界带构造活动特征的特殊性和差异性,对鄂尔多斯活动地块边界带各分区断裂构造活动特征和强震孕育机制进行总结分析,希望为更好地认识和理解鄂尔多斯活动地块边界带的强震孕育特征及未来强震风险提供参考。
鄂尔多斯活动地块位于华北克拉通的西部,与青藏高原东北部相邻(郑文俊等, 2019, 2020)。自中生代晚期开始,华北地块区东、西两部分的构造运动发生明显的区域分异,东部经历了岩石圈地幔的剧烈破坏以及地壳的强烈改造和减薄作用,形成华北盆地(朱日祥等,2011),西部大范围堆积侏罗纪至早白垩世地层,形成典型的断陷盆地,之后又经历长期的隆升运动形成了现今的鄂尔多斯活动地块(邓起东和尤惠川, 1985)。地质学家认为,鄂尔多斯活动地块的构造演化由太平洋板块西向俯冲造成的华北盆地的伸展和印度-欧亚板块碰撞产生的青藏高原东北缘的剪切挤压共同控制(Molnar and Tapponnier, 1975; Tapponnier et al., 1982), 并且鄂尔多斯活动地块在中国大陆的构造演化和深部孕震环境研究中占有重要地位(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 张培震等,2013; 郑文俊等,2020)。
鄂尔多斯活动地块海拔高度约1000~1700 m,东西宽约400 km,南北长约600 km,地块内部构造相对简单,地层近水平,具有掀斜运动特征,西北缘高于地块东南缘,并向东南缘倾斜,在地貌上形成著名的黄土高原(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。作为中朝准地台西半部的鄂尔多斯活动地块在经历强烈的印支、燕山运动后,与周缘地块分异不断扩大,在此构造格局基础上演化至中生代时期的内陆坳陷盆地(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。进入新生代时期后,受青藏高原不断向北东—北东东方向的挤压与扩展及鄂尔多斯地块整体抬升作用影响下,块体周缘分异作用进一步扩大(雷启云等,2016; Shi et al., 2020)。始新世以后,鄂尔多斯活动地块周缘地区以垂直差异运动为主,开始发育不同构造背景、展布方向和运动特征的新生代断裂带和断陷带,包括南缘东西向渭河断陷带、东缘北北东向山西断陷带、北缘东西向河套断陷带、西缘南北向银川-吉兰泰断陷带以及西南缘弧形断裂束,到第四纪初期初步形成了现在的构造格局(邓起东和尤惠川, 1985; 国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 邓起东等, 1999; 雷启云等, 2016; 郑文俊等, 2016)。
鄂尔多斯活动地块南部、北部、西南部和西北部分别与秦岭造山带、阴山-燕山造山带、祁连褶皱系和阿拉善地块相邻,在东部通过山西断陷带与华北地块东部相邻(图 1)。长期以来, 地质学研究普遍认为鄂尔多斯活动地块是中国大陆内部一个相对稳定的刚性块体(邓起东等, 1999)。现代地震和历史地震目录显示,鄂尔多斯活动地块内部地震活动强度低,从未发生过M>6的地震(顾功叙, 1983; 徐伟进等,2008),但由于受太平洋板块和青藏高原的共同作用,其周缘边界带内强震活动频繁,这些断裂带和断陷带是中国大陆内部地震活动最强的地区之一,发生过多次8级以上地震(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Rao et al., 2014, 2016; Middleton et al., 2016; Feng et al., 2020)。
在鄂尔多斯活动地块周缘形成了河套盆地、银川-吉兰泰盆地、渭河盆地、山西断陷盆地带等一系列以发育湖相沉积为主的第四纪沉积盆地(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 李建彪等, 2005; 吴利杰等, 2019; 秦帮策等, 2021; 宋友桂等, 2021)。并形成了4个活动特征不同的边界带,分别是断陷的北边界带、构造复杂的西边界带、断陷的南边界带、拉张裂谷型的东边界带。除西缘与青藏高原东北缘的相互作用,形成了以左旋走滑为特征的弧形断裂带及压陷盆地外,鄂尔多斯活动地块周缘的这些盆地大多受边界正断层所控制(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 雷启云等, 2016; 郑文俊等, 2016; 2020),但各区构造活动特征差异显著。
在空间位置上,河套盆地是鄂尔多斯活动地块的北边界带,河套盆地及其邻近的西北缘银川-吉兰泰盆地表现出了相似的活动特征,在盆地西侧和北侧,断裂活动性较强,存在明显的全新世活动证据,并有历史记载的大地震发生(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。相比之下,盆地东侧或南侧断裂活动性较弱,表现为晚更新世活动断裂(或隐伏断裂),断裂滑动速率较低。虽然GNSS数据反映河套盆地存在左旋运动而银川-吉兰泰盆地存在右旋走滑(Zhao et al., 2017; Hao et al., 2021),但河套盆地边界断裂在地质上似乎很难发现走滑运动的确切证据。
地块北部河套盆地主要活动断裂在盆地北(西)侧边缘处发育,从东往西主要为大青山山前断裂(F4)、乌拉山山前断裂(F3)、色尔腾山山前断裂(F2)、狼山山前断裂(F1),4条断裂均表现出强烈的全新世活动特征(图 2),其中,大青山山前断裂上发生了公元849年M7 3/4 ~8地震(冉勇康等, 2003; 聂宗笙等, 2010),狼山断裂上发生了公元前7年M7 3/4 ~8地震(李彦宝等, 2015; Rao et al., 2016)。4条断裂均以正断层活动为特征,大青山山前断裂(F4)垂直滑动速率为1.8~2.8 mm/a,最大甚至达到近4 mm/a(Xu et al., 2022),乌拉山山前断裂(F3)平均垂直位移速率在0.7~2.3 mm/a之间(陈立春, 2002; Xu et al., 2022),色尔腾山山前断裂(F2)平均垂直滑动速率0.6~2.3 mm/a(陈立春, 2002; Zhang et al., 2017),狼山山前断裂(F1)平均垂直滑动速率0.6~1.6 mm/a(Dong et al., 2018; Rao et al., 2018)。河套盆地南部发育鄂尔多斯北缘断裂(F6),是一条晚更新世活动断裂,控制了鄂尔多斯活动地块北边界,东部发育北东向的和林格尔断裂(F5),为河套盆地的东边界控制断裂,中更新世到晚更新世有活动(李建彪等, 2005; 刘华国等, 2022)。
位于地块西边界北段的银川盆地,其西边以贺兰山东麓断裂(F11)为边界断裂,该断裂全新世活动,其北段上发生了1739年平罗M8地震,错断了明代长城,垂直滑动速率为0.88~2.1 mm/a (国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Deng and Liao, 1996; Middleton et al., 2016)。黄河断裂(F12)是银川盆地的东边界断裂,其北段隐伏,垂直滑动速率为0.17 mm/a (雷启云等, 2014; 包国栋等, 2019);南段出露地表,向西或北西倾斜,是一条高角度正断层,全新世平均垂直滑动速率为0.24 mm/a(廖玉华等, 2000; 柴炽章等, 2001)。巴彦乌拉山山前断裂(F9)位于吉兰泰盆地西缘,属向南南东倾斜的正断层,晚更新世活动,估算第四纪晚期平均垂直滑动速率为约0.25~0.40 mm/a (宋方敏和曹忠权, 1994; Lei et al., 2022)。桌子山西麓断裂(F7)位于吉兰泰盆地东缘,不完全连续,全长约90 km,晚更新世活动,平均垂直滑动速率为0.1~0.2 mm/a (Liu et al., 2022b)。正谊关断裂(F8)分割了吉兰泰盆地和银川盆地,走向近东西,断面向南倾斜,逆冲兼左旋走滑性质(图 3),全新世水平滑动速率1.1~1.5 mm/a(邢成起和王彦宾, 1991)。
以分割鄂尔多斯地块与青藏高原东北缘的右旋走滑为主要特征的断裂带——贺兰山西麓断裂(F10)、三关口-牛首山断裂(F13)和罗山东麓断裂(F14)为界,将鄂尔多斯活动地块西缘分为南北两个构造单元(图 1)。区域内,青藏高原东北缘的弧形断裂带(F15—F17)、西秦岭北缘断裂(F21)以左旋走滑为主,而弧形构造的末端则转换为挤压逆冲运动,如六盘山东麓断裂(F18),六盘山往南,受渭河盆地影响,又出现以左旋走滑为主要特征的岐山-马召断裂(F20)以及正断为主的固关-虢镇断裂(F19)等(Zheng et al., 2013; 郑文俊等, 2016;Li et al., 2018)。
贺兰山西麓断裂(F10) 发育在贺兰山西麓洪积扇上,走向近南北,具右旋走滑兼逆冲性质,全新世水平滑动速率为0.28 mm/a,垂直滑动速率为0.11 mm/a(Lei et al., 2022)。三关口-牛首山断裂的北段斜切贺兰山山体,南段是银川盆地的西南边界,具右旋走滑运动性质,全新世平均水平和垂直滑动速率分别为0.35 mm/a和0.09 mm/a(雷启云等, 2016; 公王斌等, 2017)。罗山东麓断裂走向近南北,是一条全新世活动的右旋走滑断裂,一系列冲沟跨断层发生同步扭动,晚更新世—全新世水平滑动速率为1.43±0.11 mm/a(闵伟等, 1992; 雷启云等, 2016),是1561年中宁M7½地震的发震构造(闵伟等, 1992)。
青藏高原东北缘弧形构造带主要是由海原断裂(F17)、香山-天景山断裂(F16)组成的整体呈弧形的构造带(雷启云等, 2016; 郑文俊等, 2016)。构造带的东部断裂走向呈北西西—东西向,向东转变为北北西—近南北向,断裂运动性质也由左旋走滑为主转化为逆冲为主;从南向北,断裂活动相对减弱,反映了高原向北依次扩展的过程。其中,海原断裂(F17)是区内规模最大、活动最强的断裂,走向北西—北北西,东端和六盘山东麓断裂(F18)相连接,左旋走滑性质,1920年海原M8½地震发生在该断裂带上(国家地震局地质研究所和宁夏回族自治区地震局, 1990),全新世以来水平滑动速率为4.5 mm/a (Li et al., 2009; Liu et al., 2022a)。香山-天景山断裂整体呈弧形,向西为罐罐岭断裂、长岭山北麓断裂、古浪断裂,均具明显的左旋走滑性质,该断裂带在东段转变为逆冲为主,全新世活动强烈,1709年中卫M7½地震就发生在该断裂带上,全新世以来平均滑动速率为0.41~1.62 mm/a(尹功明等, 2013;张维歧等, 2015)。断裂带向南主要为六盘山东麓断裂(F18)和岐山-马召断裂(F20),六盘山东麓断裂北段走向北北西,向南转为近南北向,具逆走滑性质,全新世活动,第四纪晚期以来平均走滑速率在2 mm/a,垂直速率0.8 mm/a(向宏发等, 1998),南端岐山-马召断裂(F20)向北和六盘山东麓断裂(F18)相连接,向南进入渭河盆地,以左旋走滑运动性质为主,并伴有一定的正断分量,第四纪晚期以来的左旋走滑运动速率约为0.5~1.2 mm/a,垂直滑动速率为0.01~0.03 mm/a(Li et al., 2018)。
