Citation: | WU Zhonghai, ZHENG Wenjun, REN Junjie, et al., 2024. Active tectonics and strong earthquakes: A preface for the special issue. Journal of Geomechanics, 30 (2): 181-188. DOI: 10.12090/j.issn.1006-6616.20243002 |
ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. doi: 10.1029/JB094iB03p02787
|
ATKINSON G M, EATON D W, IGONIN N, 2020. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 1(5): 264-277.
|
DAVIES R, FOULGER G, BINDLEY A, et al., 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons[J]. Marine and Petroleum Geology, 45: 171-185. doi: 10.1016/j.marpetgeo.2013.03.016
|
DENG Q D, WEN X Z, 2008. A review on the research of active tectonics: history, progress and suggestions[J]. Seismology and Geology, 30(1): 1-30. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2008.01.002
|
ELLIOTT J R, WALTERS R J, WRIGHT T J, 2016. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 7: 13844. doi: 10.1038/ncomms13844.
|
FRIEDRICH A M, WERNICKE B P, NIEMI N A, et al., 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years[J]. Journal of Geophysical Research: Solid Earth, 108(B4): 2199. doi: 10.1029/2001JB000682.
|
HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 Earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168, doi: 10.12090/j.issn.1006-6616.2022013.(in Chinese with English abstract)
|
HAN S, WU Z H, WANG S F, et al., 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block[J]. Journal of Geomechanics, 30 (2): 298-313. (in Chinese with English abstract)
|
JIANG C Y, PAN J W, ZHANG L J, et al., 2024. Application of UAV SfM technology in active tectonic research: A case study of the Longmu Co Fault, Northwestern Qinghai-Tibet Plateau [J]. Journal of Geomechanics, 30(2): 332-347.
|
KANG W J, XU X W, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method [J]. Journal of Geomechanics, 30 (2): 289-297. (in Chinese with English abstract)
|
KELLER E A, PINTER N, 1996. Active tectonics: earthquakes, uplift, and landscape[M]. Upper Saddle River: Prentice Hall.
|
LEE J S, 1977. Seismic geological[M]. Beijing: Science Press: 52. (in Chinese)
|
LIU J, YUAN Z D, XU Y R, et al., 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers, 28(2): 211-231. (in Chinese with English abstract)
|
LIU G Y, LIANG K, LI Z P, et al., 2024. Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M7.0 earthquake [J]. Journal of Geomechanics, 30 (2): 242-259. (in Chinese with English abstract)
|
LIU S, HE B, WANG T, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS6.2 earthquake, Gansu Province, China [J]. Journal of Geomechanics, 30 (2): 314-331. (in Chinese with English abstract)
|
LUDWIG L G, AKÇIZ S O, NORIEGA G R, et al., 2010. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo plain[J]. Science, 327(5969): 1117-1119. doi: 10.1126/science.1182837
|
MCCALPIN J P, 2009. Paleoseismology[M]. 2nd ed. Burlington: Academic Press: 629.
|
MOZAFARI N, TIKHOMIROV D, SUMER Ö, et al., 2019. Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history[J]. Quaternary Science Reviews, 220: 111-123. doi: 10.1016/j.quascirev.2019.07.002.
|
REN Z K, ZIELKE O, YU J X, 2018. Active tectonics in 4D high-resolution[J]. Journal of Structural Geology, 117: 264-271. doi: 10.1016/j.jsg.2018.09.015.
|
TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905
|
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with Plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
|
WALLACE R E, 1986. Active tectonics: impact on society[M]. Washington, DC: National Academies Press: 176.
|
WANG S Y, WANG J, LI F P, et al., 2024. Late quaternary slip rate and paleoseismic sequence of the Cuopuhu section of the Litang-Yidun fault, western Sichuan, China [J]. Journal of Geomechanics, 30 (2): 275-288. (in Chinese with English abstract)
|
WILLIAMS R T, GOODWIN L B, SHARP W D, et al., 2017. Reading a 400, 000-year record of earthquake frequency for an intraplate fault[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(19): 4893-4898, doi: 10.1073/pnas.1617945114.
|
WU Z H, ZHOU C J, 2018. Distribution map of active faults in China and its Adjacent Sea Area (1 ∶ 5, 000, 000)[M]//HAO A B, LI R M. Atlas sets of geological environment of China. Beijing: Geological Publishing House. (in Chinese)
|
WU Z H, 2022. Active faults and engineering applications Ⅰ: definition and classification[J]. Journal of Earth Sciences and Environment, 44(6): 922-947. (in Chinese with English abstract)
|
WU Z H, 2024. The earthquake-controlling process of continental collision-extrusion active tectonic system around Qinghai-Tibet Plateau: A case study of strong earthquakes since 1990 [J]. Journal of Geomechanics, 30 (2): 189-205. (in Chinese with English abstract)
|
WU Z H, HE Z T, ZHONG N, et al., 2024. The strong earthquakes and seismogenic structures in eastern margin of Tibetan Plateau and adjacent areas: a preface for the special topic[J]. Progress in Earthquake Sciences, 54(1): 1-9. (in Chinese with English abstract)
|
WU Z H, HU M M, 2024. Definitions, classification schemes for active faults, and their application[J]. Geosciences, 14(3): 68. doi: 10.3390/geosciences14030068.
