Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Shiyuan, WANG Jing, LI Fupeng, et al., 2024. Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China. Journal of Geomechanics, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060
Citation: WANG Shiyuan, WANG Jing, LI Fupeng, et al., 2024. Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China. Journal of Geomechanics, 30 (2): 275-288. DOI: 10.12090/j.issn.1006-6616.2023060

Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China

doi: 10.12090/j.issn.1006-6616.2023060
Funds:

the National Natural Science Foundation of China 2019QZKK0708

the Spark Program of the China Earthquake Administration XH24036B

the Scientific Research Fund of the Institute of Engineering Mechanics, China Earthquake Administration 2021EEEVL0101

More Information
  • Received: 2023-04-20
  • Revised: 2024-02-28
  • Accepted: 2024-03-13
  • Available Online: 2024-03-21
  • Published: 2024-04-28
  •   Objective  The Litang-Yidun fault is a left-lateral strike-slip active fault zone extending approximately 130 km in the Sichuan-Yunnan rhombic block in the Holocene. As a significant seismogenic structure controlling seismic activity in the Litang area of western Sichuan, research on both paleoseismicity and surface ruptures primarily focuses on the Litang and Damaoyaba sections, with relatively limited study on the Cuopuhu section in the northern part. Detailed investigation of the Cuopuhu section can provide fundamental information on its activity characteristics, paleoseismic events, and slip rates.  Methods  The Cuopuhu section of the Litang-Yidun fault was investigated using field surveys, high-precision mapping, trenching, and 14C dating methods to explore its slip rate and paleoseismic events. Two trench sites were excavated at the foothills of Dongou Mountain to identify the relationships between faulting and strata, sedimentary characteristics, and fault motion.  Conclusion  Four paleoseismic events were identified: Event Ⅰ occurred before BC 3382±60 a; Event Ⅱ occurred between BC 3382±60 a and BC 1094±51 a; Events Ⅲ and Ⅳ occurred after AD 1330±44 a. The recurrence intervals of the four earthquakes are approximately 0.4±0.3 ka, 2.42±0.1 ka, and 2.40±0.1 ka, respectively. Based on the calculated intervals, Events Ⅰ and Ⅱ, and Events Ⅱ and Ⅲ, Ⅳ, have recurrence intervals of about 2.4 ka. Events Ⅲ and Ⅳ occurred after AD 1330±44 a, making it difficult to determine their sequence and exact timing. It can be inferred that the Cuopuhu section of the Litang-Yidun fault likely has a recurrence interval of about 2.4 ka for paleoseismic events, with a possibility of seismic events with recurrence intervals of 0.4±0.3 ka. By comparing the research data between the Cuopuhu section and the Litang and Damaoyaba segments, differences in paleoseismic events between the Cuopuhu section and the other sections are evident. However, the seismic activity of different fault sections has shown a sustained strengthening trend since the Holocene. Based on mapped fault scarps and moraine ridges from the last glacial period, the average slip rate of the Cuopuhu section since the Late Pleistocene is estimated to be 4.15±0.5 mm/a, similar to the slip rates of different branches of the Litang-Yidun fault in the late Quaternary period.  Significance  This study provides information on the tectonic features, paleoseismicity, and slip rates of the Litang-Yidun fault, aiding in a better understanding of the seismic history and structural deformation patterns in the area and giving more data for medium- and long-term earthquake prediction in the future. It also contributes to the seismic risk assessment of relevant projects along the Sichuan-Tibet Railway.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BAI D H, UNSWORTH M J, MEJU M A, et al., 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358-362. doi: 10.1038/ngeo830
    CHEN G H, XU X W, YUAN R M, et al., 2010. Late Quaternary climate and geomorphology on the northeastern margin of Sichuan-Yunnan block and their tectonomorphologic significance[J]. Quaternary Sciences, 30(4): 837-854. (in Chinese with English abstract)