区域内规模较大的另外一条左旋走滑断裂为西秦岭北缘断裂(F21),向东进入渭河盆地,总长度大于500 km,全新世活动,历史上发生过公元前47年陇西M6 3/4 (袁道阳等, 2017)、143年甘谷西M7地震(袁道阳等, 2007)、734年天水M7地震等(雷中生等, 2007),水平速率约为2~3 mm/a,垂直速率约为0.3 mm/a,总体上呈现自西向东逐渐递减的趋势(李传友, 2005; 王维桐, 2020; 张逸鹏等,2021)。
该区域的活动断裂多发育在渭河盆地内,以正断为主要特征(图 1)。渭河盆地除了边界发育活动断裂外,盆地内发育2组活动断裂,第1组北西西或东西向,第2组为北东或北东东向,2组断裂多交接,呈现网格状(杜建军等, 2017; 胡亚轩等, 2018)。第1组断裂的规模大、活动性强,多为裸露断裂,全新世活动;第2组断裂的规模小、活动性弱,多为隐伏断裂,晚更新世活动为主。北西西或东西走向的断裂包括:秦岭北缘断裂(F22)、华山山前断裂(F27)、渭南塬前断裂(F26)和口镇-关山断裂(F25),均属于全新世活断裂,除了口镇-关山断裂(F25)向南倾斜外,其余断裂均向北倾。
秦岭北缘断裂(F22)为渭河盆地和秦岭的分界,其晚更新世以来的垂直运动速率约为0.3~0.6 mm/a(陕西省地震局, 1996)。华山山前断裂(F27)为渭河盆地东南部的一条大型边界断裂,全长约180 km,晚更新世以来活动显著,华县至华阴段全新世以来仍持续强烈活动,发生过公元1556年华县M8大地震,造成了超过83万人的死亡(马冀,2019),全新世以来平均垂直活动速率为1.5~3 mm/a(杨源源等, 2012; Rao et al., 2014; 徐伟等, 2017)。渭南塬前断裂(F26)位于渭河盆地渭南塬北侧,也是1556年M8地震发震断裂之一,全新世以来的垂直滑动速率约为1.7~2.1 mm/a(Rao et al., 2015; 马冀, 2019)。口镇-关山断裂(F25)在地貌与地震探测剖面上均有显示,其走向近东西,倾向南,长度大于100 km,自新生代晚期以来主要表现为南降北升的高角度正断层,断裂晚更新世末期以来平均滑动速率为0.75 mm/a (米丰收等, 1993; 胡亚轩等, 2008; 杨晨艺等, 2021),历史上多次发生地震,如1655年三原M5地震、1704年径阳M5地震、1850年乾县M5地震、1880年永寿县M5¼地震等多次中强地震。
鄂尔多斯活动地块东边界带主要为山西地堑系,从南往北主要为运城-临汾盆地区、太原-忻定盆地区和大同-张家口盆地区(图 4)。
运城-临汾盆地区范围内包括了运城盆地和临汾盆地(图 1,图 4),两盆地被峨眉台地隔开,总体走向为北东向,主要活动断裂发育在盆地的边界上,主要包括中条山北麓断裂(F28)、韩城断裂(F29)、罗云山山前断裂(F30)和霍山山前断裂(F33)。中条山北麓断裂(F28)是运城盆地东侧和南侧边界断裂,为全新世活动的高角度正断层,晚更新世以来平均垂直滑动速率为0.75 mm/a(司苏沛等, 2014)。韩城断裂(F29)是运城盆地的西北边界,其北端与罗云山山前断裂(F30)相连,是一条全新世活动的正断层,北段参与了1695年临汾M7 3/4地震(闫小兵等, 2018),平均垂直滑动速率为0.45~0.6 mm/a (扈桂让等, 2017;李自红等, 2017)。罗云山山前断裂(F30)是临汾盆地的西部边界,全新世以来平均垂直滑动速率为0.36 mm/a(谢新生等, 2008; 孙昌斌等, 2013)。霍山山前断裂(F33)为临汾盆地东北部的边界断裂,近南北向延伸,总长度116 km,倾向北西,垂直滑动速率为0.88~1.49 mm/a,是1303年洪洞M8地震的发震构造(徐岳仁, 2014; Xu et al., 2018)。
太原-忻定盆地区范围内包括了太原盆地和忻定盆地(图 1,图 4),两盆地呈北东向展布,左阶斜列,均为正断控制的断陷盆地,主要活动断裂发育在盆地边界,分别为太谷断裂(F34)、交城断裂(F35)、系舟山北麓断裂(F36)、云中山山前断裂(F37)和五台山北麓断裂(F38),另外还有一系列规模相对较小的断裂发育。太原盆地发育2条边界断裂,太谷断裂(F34)展布在太原盆地东侧,分为南北两段,为全新世活动正断层,垂直滑动速率约0.12 mm/a(谢新生等, 2008; 谢富仁等, 2017);交城断裂(F35)是太原盆地西边界的主控断裂,长约125 km,晚更新世以来的平均垂直滑动速率约1.9 mm/a(江娃利等, 2017)。忻定盆地发育3条边界断裂:系舟山北麓断裂(F36)为控制忻定盆地定襄凹陷东南的边界的全新世活动断裂,右旋正倾滑断层,断裂上发生了1038年山西定襄M7¼级地震(张世民, 2007),平均垂直运动速率为1.48 mm/a(孟宪梁等, 1993; 窦素芹等, 1995);云中山山前断裂(F37)为忻定盆地原平凹陷的主控边界断裂,全长约60 km,右旋正倾滑断层,平均垂直滑动速率为0.33 mm/a,右旋走滑速率大约是0.67 mm/a,是1683年原平M7级地震的发震构造(江娃利等, 2000);五台山北麓断裂(F38)位于五台山北麓,全长约80 km,为正断倾滑型,垂直滑动速率为0.47~0.64 mm/a,公元512年代县M7½地震与该断裂活动有关(张世民, 2007; 赵仕亮等, 2016)。
大同—张家口盆地区主要包括晋西北的大同盆地、阳原盆地、蔚广盆地、怀安盆地和岱海盆地等(图 1,图 4),是晋冀蒙盆岭构造区的主要组成部分,均为正断层控制的地堑和半地堑断陷盆地,其中大同盆地规模最大,蔚广盆地和怀安盆地在东北端和大同盆地相连接,而岱海盆地在大同盆地北西与其近平行展布,区内的主要活动断裂发育在盆地边界,控制盆地形态(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; Luo et al., 2021)。大同盆地内的主要活动断裂有恒山北麓断裂(F41)、六棱山北麓断裂(F44)、口泉断裂(F43)和阳高-天镇断裂(F45)(Luo et al., 2021)。恒山北麓断裂(F41)是大同盆地的南边界断裂,全长约160 km,为全新世活动正断层,垂直滑动速率为0.78~1.0 mm/a (Luo et al., 2021);六棱山北麓断裂(F44)是大同盆地和阳原盆地的南边界,全长140 km,为正断倾滑型断裂,垂直滑动速率为0.18~0.63 mm/a (孙稳, 2018);口泉断裂(F43)为大同盆地的西边界,全长130 km,全新世活动的正断层伴右旋走滑性质,垂直滑动速率在0.17~0.53 mm/a之间(徐伟等, 2011)。蔚广盆地主要发育有蔚广盆地南缘断裂(F42),是盆地的南边界,全长约120 km,垂直滑动速率为0.42~0.66 mm/a (田勤俭等, 2017; Peng et al., 2023)。阳原盆地南边界为六棱山北麓断裂(F44),该断裂全新世活动,根据InSAR数据估算断裂垂直滑动速率为0.7~1.4 mm/a (高晨等, 2021)。在阳原盆地北侧,左旋走滑兼正断的阳高-天镇断裂(F45)具有较小的水平走滑速率(约为0.17 mm/a)和垂直速率(0.1~0.3 mm/a),发生过1673年天镇M7级地震,形成全段破裂(Luo et al., 2021)。
岱海-黄旗海盆地边缘断裂带(F48)表现出晚更新世—全新世活动的特征。北西向展布的张家口断裂(F47)存在较为明显的左旋走滑特征,晚更新世晚期以来的垂直滑动速率约为0.1 mm/a,水平滑动速率为0.6 mm/a(Luo et al., 2021)。另外据最新的调查发现,在集宁以北发育有北西走向的新活动断裂(罗全星和李传友, 2022),集宁盆地北缘也发育有一条规模相当的正断性质的断裂(F49;图 5)。
在中国大陆及周边地区活动地块划分方案中,鄂尔多斯属于典型的二级活动地块,其西、西北、北及南边界为典型的一级活动地块区边界(图 1),分属于华北地块区与青藏高原地块区、西域地块区、东北亚地块区及南华地块区的边界(张培震等, 2003;郑文俊等,2020;2022),均包括了一定宽度和范围内的活动构造带,东边界为华北地块区内最西边的鄂尔多斯活动地块与华北活动地块二者之间的边界,边界组成以山西断陷盆地群及边界断裂组成,地块四周均为典型的构造活动带,是中国大陆最重要的强震活跃区之一。因此,鄂尔多斯活动地块四周分别受到不同的地块相互作用,从历史和现代强震机制、断裂构造第四纪晚期运动特征、现今GNSS观测结果(Hao et al., 2021)等均表现出不同的类型和特征,块体边界带不同位置强震的孕育和发生机制均有所不同(图 6)。
河套断陷盆地位于阴山隆起与鄂尔多斯隆起之间,东西长约440 km,南北宽40~80 km,其内部发育临河凹陷、白彦花凹陷和呼和凹陷,自西向东被西山咀隆起和包头隆起隔开,凹陷与隆起交替排列(图 2a;国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 陈立春, 2002)。河套断陷带在鄂尔多斯块体周缘4个断陷带中规模最大,构造活动比较强烈,表现为北缘断裂活动性强,而南缘及东缘断裂活动性弱的特征(邓起东和尤惠川, 1985;国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988;Rao et al., 2016;Dong et al., 2018;He et al., 2018),不对称断陷盆地北缘断裂的活动控制着该区域强震的孕育(图 6)。