|
YANG X P, CHEN J, LI A, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic [J]. Journal of Geomechanics, 30 (2): 225-241. (in Chinese with English abstract)
|
YANG Y Z, LI Z F, REN J J, et al., 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case Study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet [J]. Journal of Geomechanics, 30 (2): 348-362. (in Chinese with English abstract)
|
YAO S H, GAI H L, YIN X, et al., 2024. Late Quateranry paleoseismicity of the Xitieshan-Amunikeshan section of the northern margin fault of the Qaidam Basin [J]. Journal of Geomechanics, 30 (2): 260-274. (in Chinese with English abstract)
|
ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.
|
ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 43(10): 1607-1620. (in Chinese with English abstract)
|
ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)
|
ZHENG W J, SUN X, LEI Q Y, et al., 2024. Late Quaternary tectonic activity and strong earthquake generation mechanism around the boundary zone of the Ordos active-tectonic block, central China [J]. Journal of Geomechanics, 30 (2): 206-224. (in Chinese with English abstract)
|
ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo plain, san Andreas fault[J]. Science, 327(5969): 1119-1122.
|
ZIELKE O, KLINGER Y, ARROWSMITH J R, 2015. Fault slip and earthquake recurrence along strike-slip faults—contributions of high-resolution geomorphic data[J]. Tectonophysics, 638: 43-62.
|
ZHU J Z, SUN Y J, XIE Z Y, et al., 2024. The impact of the Dagangshan Reservoir impoundment in Sichuan Province on the 2022 Luding MS6.8 earthquake and its after shocks [J]. Journal of Geomechanics, 30 (2): 363-376.
|
邓起东, 闻学泽, 2008. 活动构造研究: 历史、进展与建议[J]. 地震地质, 30(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801005.htm
|
韩帅, 吴中海, 高扬, 等, 2022.2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168. doi: 10.12090/j.issn.1006-6616.2022013
|
韩帅, 吴中海, 王世锋, 等, 2024. 羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义[J]. 地质力学学报, 30 (2): 298-313. doi: 10.12090/j.issn.1006-6616.2023086
|
康文君, 徐锡伟, 2024. 基于光学影像相关性匹配技术的2023年土耳其MW7.8与MW7.5双强震地表同震变形研究[J]. 地质力学学报, 30 (2): 289-297. doi: 10.12090/j.issn.1006-6616.2023144
|
李四光, 1977. 地震地质[M]. 北京: 科学出版社: 52.
|
江晨轶, 潘家伟, 张丽军, 等, 2024. UAV SfM技术在活动构造研究中的应用: 以青藏高原西北部龙木错断裂为例[J]. 地质力学学报, 30 (2): 332-347. doi: 10.12090/j.issn.1006-6616.2023192
|
刘静, 袁兆德, 徐岳仁, 等, 2021. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 28(2): 211-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102016.htm
|
刘广英, 梁宽, 李志鹏, 等, 2024. 华北平原中南部聊城-兰考断裂的第四纪晚期活动性探测: 兼论1937年菏泽7.0级地震发震机制[J]. 地质力学学报, 30 (2): 242-259. doi: 10.12090/j.issn.1006-6616.2023088
|
刘帅, 何斌, 王涛, 等, 2024. 积石山县MS6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报, 30 (2): 314-331. doi: 10.12090/j.issn.1006-6616.2024009
|
王世元, 王竞, 李福鹏, 等, 2024. 川西理塘-义敦断裂措普湖段第四纪晚期滑动速率与古地震序列[J]. 地质力学学报, 30(2): 275-288. doi: 10.12090/j.issn.1006-6616.2023060
|
吴中海, 周春景, 2018. 中国及毗邻海区活动断裂分布图(1 ∶ 500万)[M]//郝爱兵, 李瑞敏. 中国地质环境图系. 北京: 地质出版社.
|
吴中海, 2022. 活断层与工程应用Ⅰ: 定义与分类[J]. 地球科学与环境学报, 44(6): 922-947. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206004.htm
|
吴中海, 2024. 青藏高原陆陆碰撞-挤出活动构造体系控震作用: 以1990年以来强震活动为例[J]. 地质力学学报, 30 (2): 189-205. doi: 10.12090/j.issn.1006-6616.2023186
|
吴中海, 何仲太, 钟宁, 等, 2024. 青藏高原东缘及邻区强震构造: 专辑序言[J]. 地震科学进展, 54(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT202401001.htm
|
杨勇忠, 李占飞, 任俊杰, 等, 2024. 基岩地质差异对活动断层地表几何形态的控制作用: 以祁连山北缘佛洞庙-红崖子断层为例[J]. 地质力学学报, 30 (2): 348-362.
|
杨晓平, 陈杰, 李安, 等, 2024. 新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应[J]. 地质力学学报, 30 (2): 225-241.
|
姚生海, 盖海龙, 殷翔, 等, 2024. 柴达木盆地北缘断裂锡铁山-阿木尼克山段第四纪晚期古地震活动性[J]. 地质力学学报, 30(2): 260-274.
|
张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
|
郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. doi: 10.12090/j.issn.1006-6616.2019.25.05.062
|
郑文俊, 孙鑫, 雷启云, 等, 2024. 鄂尔多斯活动地块边界带第四纪晚期构造活动特征及强震孕育机制[J]. 地质力学学报, 30(2): 206-224. doi: 10.12090/j.issn.1006-6616.2023154
|
朱家正, 孙玉军, 谢志远, 等, 2024. 四川大岗山水库蓄水对2022年泸定MS6.8地震及余震的影响[J]. 地质力学学报, 30(2): 363-376. doi: 10.12090/j.issn.1006-6616.2023095
|