    CHEVALIER M L, LELOUP P H, REPLUMAZ A, et al., 2016. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard[J]. Tectonophysics, 682: 278-292. doi: 10.1016/j.tecto.2016.05.039
    DONALDSON D G, WEBB A A G, MENOLD C A, et al., 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite[J]. Geology, 41(8): 835-838. doi: 10.1130/G33699.1
    DONG X P, LI Z H, JING X H, et al., 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English Abstract)
    FAN T Y, CHEN Q C, WU Z H, et al., 2013. 3D viscoelastic modeling on the present stress of eastern Qingzang Plateau including active tectonics[J]. Progress in Geophysics, 28(3): 1140-1149. (in Chinese with English abstract)
    GAO S P, 2021. Late quaternary paleoseismology and faulting behavior of the internal and western boundary faults of Northwest Sichuan Subblock[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    GORDON R G, STEIN S, 1992. Global tectonics and space geodesy[J]. Science, 256(5055): 333-342. doi: 10.1126/science.256.5055.333
    HA G H, WU Z H, HE L, 2018. Late cenozoic sedimentary strata of Qiongduojiang graben, south Tibet: preliminary constraint on the initial rifting age of the SN-trending rift[J]. Acta Geologica Sinica, 92(10): 2051-2067. (in Chinese with English abstract)
    HE R Z, GAO R, 2003. Some significances of studying north-southern rift in Tibet Plateau[J]. Progress in Geophysics, 18(1): 35-43. (in Chinese with English abstract)
    HU X M, GARZANTI E, MOORE T, et al., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1Ma)[J]. Geology, 43(10): 859-862.
    HU X M, GARZANTI E, WANG J G, et al., 2016. The timing of India-Asia collision onset-Facts, theories, controversies[J]. Earth-Science Reviews, 160: 264-299.
    JI W Q, WU FY, CHUNG S L, et al., 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3-4): 229-245.
    JI W Q, WU F Y, CHUNG S L, et al., 2016. Eocene Neo-Tethyan slab breakoff constrained by 45Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 44(4): 283-286.
    LIU K, LI Y F, GUO H W, et al., 2021. Determination of surface rupture length and analysis of Riedel shear structure of the Litang M7.3 earthquake in the west Sichuan in 1948[J]. Acta Geologica Sinca, 95(8): 2346-2360. (in Chinese with English abstract)
    WANG S Y, ZHOU R J, LIANG M J, et al., 2021. Co-seismic surface rupture and recurrence interval of large earthquakes along Damaoyaba-Litang segment of the Litang fault on the eastern margin of the Tibetan Plateau in China[J]. Journal of Earth Science, 32(5): 1139-1151.
    WANG Y Z, WANG E N, SHEN Z K, et al., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 51(9): 1267-1283.
    WEI Y F, LUO S L, YANG M W, 2004. An analysis for sedimentary system, evolution, and paleoclimate in the Litang basin in west Sichuan in quaternary[J]. Acta Geologica Sichuan, 24(4): 194-197, 205.
    WU Z H, ZHANG Y S, HU D G, et al., 2008. The quaternary normal faulting of the Cona-Oiga Rift[J]. Seismology and Geology, 30(1): 144-160. (in Chinese with English Abstract).
    WU Z H, JIANG W, ZHANG S K, 2000. Analysis of the amount of late Himalayan crustal shortening in the central sector of the Qinghai-Tibet plateau[J]. Geological Review, (6): 561-568. (in Chinese with English Abstract)
    XU X W, WEN X Z, ZHENG R Z, et al., 2003a. Pattern of latest tectonic motion and its dynamics for Active Blocks in Sichuan-Yunnan Region, China[J]. Science in China Series D: Earth Sciences, 46(S2): 210-226.
    XU X W, CHENG G L, YU G H, et al., 2003b. Tectonic and paleomagnetic evidence for the clockwise rotation of the Sichuan-Yunnan rhombic block[J]. Seismology and Geology, 25(1): 61-70. (in Chinese with English Abstract).
    XU X W, WEN X Z, YU G H, et al., 2005. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan province, China[J]. Science in China Series D: Earth Sciences, 48(8): 1183-1196.
    XU Z Q, YANG J S, LI H B, et al., 2011. On the tectonics of the India-Asia collision[J]. Acta Geologica Sinica, 85(1): 1-33. (in Chinese with English abstract)
    ZHANG H, GAO Y, SHI Y T, et al., 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau [J]. Chinese Journal of Geophysics, 55(1): 95-104. (in Chinese with English abstract)