河套断陷盆地西缘和北缘的断裂在全新世以来持续活动,控制着河套地堑的主要构造活动和地貌形成(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988; 邓起东等, 2003)。控制盆地形态的主要是与阴山分界的狼山山前断裂(F1)、色尔腾山山前断裂(F2)、乌拉山山前断裂(F3)及大青山山前断裂(F4),也是鄂尔多斯北缘的主要强震孕育的断裂(图 1,图 2)。据历史记载,河套断陷带发生过公元前7年和公元849年两次大地震(聂宗笙等, 2010; 李彦宝等, 2015)。20世纪以来,断陷带相继发生如1976年巴音木仁M6.2地震、1979年五原M6地震、1996年包头M6地震和一些4~5级中小地震,也揭示了该区强烈的构造活动。对北缘4条主要断裂的强震活动关系的分析,结合古地震序列建立的15000 a以来北缘4条断层之间的强震活动存在一定关联性,表现为丛集和循环(Peng et al., 2022; 郑文俊等,2024),而其盆地南侧的鄂尔多斯北缘断裂带活动相对较弱,现代中小地震也较少有发生,断层多发育于古近纪—新近纪地层中,对整体河套盆地强震孕育和发生作用相对较小(刘华国等, 2022)。因此,未来需要重点关注盆地北缘断裂的相互影响及地震群集的特征,特别是中段的色尔腾山山前断裂和乌拉山山前断裂(Peng et al., 2022; 郑文俊等, 2024)。
晚新生代以来,鄂尔多斯活动地块西北部边界断裂带附近经历了两阶段的构造变形过程,早期以地层褶曲变形为主, 表现为次级地块的缩短和区域性的抬升,后期则转化为断裂的右旋走滑,表现为次级地块的侧向挤出,其主要动力源是受青藏高原东北向推挤和鄂尔多斯地块不均匀框动、拉张共同作用的控制(图 6;雷启云等, 2016; Hao et al., 2021)。地球物理勘探及地震研究结果揭示,银川盆地在地壳内发生双层伸展,在下地壳,两条相向的韧性剪切带将上地幔的水平伸展力转化为所挟持下地壳的向下垂直运动,这种垂直运动使得上下地壳解耦,并在C面上发生剪切滑脱(刘保金等, 2008; Chen et al., 2022),通过C面滑脱和贺兰山断裂面的共同调节,下地壳的大部分垂向运动在上地壳底部转化为共轭的水平拉张力,引起银川断裂和贺兰山东麓断裂之间块体的垂向运动,导致了上地壳数条脆性正断层的活动(刘保金等, 2008; 雷启云等, 2016),均有发生强震的构造条件。贺兰山在晚新生代以来经历3个阶段的隆升,最晚一期已经到了第四纪早期,其东侧的掀斜隆升可能受控于下地壳内的韧性断裂活动形成的抬升力,而西侧则受到阿拉善地块的上地壳斜向楔入的抬升力,在两种构造力的作用下贺兰山整体发生断块式的差异性抬升(雷启云等, 2016; Li et al., 2022)。1739年平罗M8地震的所形成的一系列运动特征及现代中小地震的活动,结合探槽揭露、断错地貌特征研究、定量地貌揭示等(雷启云等, 2017),可以清楚地显示该区域右旋走滑断裂和正断裂的组合来协调鄂尔多斯地块相对阿拉善地块的差异运动,因而未来黄河断裂南段的强震风险需要更多的关注。
新生代中晚期青藏高原持续隆升和向外扩展,逐渐影响到了高原的外围区域,形成了一系列新生的构造变形带(郑文俊等, 2016),位于三大地块交汇部位的陇西盆地、宁夏南部盆地群及六盘山、香山、天景山以及牛首山、罗山等区域,形成了弧形向北东方向逐渐扩展的断裂带和盆地褶皱变形区(图 1),包括了海原断裂(F17)、香山-天景山断裂(F16)和三关口-牛首山断裂(F13)3条主要的断裂,以及南部的六盘山东麓断裂(F18)。在断裂运动性质转换和对强震的控制模式上,该区域表现为两个类型(图 6):一是3个弧形构造带自10 Ma以来逐渐分阶段的向外扩展,形成了完善的弧形构造和变形特征,其最新的活动和挤压作用影响已经到达了三关口-牛首山断裂(F13)上(雷启云等, 2016; 郑文俊等, 2016),3个弧形构造带之间存在相互的影响和地震的触发;二是以海原断裂(F17)为主的走滑运动向端部的运动性质转换,如海原断裂向东的延伸到达六盘山后,其尾端的左旋走滑速率逐渐转换成了端部新生代盆地变形、断裂的逆冲和山脉的隆升(Zheng et al., 2013; 郑文俊等, 2016; Liu et al., 2022a)。另外,在总体构造框架上,海原断裂(F17)与岐山-马召断裂(F20)之间形成了一个左旋右阶的挤压阶区,海原断裂的4~5 mm/a左旋走滑速率,经过六盘山隆起、断裂的逆冲和两侧的新生代盆地变形的吸收和转换,到了岐山-马召断裂(F20)上左旋走滑速率为2~3 mm/a(郑文俊等, 2016; Li et al., 2018,2019)。向北东的挤压扩展,向东南方向沿主要断裂的运动特征转换,共同控制着高原东北缘的强震孕育和发生。
渭河断陷盆地区位于鄂尔多斯地块南缘、秦岭断块山地以北,由西安-宝鸡盆地、渭南盆地、运城盆地、灵宝盆地等多个断陷盆地及其之间的隆起单元组成,总体走向近东西,东西近400 km,南北宽60 km。断陷盆地南北两侧均受断裂控制,剖面上显示为不对称的复式地堑和掀斜断块的结构特点(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。渭河断陷盆地区在始新世开始形成,是鄂尔多斯活动地块周缘最古老的断陷带,经历了渐新世的进一步发展,到了上新世基本奠定了现今断陷盆地的构造格架,虽然经历了漫长的活动历史,但最新活动仍十分强烈,第四纪时期继承了上新世的构造格局(图 6)。整体上,渭河断陷盆地内断裂活动引起的断块差异运动是其演化的基本形式,而其大幅度的断陷沉降作用及相应的巨厚的新生代堆积更是断陷盆地演化的主要表现(国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。控制渭河盆地形态的秦岭北缘断裂,过去4000 a以来发生过4次地震事件,均产生了地表破裂,平均复发周期为1000 a(Rao et al., 2015)。
渭河断陷盆地也是中国一个主要的强震带,历史记载以来有多次强震发生(马冀, 2019),其中:1556年华县M8地震是发生在东西走向的盆地南侧深大断裂和盆地内部东西走向的大断裂上;1501年朝邑M7地震发生在盆地内部凹陷带和横向隆起构造带交汇的部位;1487年临潼M6¼和1568年西安M6 3/4地震又发生在横穿盆地北西走向的小尺度断裂上;最新研究指出1568年西安地震的震级可能达到7级,分析认为此次地震的发震构造为渭南-泾阳断裂,该断裂与渭南塬前断裂(F26)、华山山前断裂(F27)共同构成渭河盆地东南缘的重要边界活动断裂带。从历史地震判断,渭河盆地内主要控震构造具有不同的性质,其力学上的不稳定和应力积累的相互影响是中强地震发生的主要原因。
山西拉张地堑系与鄂尔多斯周缘其他3个边界不同,其结构相对复杂,自北向南由5个盆地组成(图 4),该区也是周缘盆地中形成最晚的一个盆地带,开始形成于上新世,盆地中新生界堆积厚度小于其他边界盆地带。地堑中走向北东东向的5条坳陷和5条隆起带,呈右列雁行相间排列,控制地堑的基底断裂为一系列的同沉积张扭性正断层,分别向盆地中心倾斜,构成不对称的地堑构造,控制了裂谷的轮廓,决定了裂谷的新构造运动和周期性的现代活动(图 6)。裂谷为一条不连续右旋剪切拉张带, 其中段的北北东向断裂和盆地,如口泉断裂(F43)、六棱山北麓断裂(F44)、五台山北麓断裂(F38)、系舟山北麓断裂(F36)、霍山山前断裂(F33)及其控制的大同、原平和临汾盆地等均为右旋正走滑断裂及地堑型盆地, 断裂右旋错断地质体、水系和山脊等,全新世滑动速率有明显增大的特征(徐锡伟等, 1986, 1992),而晋北张性构造区晚更新世或全新世以来正断裂的平均垂直滑动速率变化范围为0.35~1.75 mm/a(徐锡伟等, 1986; 国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988)。
山西拉张地堑系历史强震活动频繁,自公元1000年以来经历了多个强震活动期,历史地震研究结果显示其6~7级地震存在原地和同构造部位重复的特点,也具有一定南北迁移规律(徐锡伟等, 1992; 郑文俊等, 2024)。历史中强地震活动显示,山西拉张地堑系南北不同位置存在地震孕育机制和活动强度有明显差异。南段由一系列不连续的北北东向右旋正走滑断裂及其控制的盆地组成,表现为右旋剪切性质,也是山西拉张裂谷系7级以上强震的主要发生区。北段表现为拉张断陷区,由一系列北东东向张性倾滑断层及其控制的半地堑盆地构成(Luo et al., 2021),包括大同盆地及东北部的蔚广盆地、张家口盆地等,控制盆地的断裂均具备发生7级左右地震的构造条件,再向北的岱海及乌兰察布一带,新生断裂存在6~7级地强震风险,同时该位置也受张渤构造带作用(图 6),断裂相互交互的位置也是近年来发生中等强度地震的主要区域,需要关注这些位置可能的强震风险。
位于中国大陆中心位置的鄂尔多斯活动地块,不仅在大地构造单元中有着至关重要的作用和意义,也是中国东西部交流贯通的重要枢纽位置,是“丝绸之路”经济带的东端,在未来国家和区域经济发展中发挥着举足轻重的作用。由于受西南部青藏块体和东部的太平洋板块远程作用的影响,鄂尔多斯活动地块各边界带构造活动特征和变形具有明显的特殊性和差异性,也控制着周边不同类型的强震的孕育和发生。
(1) 受青藏高原向北东挤压扩展的影响,构造变形样式复杂的西南缘断裂以走滑、逆走滑和逆冲为主要特征,是历史大地震的频发区域,也是鄂尔多斯活动地块周缘强震复发最频繁的区域。以右旋为特征的三关口-牛首山断裂为高原扩展的最新边界,其北部的银川盆地表现为典型的断陷盆地,有右旋走滑特征,地震多以正走滑型为主,但贺兰山西侧的断裂已表现出有逆冲活动的特征。
(2) 鄂尔多斯活动地块南北两侧边界带均为正断控制的断陷盆地。北缘的河套盆地北侧的控盆正断裂控制着北边界强震的孕育和发生,盆地内部和南部地震相对较少。而由两组正断层组成的断裂构造网络的渭河盆地,历史大地震多发生在盆地南部,正断型地震居多,盆地中北部有中强地震发生,但规模要小于南部。
(3) 有多个裂谷型盆地斜列组成的山西地堑系分为南北两个部分,历史大地震表现为南强北弱,北部盆地受张渤构造带的影响,盆地走向和断层运动性质均发生了明显变化,多具备7级左右地震构造条件。
综合认为,鄂尔多斯活动地块周缘第四纪构造活动差异明显,由于复杂的板块远程作用交汇和活动地块间的相互作用,边界断裂在继承早期构造特征的基础上,有新生断裂发育或断裂运动性质的变化,地块边界带未来强震多发生在大地震离逝时间长的地震空区,或是构造带的转换和交汇区,也要注意一些新生断裂和没有发生过破裂的断层段发生6~7级强震的可能。
致谢: 感谢国家重点研发计划(2017YFC1500100)项目组全体成员的共同努力。对学者们在此开展的大量研究工作,由于篇幅有限,不能一一列出,在此表示歉意,也表达崇高的敬意和致谢。围绕鄂尔多斯活动地块编制了《鄂尔多斯活动地块及边界带地震构造图(1 ∶ 50万)》,已正式出版,欢迎大家批评指正。[1] |
ALLEN K A, HöNISCH B, EGGINS S M, et al. , 2011. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa[J]. Earth and Planetary Science Letters, 309(3-4): 291-301. doi: 10.1016/j.jpgl.2011.07.010
|
[2] |
ANDERSON M A, BERTSCH P M, MILLER W P, 1989. Exchange and apparent fixation of lithium in selected soils and clay minerals[J]. Soil Science, 148(1): 46-52. doi: 10.1097/00010694-198907000-00005
|
[3] |
ARAOKA D, KAWAHATA H, TAKAGI T, et al. , 2014. Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium[J]. Mineralium Deposita, 49(3): 371-379. doi: 10.1007/s00126-013-0495-y
|
[4] |
BALAN E, NOIREAUX J, MAVROMATIS V, et al. , 2018. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion[J]. Geochimica et Cosmochimica Acta, 222: 117-129. doi: 10.1016/j.gca.2017.10.017
|
[5] |
BASSETT R L, 1976. The geochemistry of boron in geothermal waters[D]. Stanford: Stanford University: 128-154.
|
[6] |
BERGER G, SCHOTT J, GUY C, 1988. Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigations and modelization between 50° and 300℃[J]. Chemical Geology, 71(4): 297-312. doi: 10.1016/0009-2541(88)90056-3
|
[7] |
BIAN S, YU Z Q, GONG J F, et al. , 2021. Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 178-194 (in Chinese with English abstract).
|
[8] |
BRANSON O, 2018. Boron incorporation into marine CaCO3[M]//MARSCHALL H, FOSTER G. Boron isotopes: the fifth element. Cham: Springer: 71-105.
|
[9] |
CALVET R, PROST R, 1971. Cation migration into empty octahedral sites and surface properties of clays[J]. Clays and Clay Minerals, 19(3): 175-186. doi: 10.1346/CCMN.1971.0190306
|
[10] |
CHAN L H, EDMOND J M, 1988. Variation of lithium isotope composition in the marine environment: a preliminary report[J]. Geochimica et Cosmochimica Acta, 52(6): 1711-1717. doi: 10.1016/0016-7037(88)90239-6
|
[11] |
CHAN L H, EDMOND J M, THOMPSON G, et al. , 1992. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans[J]. Earth and Planetary Science Letters, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6
|
[12] |
CHAN L H, LEEMAN W P, PLANK T, 2006. Lithium isotopic composition of marine sediments[J]. Geochemistry, Geophysics, Geosystems, 7(6): Q06005.
|
[13] |
CHEN K Z, YANG S X, ZHENG X Y, 1981. The salt lakes on the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 36(1): 13-21 (in Chinese with English abstract).
|
[14] |
CHETELAT B, GAILLARDET J, FREYDIER R, et al. , 2005. Boron isotopes in precipitation: Experimental constraints and field evidence from French Guiana[J]. Earth and Planetary Science Letters, 235(1-2): 16-30. doi: 10.1016/j.jpgl.2005.02.014
|
[15] |
COCCO G, FANFANI L, ZANAZZI P F, 1978. Lithium[M]//WEDEPOHL K H. Handbook of geochemistry. Berlin: Springer: 3-A-1-3-A-7.
|
[16] |
DAY C C, POGGE VON STRANDMANN P A E, MASON A J, 2021. Lithium isotopes and partition coefficients in inorganic carbonates: Proxy calibration for weathering reconstruction[J]. Geochimica et Cosmochimica Acta, 305: 243-262. doi: 10.1016/j.gca.2021.02.037
|
[17] |
DU Y S, FAN Q S, GAO D L, et al. , 2019. Evaluation of boron isotopes in halite as an indicator of the salinity of Qarhan paleolake water in the eastern Qaidam Basin, western China[J]. Geoscience Frontiers, 10(1): 253-262. doi: 10.1016/j.gsf.2018.02.016
|
[18] |
FAN Q S, MA Y Q, CHENG H D, et al. , 2015. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China[J]. Sedimentary Geology, 322: 34-42. doi: 10.1016/j.sedgeo.2015.03.012
|
[19] |
FARMER J R, BRANSON O, UCHIKAWA J, et al. , 2019. Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling[J]. Geochimica et Cosmochimica Acta, 244: 229-247. doi: 10.1016/j.gca.2018.10.008
|
[20] |
FAURE G, 1991. Principles and applications of inorganic geochemistry: A comprehensive textbook for geology students[M]. New York: Macmillan Publication Co. : 1-251.
|
[21] |
FÜGER A, KUESSNER M, ROLLION-BARD C, et al. , 2022. Effect of growth rate and pH on Li isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 323: 276-290. doi: 10.1016/j.gca.2022.02.014
|
[22] |
GABITOV R I, SCHMITT A K, ROSNER M, et al. , 2011. In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[J]. Geochemistry, Geophysics, Geosystems, 12(3): A03001,doi: 10.1029/2010GC003322.
|
[23] |
GAILLARDET J, LEMARCHAND D, GöPEL C, et al. , 2001. Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions[J]. Geostandards and Geoanalytical Research, 25(1): 67-75. doi: 10.1111/j.1751-908X.2001.tb00788.x
|
[24] |
GAO C L, YU J Q, ZHAN D P, et al. , 2009. Formation and distribution characteristics of boron resource in salt lakes of Qaidam Basin[J]. Journal of Salt Lake Research, 17(4): 6-13 (in Chinese with English abstract).