    ZHANG K Q, WU Z H, ZHOU C J, et al., 2020. Paleoearthquake events and inhomogeneous activity characteristics in the Benge-Cunge section of the Litang fault zone in the western Sichuan Province[J]. Acta Geologica Sinica, 94(4): 1295-1303. (in Chinese with English abstract)
    ZHANG Y Z, REPLUMAZ A, WANG G C, et al., 2015. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet[J]. Tectonics, 34(6): 1219-1243.
    ZHAO G H, 2014. Study on fault activity and tectonic geomorphology of Litang fault within the Chuandian Blocks[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    ZHOU C J, WU Z H, ZHANG K Q, et al., 2015. New chronological constraint on the co-seismic surface rupture segments associated with the Litang Fault[J]. Seismology and Geology, 37(2): 455-467. (in Chinese with English abstract)
    ZHOU R J, CHEN G X, LI Y, et al., 2005. Research on active faults in Litang-Batang region, western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J]. Seismology and Geology, 27(1): 31-43. (in Chinese with English abstract)
    ZHU D C, WANG Q, ZHAO Z D, et al., 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5: 14289.
    ZHU N, XU Y D, JI J L, et al., 2023. Late Pleistocene paleoseismic events recorded by glacial erosive lake in the Litang Plateau, Western Sichuan[J]. Earth Science, 48(9): 3562-3576. (in Chinese with English abstract)
    陈桂华, 徐锡伟, 袁仁茂, 等, 2010. 川滇块体东北缘第四纪晚期区域气候-地貌分析及其构造地貌年代学意义[J]. 第四纪研究, 30(4): 837-854. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201004020.htm
    董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报, 29(4): 465-484. doi: 10.12090/j.issn.1006-6616.2023048
    范桃园, 陈群策, 吴中海, 等, 2013. 青藏高原东缘活动构造与现今地应力场三维粘弹性模拟研究[J]. 地球物理学进展, 28(3): 1140-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303004.htm
    高帅坡, 2021. 川西北次级块体内部及其西边界断裂的第四纪晚期活动习性[D]. 北京: 中国地震局地质研究所.
    哈广浩, 吴中海, 何林, 2018. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 2051-2067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201810007.htm
    贺日政, 高锐, 2003. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 18(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200301006.htm
    刘亢, 李岩峰, 郭辉文, 等. 2021. 1948年川西理塘M7.3地震地表破裂特征及Riedel剪切构造分析[J]. 地质学报, 95(8): 2346-2360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202108007.htm
    魏永峰, 罗森林, 杨明文, 2004. 川西理塘第四纪盆地沉积体系、演化及古气候分析[J]. 四川地质学报, 24(4): 194-197, 205. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB200404000.htm
    吴中海, 张永双, 胡道功, 等, 2008. 藏南错那-沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 30(1): 144-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801010.htm
    吴珍汉, 江万, 张淑坤, 2000. 青藏高原中段晚喜马拉雅期地壳缩短量分析[J]. 地质论评, (06): 561-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006000.htm
    徐锡伟, 闻学泽, 郑荣章, 等, 2003a. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm
    徐锡伟, 程国良, 于贵华, 等, 2003b. 川滇菱形块体顺时针转动的构造学与古地磁学证据[J]. 地震地质, 25(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200301006.htm
    徐锡伟, 闻学泽, 于贵华, 等, 2005. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学D辑地球科学, 35(6): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506006.htm
    许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm
    张辉, 高原, 石玉涛, 等, 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 55(01): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201010.htm
    张克旗, 吴中海, 周春景, 等, 2020. 川西理塘断裂带奔戈-村戈段古地震事件及其非均匀性活动特征[J]. 地质学报, 94(4): 1295-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202004018.htm
    赵国华, 2014. 川滇块体内理塘断裂活动性及其构造地貌研究[D]. 成都: 成都理工大学.
    周春景, 吴中海, 张克旗, 等, 2015. 川西理塘活动断裂最新同震地表破裂形成时代与震级的重新厘定[J]. 地震地质, 37(2): 455-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502009.htm
    周荣军, 陈国星, 李勇, 等, 2005. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 27(1): 31-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200501003.htm
    朱宁, 徐亚东, 季军良, 等, 2023. 川西理塘高原冰蚀湖记录的晚更新世古地震事件[J]. 地球科学, 48(9): 3562-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202309026.htm
  • 加载中

Catalog

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (443) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return