|
[25] |
GARCIA M G, BORDA L G, GODFREY L V, et al. , 2020. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach[J]. Chemical Geology, 531: 119340. doi: 10.1016/j.chemgeo.2019.119340
|
[26] |
GAST J A, THOMPSON T G, 1959. Evaporation of boric acid from sea water[J]. Tellus, 11(3): 344-347. doi: 10.3402/tellusa.v11i3.9313
|
[27] |
GODFREY L V, CHAN L H, ALONSO R N, et al. , 2013. The role of climate in the accumulation of lithium-rich brine in the Central Andes[J]. Applied Geochemistry, 38: 92-102. doi: 10.1016/j.apgeochem.2013.09.002
|
[28] |
GOLDBERG S, GLAUBIG R A, 1986. Boron adsorption and silicon release by the clay minerals kaolinite, Montmorillonite, and illite[J]. Soil Science Society of America Journal, 50(6): 1442-1448. doi: 10.2136/sssaj1986.03615995005000060013x
|
[29] |
GOLDBERG S, FORSTER H S, HEICK E L, 1993a. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects[J]. Soil Science Society of America Journal, 57(3): 704-708. doi: 10.2136/sssaj1993.03615995005700030013x
|
[30] |
GOLDBERG S, FORSTER H S, HEICK E L, 1993b. Temperature effects on boron adsorption by reference minerals and soils[J]. Soil Science, 156(5): 316-321. doi: 10.1097/00010694-199311000-00004
|
[31] |
GOTO A, ARAKAWA H, MORINAGA H, et al. , 2003. The occurrence of hydromagnesite in bottom sediments from Lake Siling, central Tibet: implications for the correlation among δ18O, δ13C and particle density[J]. Journal of Asian Earth Sciences, 21(9): 979-988. doi: 10.1016/S1367-9120(02)00169-4
|
[32] |
GU H E, MA Y Q, PENG Z K, et al. , 2023. Influence of polyborate ions on the fractionation of B isotopes during calcite deposition[J]. Chemical Geology, 622: 121387. doi: 10.1016/j.chemgeo.2023.121387
|
[33] |
HE M Y, XIAO Y K, JIN Z D, et al. , 2013. Quantification of boron incorporation into synthetic calcite under controlled pH and temperature conditions using a differential solubility technique[J]. Chemical Geology, 337-338: 67-74. doi: 10.1016/j.chemgeo.2012.11.013
|
[34] |
HE M Y, LUO C G, YANG H J, et al. , 2020. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes[J]. Ore Geology Reviews, 117: 103277. doi: 10.1016/j.oregeorev.2019.103277
|
[35] |
HEMMING N G, HANSON G N, 1992. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8
|
[36] |
HEMMING N G, HANSON G N, 1994. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry[J]. Chemical Geology, 114(1-2): 147-156. doi: 10.1016/0009-2541(94)90048-5
|
[37] |
HEMMING N G, REEDER R J, HANSON G N, 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate[J]. Geochimica et Cosmochimica Acta, 59(2): 371-379. doi: 10.1016/0016-7037(95)00288-B
|
[38] |
HEMMING N G, REEDER R J, HART S R, 1998. Growth-step-selective incorporation of boron on the calcite surface[J]. Geochimica et Cosmochimica Acta, 62(17): 2915-2922. doi: 10.1016/S0016-7037(98)00214-2
|
[39] |
HENEHAN M J, GEBBINCK C D K, WYMAN J V B, et al. , 2022. No ion is an island: multiple ions influence boron incorporation into CaCO3[J]. Geochimica et Cosmochimica Acta, 318: 510-530. doi: 10.1016/j.gca.2021.12.011
|
[40] |
HINDSHAW R S, TOSCA R, GOûT T L, et al. , 2019. Experimental constraints on Li isotope fractionation during clay formation[J]. Geochimica et Cosmochimica Acta, 250: 219-237. doi: 10.1016/j.gca.2019.02.015
|
[41] |
HINGSTON F J, POSNER A M, QUIRK J P, 1972. Anion adsorption by goethite and gibbsite[J]. Journal of Soil Science, 23(2): 177-192. doi: 10.1111/j.1365-2389.1972.tb01652.x
|
[42] |
HUH Y, CHAN L H, ZHANG L B, et al. , 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4
|
[43] |
KACZMAREK K, NEHRKE G, MISRA S, et al. , 2016. Investigating the effects of growth rate and temperature on the B/Ca ratio and δ11B during inorganic calcite formation[J]. Chemical Geology, 421: 81-92. doi: 10.1016/j.chemgeo.2015.12.002
|
[44] |
KASEMANN S A, MEIXNER A, ERZINGER J, et al. , 2004. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)[J]. Journal of South American Earth Sciences, 16(8): 685-697. doi: 10.1016/j.jsames.2003.12.004
|
[45] |
KEREN R, MEZUMAN U, 1981. Boron adsorption by clay minerals using a phenomenological equation[J]. Clays and Clay Minerals, 29(3): 198-204. doi: 10.1346/CCMN.1981.0290305
|
[46] |
KOBAYASHI K, HASHIMOTO Y, WANG S L, 2020. Boron incorporation into precipitated calcium carbonates affected by aqueous pH and boron concentration[J]. Journal of Hazardous Materials, 383: 121183. doi: 10.1016/j.jhazmat.2019.121183
|
[47] |
LÉCUYER C, GRANDJEAN P, REYNARD B, et al. , 2002. 11B/10B analysis of geological materials by ICP–MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater[J]. Chemical Geology, 186(1-2): 45-55. doi: 10.1016/S0009-2541(01)00425-9
|
[48] |
LI B K, CHENG H D, MA H Z, 2022a. Boron isotope geochemistry of the lakkor co salt lake (Tibet) and its geological significance[J]. Geofluids, 2022: 3724800.
|
[49] |
LI B K, HE M Y, MA H Z, et al. , 2022b. Boron isotope geochemistry of Bangor Co Salt Lake (central Tibet): implications for boron origin and uneven mixing of lake water[J]. Acta Geochimica, 41(5): 731-740. doi: 10.1007/s11631-022-00542-1
|
[50] |
LI J S, CHEN F K, LING Z Y, et al. , 2021. Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: Geochemical and Li isotopic evidence[J]. Ore Geology Reviews, 139: 104481. doi: 10.1016/j.oregeorev.2021.104481
|
[51] |
LI J Y, 1994. Distributive regularity of boron and lithium in Da Qaidam Salt Lake[J]. Journal of Salt Lake Research, 2(2): 20-28 (in Chinese with English abstract).
|
[52] |
LI W S, LIU X M, 2020. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: Implications for chemical weathering[J]. Geochimica et Cosmochimica Acta, 284: 156-172. doi: 10.1016/j.gca.2020.06.025
|
[53] |
LI W S, LIU X M, 2022. Mineralogy and fluid chemistry controls on lithium isotope fractionation during clay adsorption[J]. Science of the Total Environment, 851: 158138. doi: 10.1016/j.scitotenv.2022.158138
|
[54] |
LIN Y J, ZHENG M P, YE C Y, 2017. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes[J]. Applied Geochemistry, 78: 139-148. doi: 10.1016/j.apgeochem.2016.12.020
|
[55] |
LIN Y J, ZHENG M P, YE C Y, et al. , 2019. Trace and rare earth element geochemistry of Holocene hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China[J]. Carbonates and Evaporites, 34(4): 1265-1279. doi: 10.1007/s13146-017-0395-9
|
[56] |
LIU W G, XIAO Y K, PENG Z C, 1999. Relimiary study of hydrochemistry characteristics of boron and chlorine isotopes of salt lake brines in Qaidam Basin[J]. Journal of Salt Lake Research, 7(3): 8-14 (in Chinese with English abstract).
|
[57] |
LIU W G, XIAO Y K, PENG Z C, et al. , 2000. Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin[J]. Geochimica et Cosmochimica Acta, 64(13): 2177-2183. doi: 10.1016/S0016-7037(00)00363-X
|
[58] |
LIU X F, ZHENG M P, QI W, 2007. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye Salt Lake, Tibet, China[J]. Acta Geologica Sinica, 81(12): 1709-1715 (in Chinese with English abstract).
|
[59] |
LONG H, LAI Z P, FRENZEL P, et al. , 2012. Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau[J]. Quaternary Geochronology, 10: 136-142. doi: 10.1016/j.quageo.2011.11.005
|
[60] |
LÓPEZ STEINMETZ R L, 2017. Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S[J]. Miner Deposita, 52(1): 35-50. doi: 10.1007/s00126-016-0656-x
|
[61] |
LÓPEZ STEINMETZ R L, SALVI S, GARCÍA M G, et al. , 2018. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina[J]. Journal of Geochemical Exploration, 190: 26–38. LU S C, MA Y Q, LÜ S, et al. , 2022. Systematic boron isotope analysis on a Quaternary deep SG-1 core from the Qaidam Basin, NE Tibetan Plateau and its paleoclimate implication[J]. Quaternary International, 631: 1-10. doi: 10.1016/j.quaint.2022.04.014
|
[62] |
LÜ Y Y, 2008. Determination of Boron isotopes by MC-ICPMS and its application to the Tibetan geotherms and salt lakes[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences: 1-113 (in Chinese).
|
[63] |
LÜ Y Y, ZHENG M P, CHEN W X, et al. , 2013. Origin of boron in the Damxung Co Salt Lake (central Tibet): evidence from boron geochemistry and isotopes[J]. Geochemical Journal, 47(5): 513-523. doi: 10.2343/geochemj.2.0273
|
[64] |
LU S C, MA Y Q, LÜ S, et al., 2022. Systematic boron isotope analysis on a Quaternary deep SG-1 core from the Qaidam Basin, NE Tibetan Plateau and its paleoclimate implication[J]. Quaternary International, 631: 1-10.
|
[65] |
MA R Y, HAN F Q, MA H Z, et al. , 2015. Hydrochemical characteristics and boron isotope geochemistry of brine in Hoh Xil, Qinghai Province[J]. Acta Geoscientica Sinica, 36(1): 60-66 (in Chinese with English abstract).
|
[66] |
MARRIOTT C S, HENDERSON G M, BELSHAW N S, et al. , 2004a. Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate[J]. Earth and Planetary Science Letters, 222(2): 615-624. doi: 10.1016/j.jpgl.2004.02.031
|
[67] |
MARRIOTT C S, HENDERSON G M, CROMPTON R, et al. , 2004b. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 212(1-2): 5-15. doi: 10.1016/j.chemgeo.2004.08.002
|
[68] |
MAVROMATIS V, MONTOUILLOUT V, NOIREAUX J, et al. , 2015. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 150: 299-313. doi: 10.1016/j.gca.2014.10.024
|
[69] |
MAVROMATIS V, PURGSTALLER B, LOUVAT P, et al. , 2021. Boron isotope fractionation during the formation of amorphous calcium carbonates and their transformation to Mg-calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 315: 152-171. doi: 10.1016/j.gca.2021.08.041
|
[70] |
MIAO W L, ZHANG X Y, LI Y L, et al. , 2022. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Journal of Hydrology, 614: 128630. doi: 10.1016/j.jhydrol.2022.128630
|
[71] |
MILLOT R, GIRARD J P, 2007. Lithium isotope fractionation during adsorption onto mineral surfaces[C]//Clay in natural & engineered barriers for radioactive waste confinement - 3rd international meeting. Lille, 307-308.
|
[72] |
MILLOT R, PETELET-GIRAUD E, GUERROT C, et al. , 2010. Multi-isotopic composition (δ7Li–δ11B–δD–δ18O) of rainwaters in France: Origin and spatio-temporal characterization[J]. Applied Geochemistry, 25(10): 1510-1524. doi: 10.1016/j.apgeochem.2010.08.002
|
[73] |
MUNK L A, BOUTT D F, HYNEK S A, et al. , 2018. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin[J]. Chemical Geology, 493: 37-57. doi: 10.1016/j.chemgeo.2018.05.013
|
[74] |
Institute of Mineral Resources, Chinese Academy of Geological Sciences, 2024. Report on enrichment and crystallization processes of potassium salt and brine lithium deposits in China[R]. (in Chinese)
|
[75] |
NOIREAUX J, MAVROMATIS V, GAILLARDET J, et al. , 2015. Crystallographic control on the boron isotope paleo-pH proxy[J]. Earth and Planetary Science Letters, 430: 398-407. doi: 10.1016/j.jpgl.2015.07.063
|
[76] |
OI T, NOMURA M, MUSASHI M, et al. , 1989. Boron isotopic compositions of some boron minerals[J]. Geochimica et Cosmochimica Acta, 53(12): 3189-3195. doi: 10.1016/0016-7037(89)90099-9
|
[77] |
PAGANI M, LEMARCHAND D, SPIVACK A, et al. , 2005. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochimica et Cosmochimica Acta, 69(4): 953-961. doi: 10.1016/j.gca.2004.07.029
|
[78] |
PALMER M R, SPIVACK A J, EDMOND J M, 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay[J]. Geochimica et Cosmochimica Acta, 51(9): 2319-2323. doi: 10.1016/0016-7037(87)90285-7
|
[79] |
PALMER M R, LONDON D, MORGAN G B, et al. , 1992. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: A temperature- and pressure-dependent isotopic system[J]. Chemical Geology: Isotope Geoscience Section, 101(1-2): 123-129. doi: 10.1016/0009-2541(92)90209-N
|
[80] |
PISTINER J S, HENDERSON G M, 2003. Lithium-isotope fractionation during continental weathering processes[J]. Earth and Planetary Science Letters, 214(1-2): 327-339. doi: 10.1016/S0012-821X(03)00348-0
|
[81] |
POGGE VON STRANDMANN P A E, VAKS A, BAR-MATTHEWS M, et al. , 2017. Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles[J]. Earth and Planetary Science Letters, 469: 64-74. doi: 10.1016/j.jpgl.2017.04.014
|
[82] |
POGGE VON STRANDMANN P A E, SCHMIDT D N, PLANAVSKY N J, et al. , 2019. Assessing bulk carbonates as archives for seawater Li isotope ratios[J]. Chemical Geology, 530: 119338. doi: 10.1016/j.chemgeo.2019.119338
|
[83] |
QI H P, WANG Y H, XIAO Y K, et al. , 1993. A preliminary study of boron isotopes in salt lakes of China[J]. Chinese Science Bulletin, 38(7): 634-637 (in Chinese). doi: 10.1360/csb1993-38-7-634
|
[84] |
QING D L, MA H Z, LI B K, 2012. Boron concentration and isotopic fractionation research in BangkogCo intercrystal brine evaporation process[J]. Journal of Salt Lake Research, 20(3): 15-20 (in Chinese with English abstract).
|
[85] |
RADES E F, TSUKAMOTO S, FRECHEN M, et al. , 2015. A lake-level chronology based on feldspar luminescence dating of beach ridges at Tangra Yum Co (southern Tibet)[J]. Quaternary Research, 83(3): 469-478. doi: 10.1016/j.yqres.2015.03.002
|
[86] |
SALDI G D, NOIREAUX J, LOUVAT P, et al. , 2018. Boron isotopic fractionation during adsorption by calcite – Implication for the seawater pH proxy[J]. Geochimica et Cosmochimica Acta, 240: 255-273. doi: 10.1016/j.gca.2018.08.025
|
[87] |
SANYAL A, NUGENT M, REEDER R J, et al. , 2000. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments[J]. Geochimica et Cosmochimica Acta, 64(9): 1551-1555. doi: 10.1016/S0016-7037(99)00437-8
|
[88] |
SEYEDALI M, COOGAN L A, GILLIS K M, 2021. The effect of solution chemistry on elemental and isotopic fractionation of lithium during inorganic precipitation of calcite[J]. Geochimica et Cosmochimica Acta, 311: 102-118. doi: 10.1016/j.gca.2021.07.021
|
[89] |
SHIRODKAR P V, XIAO Y K, 1997. Isotopic compositions of boron in sediments and their implications[J]. Current Science, 72(1): 74-77.
|
[90] |
SONG H B, LI Y W, 1994. Indoor evaporation experiment on water of South China Sea[J]. Acta Geoscientia Sinica, 15(1-2): 157-167 (in Chinese with English abstract).
|
[91] |
SPIVACK A J, EDMOND J M, 1987. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 51(5): 1033-1043. doi: 10.1016/0016-7037(87)90198-0
|
[92] |
SPIVACK A J, PALMER M R, EDMOND J M, 1987. The sedimentary cycle of the boron isotopes[J]. Geochimica et Cosmochimica Acta, 51(7): 1939-1949. doi: 10.1016/0016-7037(87)90183-9
|
[93] |
STOFFYNEGLI P, MACKENZIE F T, 1984. Mass balance of dissolved lithium in the oceans[J]. Geochimica et Cosmochimica Acta, 48(4): 859-872. doi: 10.1016/0016-7037(84)90107-8
|
[94] |
SUN D P, 1991. Origin of borates in Xiao-Chaidan Lake, Chaidam basin, China[J]. Mineralogy and Petrology, 11(4): 57-65 (in Chinese with English abstract).
|
[95] |
SUN D P, TANG Y, XU Z Q, et al. , 1991. A preliminary study of hydrochemical evolution in Lake Qinghai of Qaidam basin, China[J]. Chinese Science Bulletin, 36(15): 1172-1174 (in Chinese). doi: 10.1360/csb1991-36-15-1172
|
[96] |
SUN D P, XIAO Y K, WANG Y H, et al. , 1993. A preliminary study of boron isotopes in Lake Qinghai of Qaidam basin, China[J]. Chinese Science Bulletin, 38(9): 822-825 (in Chinese). doi: 10.1360/csb1993-38-9-822
|
[97] |
SWIHART G H, MOORE P B, CALLIS E L, 1986. Boron isotopic composition of marine and nonmarine evaporite borates[J]. Geochimica et Cosmochimica Acta, 50(6): 1297-1301. doi: 10.1016/0016-7037(86)90413-8
|
[98] |
TAN H B, CHEN J, RAO W B, et al. , 2012. Geothermal constraints on enrichment of boron and lithium in salt lakes: an example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 51: 21-29. doi: 10.1016/j.jseaes.2012.03.002
|
[99] |
TANG Y J, ZHANG H F, YING J F, 2007. Review of the lithium isotope system as a geochemical tracer[J]. International Geology Review, 49: 374-388. doi: 10.2747/0020-6814.49.4.374
|
[100] |
TARDY Y, KREMPP G, TRAUTH N, 1972. Le lithium dans les minéraux argileux des sédiments et des sols[J]. Geochimica et Cosmochimica Acta, 36(4): 397-412. doi: 10.1016/0016-7037(72)90031-2
|
[101] |
TOMASCAK P B, HEMMING N G, HEMMING S R, 2003. The lithium isotopic composition of waters of the Mono Basin, California[J]. Geochimica et Cosmochimica Acta, 67(4): 601-611. doi: 10.1016/S0016-7037(02)01132-8
|
[102] |
TOMASCAK P B, 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences[J]. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. doi: 10.2138/gsrmg.55.1.153
|
[103] |
TOMASCAK P B, MAGNA T, DOHMEN R, 2016. Advances in lithium isotope geochemistry[M]. Cham: Springer: 1-195.
|
[104] |
TONG W, ZHANG M T, ZHANG Z F, et al. , 1981. Geothermals beneath Xizang (Tibetan) Plateau[M]. Beijing: Science Press: 1-170 (in Chinese).
|
[105] |
TUCKER M E, WRIGHT V P, 1990. Carbonate depositional systems i: marine shallow-water and lacustrine carbonates[M]//TUCKER M E, WRIGHT V P. Carbonate sedimentology. Oxford: Blackwell Science: 101-227.
|
[106] |
VENGOSH A, CHIVAS A R, MCCULLOCH M T, et al. , 1991a. Boron isotope geochemistry of Australian salt lakes[J]. Geochimica et Cosmochimica Acta, 55(9): 2591-2606. doi: 10.1016/0016-7037(91)90375-F
|
[107] |
VENGOSH A, STARINSKY A, KOLODNY Y, et al. , 1991b. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel[J]. Geochimica et Cosmochimica Acta, 55(6): 1689-1695. doi: 10.1016/0016-7037(91)90139-V
|
[108] |
VENGOSH A, STARINSKY A, KOLODNY Y, et al. , 1992. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate[J]. Geology, 20(9): 799-802. doi: 10.1130/0091-7613(1992)020<0799:BIVDFE>2.3.CO;2
|
[109] |
VENGOSH A, CHIVAS A R, STARINSKY A, et al. , 1995. Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China[J]. Chemical Geology, 120(1-2): 135-154. doi: 10.1016/0009-2541(94)00118-R
|
[110] |
VIGIER N, DECARREAU A, MILLOT R, et al. , 2008. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J]. Geochimica et Cosmochimica Acta, 72(3): 780-792. doi: 10.1016/j.gca.2007.11.011
|
[111] |
VINE J D, COLO D, 1975. Lithium in sediments and brines-how, why, and where to search[J]. Journal of Research of the U. S. Geological Survey, 3(4): 479-485.
|
[112] |
WANG Q Z, XIAO Y K, ZHANG C G, et al. , 2001. Boron isotopic compositions of some boron minerals in Qinghai and Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 364-366 (in Chinese with English abstract).
|
[113] |
WANG S M, DOU H S, 1998. Records of Chinese lakes[M]. Beijing: Science Press: 1-580 (in Chinese).
|
[114] |
WANG X D, LIU C Q, ZHAO Z Q, et al. , 2017. Boron isotope geochemistry of Zigetang Co saline lake sediments, Tibetan Plateau[J]. Acta Geochimica, 36(3): 437-439. doi: 10.1007/s11631-017-0185-z
|
[115] |
WANG Y J, WEI H Z, JIANG S Y, et al. , 2018. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system[J]. Applied Geochemistry, 98: 221-236. doi: 10.1016/j.apgeochem.2018.09.013
|
[116] |
WEI H Z, JIANG S Y, TAN H B, et al. , 2014. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 380: 74-83. doi: 10.1016/j.chemgeo.2014.04.026
|
[117] |
WEYNELL M, WIECHERT U, SCHUESSLER J A, 2017. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 213: 155-177. doi: 10.1016/j.gca.2017.06.026
|
[118] |
WEYNELL M, WIECHERT U, SCHUESSLER J A, 2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 293: 205-223. doi: 10.1016/j.gca.2020.10.021
|
[119] |
WU L L, MA W Z, TANG Y, 1984. On the water-chemical properties and formative conditions of high-boron brine in Qinghai-Xizang Plateau[J]. Geographical Research, 3(4): 1-11 (in Chinese with English abstract).
|
[120] |
WU Q, ZHENG M P, NIE Z, et al. , 2012. Natural evaporation and crystallization regularity of Dangxiongcuo carbonate-type salt lake brine in Tibet[J]. Chinese Journal of Inorganic Chemistry, 28(9): 1895-1903 (in Chinese with English abstract).
|
[121] |
WU Q, ZHENG M P, NIE Z, et al. , 2013. Experiment study of solar evaporation of brine from the Dangxiongcuo Salt Lake in Tibet in winter[J]. Acta Geologica Sinica, 87(3): 433-440 (in Chinese with English abstract).
|
[122] |
WU Y Q, ZHAO Z Q, 2011. Experimental study on the adsorption of Li+ on kaolinite and montmorillonite[J]. Acta Mineralogica Sinica, 31(2): 291-295 (in Chinese with English abstract).
|
[123] |
WU Z H, ZHANG Y S, HU D G, et al. , 2007. Late Cenozoic normal faulting of the Qungdo’Gyang Graben in the central segment of the Cona-Oiga Rift, southeastern Tibet[J]. Journal of Geomechanics, 13(4): 297-306 (in Chinese with English abstract).
|
[124] |
WU Z M, CUI X M, ZHENG M P, 2012. pH value change trends in salt brine evaporation[J]. Chinese Journal of Inorganic Chemistry, 28(2): 297-301 (in Chinese with English abstract).
|
[125] |
XIAO J, XIAO Y K, LIU C Q, et al. , 2009. Boron isotopic fractionation during incorporation of boron into Mg(OH)2[J]. Chinese Science Bulletin, 54(17): 3090-3100. doi: 10.1007/s11434-009-0138-y
|
[126] |
XIAO J, XIAO Y K, JIN Z D, et al. , 2013. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 60(4): 431-447. doi: 10.1080/08120099.2013.813585
|
[127] |
XIAO Y K, SUN D P, WANG Y H, et al. , 1992. Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica et Cosmochimica Acta, 56(4): 1561-1568. doi: 10.1016/0016-7037(92)90225-8
|
[128] |
XIAO Y K, QI H P, WANG Y H, et al. , 1994. lithium isotopic compositions of brine, sediments and source water in da Qaidam lake, Qinghai, China[J]. Geochimica, 23(4): 329-338 (in Chinese with English abstract).
|
[129] |
XIAO Y K, SHIRODKAR P V, LIU W G, et al. , 1999. The investigation on isotopic geochemistry of boron in salt lake, Qaidam Basin, Qinghai[J]. Progress in Natural Science, 9(7): 612-618 (in Chinese).
|
[130] |
XIAO Y K, SWIHART G H, XIAO Y, et al. , 2001. A preliminary experimental study of the boron concentration in vapor and the isotopic fractionation of boron between seawater and vapor during evaporation of seawater[J]. Science in China Series B: Chemistry, 44(5): 540-551. doi: 10.1007/BF02880685
|
[131] |
XIAO Y K, WANG L, 2001. The effect of pH and temperature on the isotopic fractionation of boron between saline brine and sediments[J]. Chemical Geology, 171(3-4): 253-261. doi: 10.1016/S0009-2541(00)00251-5
|
[132] |
XIAO Y K, LI S Z, WEI H Z, et al. , 2006. An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water[J]. Science in China Series B: Chemistry, 49(5): 454-465.
|
[133] |
XIAO Y K, LI S Z, WEI H Z, et al. , 2007. Boron isotopic fractionation during seawater evaporation[J]. Marine Chemistry, 103(3-4): 382-392. doi: 10.1016/j.marchem.2006.10.007
|
[134] |
XIAO Y K, LI H L, LIU W G, et al. , 2008. Boron isotopic fractionation in laboratory inorganic carbonate precipitation: Evidence for the incorporation of B(OH)3 into carbonate[J]. Science in China Series D: Earth Sciences, 51(12): 1776-1785. doi: 10.1007/s11430-008-0144-y
|
[135] |
YAMAJI K, MAKITA Y, WATANABE H, et al. , 2001. Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution[J]. The Journal of Physical Chemistry A, 105(3): 602-613. doi: 10.1021/jp001303i
|
[136] |
YU J J, ZHENG M P, WU Q, et al. , 2015. Natural evaporation and crystallization of Dujiali salt lake water in Tibet[J]. Chemical Industry and Engineering Progress, 34(12): 4172-4178 (in Chinese with English abstract).
|
[137] |
YU S S, TANG Y, 1981. The hydrochemical characteristics of the saline lakes on the Qinghai-Xizang Plateau[J]. Oceanologia et Limnologia Sinica, 12(6): 498-511 (in Chinese with English abstract).
|
[138] |
ZHANG L B, CHAN L H, GIESKES J M, 1998. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J]. Geochimica et Cosmochimica Acta, 62(14): 2437-2450. doi: 10.1016/S0016-7037(98)00178-1
|
[139] |
ZHANG P X, 1987. Salt lakes in Qaidam Basin[M]. Beijing: Science Press: 1-235 (in Chinese).
|
[140] |
ZHANG P X, ZHANG B Z, TANG Y, et al. , 1999. Natural resources of salt lakes in China and their development and utilization[M]. Beijing: Science Press: 1-325 (in Chinese).
|
[141] |
ZHANG W J, TAN H B, XU W S, et al. , 2023. Boron source and evolution of the Zabuye salt lake, Tibet: Indication from boron geochemistry and isotope[J]. Applied Geochemistry, 148: 105516. doi: 10.1016/j.apgeochem.2022.105516
|
[142] |
ZHANG Y, TAN H B, CONG P X, et al. , 2022. Boron and lithium isotopic constraints on their origin, evolution, and enrichment processes in a river–groundwater–salt lake system in the Qaidam Basin, northeastern Tibetan Plateau[J]. Ore Geology Reviews, 149: 105110. doi: 10.1016/j.oregeorev.2022.105110
|
[143] |
ZHAO Y, MA W P, YANG Y, et al. , 2022. Experimental study on the adsorption of Li+ by clay minerals —implications for the mineralization of clay-type lithium deposit[J]. Acta Mineralogica Sinica, 42(2): 141-153 (in Chinese with English abstract).
|
[144] |
ZHENG M P, LIU W G, XIANG J, et al. , 1983. On saline lakes in Tibet, China[J]. Acta Geologica Sinica, 57(2): 184-194 (in Chinese with English abstract).
|
[145] |
ZHENG M P, XIANG J, WEI X J, 1989. Saline lakes on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing: Beijing Science and Technology Publishing Co. , Ltd. : 1-431 (in Chinese).
|
[146] |
Beijing Mianping Salt Lake Research Ltd., 2006. Exploration report on lithium resource of Damxung Co surface brine in Nima County, Tibet Autonomous Region[R]. (in chinese)
|
[147] |
ZHENG X Y, YANG S X, 1981. A preliminary study on the constituents of salt lakes in Tibet[J]. Salt Lake Scientific and Technological Information(S1): 8-19 (in Chinese).
|
[148] |
ZHENG X Y, 1982. The distribution characteristics of B and Li in the brine of Zhacang Caka (Zhangzang Caka) saline lake, Xizang autonomous region, China[J]. Oceanologia et Limnologia Sinica, 13(1): 26-34 (in Chinese with English abstract).
|
[149] |
ZHENG X Y, YANG S X, 1983. On the components of the saline lake water in Xizang[J]. Oceanologia et Limnologia Sinica, 14(4): 342-352 (in Chinese with English abstract).
|
[150] |
ZHENG X Y, TANG Y, XU C, 1988. Salt lakes in Xizang[M]. Beijing: Science Press: 1-190 (in Chinese).
|
[151] |
ZHENG X Y, ZHANG M G, XU C, et al. , 2002. Records of salt lakes in China[M]. Beijing: Science Press: 1-415 (in Chinese).
|
[152] |
卞爽, 于志泉, 龚俊峰, 等, 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 178-194. doi: 10.12090/j.issn.1006-6616.2021.27.02.018
|
[153] |
陈克造, 杨绍修, 郑喜玉, 1981. 青藏高原的盐湖[J]. 地理学报, 36(1): 13-21. doi: 10.3321/j.issn:0375-5444.1981.01.002
|
[154] |
高春亮, 余俊清, 展大鹏, 等, 2009. 柴达木盆地盐湖硼矿资源的形成和分布特征[J]. 盐湖研究, 17(4): 6-13.
|
[155] |
李家棪, 1994. 大柴旦盐湖硼、锂分布规律(续)[J]. 盐湖研究, 2(2): 20-28.
|
[156] |
刘卫国, 肖应凯, 彭子成, 1999. 柴达木盆地盐湖卤水硼、氯同位素的水化学特性探讨[J]. 盐湖研究, 7(3): 8-14. doi: 10.3969/j.issn.1008-858X.1999.03.002
|
[157] |
刘喜方, 郑绵平, 齐文, 2007. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究[J]. 地质学报, 81(12): 1709-1715. doi: 10.3321/j.issn:0001-5717.2007.12.011
|
[158] |
吕苑苑, 2008. 利用MC-ICP-MS测定硼同位素及其在西藏地热和盐湖中的初步应用[D]. 北京: 中国科学院研究生院: 1-113.
|
[159] |
马茹莹, 韩凤清, 马海州, 等, 2015. 青海可可西里盐湖水化学及硼同位素地球化学特征[J]. 地球学报, 36(1): 60-66. doi: 10.3975/cagsb.2015.01.07
|
[160] |
中国地质科学院矿产资源研究所, 2024. 中国钾盐和卤水型锂矿成矿规律研究成果报告[R].
|
[161] |
祁海平, 王蕴慧, 肖应凯, 等, 1993. 中国盐湖中硼同位素的初步研究[J]. 科学通报, 38(7): 634-637.
|
[162] |
卿德林, 马海州, 李斌凯, 2012. 班戈错Ⅱ湖晶间卤水蒸发硼浓度及硼同位素分馏研究[J]. 盐湖研究, 20(3): 15-20.
|
[163] |
宋鹤彬, 李亚文, 1994. 中国南海海水蒸发实验过程中地球化学行径[J]. 地球学报, 15(1-2): 157-167.
|
[164] |
孙大鹏, 1991. 柴达木盆地小柴旦湖硼酸盐的形成[J]. 矿物岩石, 11(4): 57-65.
|
[165] |
孙大鹏, 唐渊, 许志强, 等, 1991. 青海湖湖水化学演化的初步研究[J]. 科学通报, 36(15): 1172-1174.
|
[166] |
孙大鹏, 肖应凯, 王蕴慧, 等, 1993. 青海湖硼同位素地球化学初步研究[J]. 科学通报, 38(9): 822-825.
|
[167] |
佟伟, 章铭陶, 张知非, 等, 1981. 西藏地热[M]. 北京: 科学出版社.
|
[168] |
万红琼, 孙贺, 刘海洋, 等, 2015. 俯冲带Li同位素地球化学: 回顾与展望[J]. 地学前缘, 22(5): 29-43.
|
[169] |
王庆忠, 肖应凯, 张崇耿, 等, 2001. 青海和西藏的某些天然硼酸盐矿物的硼同位素组成[J]. 矿物岩石地球化学通报, 20(4): 364-366. doi: 10.3969/j.issn.1007-2802.2001.04.044
|
[170] |
王苏民, 窦鸿身, 1998. 中国湖泊志[M]. 北京: 科学出版社: 1-580.
|
[171] |
吴俐俐, 马文展, 唐渊, 1984. 青藏高原高硼卤水的水化学特征及其成因[J]. 地理研究, 3(4): 1-11.
|
[172] |
伍倩, 郑绵平, 乜贞, 等, 2012. 西藏当雄错碳酸盐型盐湖卤水自然蒸发析盐规律研究[J]. 无机化学学报, 28(9): 1895-1903.
|
[173] |
伍倩, 郑绵平, 乜贞, 等, 2013. 西藏当雄错盐湖卤水冬季日晒蒸发实验研究[J]. 地质学报, 87(3): 433-440.
|
[174] |
吴雅琴, 赵志琦, 2011. 高岭石和蒙脱石吸附Li+的实验研究[J]. 矿物学报, 31(2): 291-295.
|
[175] |
吴中海, 张永双, 胡道功, 等, 2007. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用[J]. 地质力学学报, 13(4): 297-306.
|
[176] |
肖应凯, 祁海平, 王蕴慧, 等, 1994. 青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J]. 地球化学, 23(4): 329-338.
|
[177] |
肖应凯, SHIRODKAR P V, 刘卫国, 等, 1999. 青海柴达木盆地盐湖硼同位素地球化学研究[J]. 自然科学进展, 9(7): 612-618. doi: 10.3321/j.issn:1002-008X.1999.07.007
|
[178] |
余疆江, 郑绵平, 伍倩, 等, 2015. 西藏杜佳里盐湖湖水的自然蒸发及析盐规律[J]. 化工进展, 34(12): 4172-4178.
|
[179] |
于昇松, 唐渊, 1981. 青藏高原盐湖的水化学特征[J]. 海洋与湖沼, 12(6): 498-511.
|
[180] |
张彭熹, 1987. 柴达木盆地盐湖[M]. 北京: 科学出版社: 1-235.
|
[181] |
张彭熹, 张保珍, 唐渊, 等, 1999. 中国盐湖自然资源极其开发利用[M]. 北京: 科学出版社: 1-325.
|
[182] |
赵越, 马万平, 杨洋, 等, 2022. 黏土矿物对Li+的吸附实验研究: 对黏土型锂矿成矿启示[J]. 矿物学报, 42(2): 141-153.
|
[183] |
郑绵平, 刘文高, 向军, 等, 1983. 论西藏的盐湖[J]. 地质学报, 57(2): 184-194.
|
[184] |
郑绵平, 向军, 魏新俊, 1989. 青藏高原盐湖[M]. 北京: 北京科学技术出版社: 1-431.
|
[185] |
北京绵平盐湖研究院, 2006. 西藏自治区尼玛县当雄错表面卤水锂矿勘查报告[R].
|
[186] |
郑喜玉, 杨绍修, 1981. 西藏盐湖物质成分的初步研究[J]. 盐湖科技资料(S1): 8-19.
|
[187] |
郑喜玉, 1982. 西藏扎仓茶卡盐湖卤水硼、锂的分布特征[J]. 海洋与湖沼, 13(1): 26-34.
|
[188] |
郑喜玉, 杨绍修, 1983. 西藏盐湖成分及其成因探讨[J]. 海洋与湖沼, 14(4): 342-352.
|
[189] |
郑喜玉, 唐渊, 徐昶, 1988. 西藏盐湖[M]. 北京: 科学出版社: 1-190.
|
[190] |
郑喜玉, 张明刚, 徐昶, 等, 2002. 中国盐湖志[M]. 北京: 科学出版社: 1-415.
|
WU Zhonghai. 2024: The earthquake-controlling process of continental collision-extrusion active tectonic system around the Qinghai-Tibet Plateau: A case study of strong earthquakes since 1990. Journal of Geomechanics, 30(2): 189-205. doi: 10.12090/j.issn.1006-6616.2023186 | |
LI Gang, WANG Ning, ZHANG Kaixun, BAI Guoping, HE Yubo, HU Jingjing, MENG Qiuhan, QIU Haihua. 2023: Analysis of petroleum systems and assessment of petroleum resources in the West Barents Sea Basin, Arctic. Journal of Geomechanics, 29(2): 174-187. doi: 10.12090/j.issn.1006-6616.2022134 | |
LI Zongyao, SHENG Mei, JIANG Kai, YI Shiyu, WANG Xisheng. 2022: Provenance study of the Xining loess in the Northeastern Tibetan Plateau, China. Journal of Geomechanics, 28(4): 605-616. doi: 10.12090/j.issn.1006-6616.2022029 | |
GAO Haoyuan, GAO Yang, YIN Yueping, ZHANG Tiantian, WAN Jiawei. 2022: New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau. Journal of Geomechanics, 28(6): 1090-1103. doi: 10.12090/j.issn.1006-6616.20222831 | |
BIAN Shuang, YU Zhiquan, GONG Junfeng, YANG Rong, CHENG Xiaogan, LIN Xiubin, CHEN Hanlin. 2021: Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau. Journal of Geomechanics, 27(2): 178-194. doi: 10.12090/j.issn.1006-6616.2021.27.02.018 | |
HAN Jian'en, LUO Peng, YU Jia, SHAO Zhaogang, MENG Qingwei, WANG Jin, ZHU Dagang. 2020: Pan-lake during the late Pleistocene in the source area of the Yellow River and its significance. Journal of Geomechanics, 26(2): 232-243. doi: 10.12090/j.issn.1006-6616.2020.26.02.022 | |
JI Changjun, WU Zhenhan, LIU Zhiwei, ZHAO Zhen. 2019: STRUCTURAL FEATURES OF THRUST NAPPES IN THE QIANGTANG BASIN AND HYDROCARBON RESOURCES EFFECT. Journal of Geomechanics, 25(S1): 66-71. doi: 10.12090/j.issn.1006-6616.2019.25.S1.012 | |
ZHANG Fu-li, SUN Qi-bang, WANG Xing-yun, ZOU Yan-rong. 2012: EVALUATION OF WATER SOLUBLE HELIUM RESOURCES IN WEIHE BASIN. Journal of Geomechanics, 18(2): 195-202. | |
JIANG Fu-chu, WANG Shu-bin, FU Jian-li, WANG Yan, YIN Wei-de. 2006: TEMPERATURE DIFFERENCE BETWEEN THE QINGHAI-TIBET PLATEAU AND ITS CONTIGUOUS AREAS. Journal of Geomechanics, 12(4): 399-405. | |
WANG Lian-jie, WU Zhen-han, WANG Wei, SUN Dong-sheng. 2006: NUMERICAL MODELING OF THE PRESENT TECTONIC STRESS FIELD IN THE CENTRAL QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 12(2): 140-149. | |
BAI Jia-qi, MAI Lin, YANG Mei-ling. 2006: GEOTHERMAL RESOURCES AND CRUSTAL THERMAL STRUCTURE OF THE QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 12(3): 354-362. | |
ZHU Da-gang, MENG Xian-gang, ZHAO Xi-tao, SHAO Zhao-gang, MA Zhi-bang, YANG Chao-bin, WU Zhong-hai, WANG Jian-ping. 2005: SEDIMENTARY EVOLUTION OF THE NAM CO BASIN,TIBET,SINCE 116ka BP AND QINGHAI-TIBET PLATEAU UPLIFT. Journal of Geomechanics, 11(2): 172-180. | |
CHEN Xuan-hua, AN Yin, George E. GEHRELS, Eric S. COWGILL, Marty GROVE, T. Mark HARRISON, WANG Xiao-Feng, YANG Nong, LIU Jian. 2004: MESOZOIC N-S EXTENSION IN THE EASTERN ALTYN TAGH RANGE ON THE NORTHERN MARGIN OF THE QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 10(3): 193-212. | |
QIAN Fang. 1999: STUDY ON MAGNETOSTRATIGRAPHY IN QINGHAI-TIBETAN PLATEAU IN LATE CENOZOIC. Journal of Geomechanics, 5(4): 24-36. | |
CUI Zuo-zhou. 1999: CRUSTAL EXTENSION-SHORTENING OF QINGHAI-TIBET PLATEAU AND MECHANINCAL PROPERTIES IMPLICATIONS. Journal of Geomechanics, 5(3): 8-12. | |
WANG Lian-jie, CUI Jun-wen, WANG Wei. 1999: TECTONIC DEFORMATION AND THERMAL STRESS FIELD IN QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 5(3): 1-7. | |
Jiang Wan, Mo Xuanxue, Zhao Chonghe, Guo Tieying, Zhang Shuangquan. 1998: MINERAL FISSION-TRACK DATES AND RESEARCH ON UPLIFTING VELOCITY OF QINGHAI-XIZANG PLATEAU. Journal of Geomechanics, 4(1): 13-18. | |
Wu Hongling, Wang Wei, Wang Lianjie, Zhang Lirong, Cui Junwen. 1996: UPLIFTING AND SHORTENING OF TIBETAN PLATEAU AND VISCO-ELASTIC DEFORMATION ANALYSIS. Journal of Geomechanics, 2(1): 17-24. | |
Dai Huaguang, Jia Yunhong, Liu Hongchun, Su Xiangzhou, Chen Yongming. 1995: RESEARCH OF THE SEISMIC FAULT ON THE NORTHEASTERN MARGIN OF THE QINGHAI-TIBETAN PLATE. Journal of Geomechanics, 1(1): 38-43. | |
1. | 陈杰江,周仕娇,杨兵,童雄,芦元廷,张裕,谢贤,杜嘉澳,李蒋,孙代馨. 某稀土-萤石中矿中萤石的高效回收试验研究. 非金属矿. 2025(01): 38-42 . ![]() | |
2. | 潘文辉,戴知友. 硝酸铋改性赤泥颗粒降解多氯联苯研究. 绿色科技. 2024(24): 173-178 . ![]() |