Volume 17 Issue 4
Dec.  2011
Turn off MathJax
Article Contents
TONG Heng-mao, WANG Ming-yang, HAO Hua-wu, et al., 2011. THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION. Journal of Geomechanics, 17 (4): 312-321.
Citation: TONG Heng-mao, WANG Ming-yang, HAO Hua-wu, et al., 2011. THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION. Journal of Geomechanics, 17 (4): 312-321.

THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION

More Information
  • Received: 2011-05-13
  • Published: 2011-12-01
  • Theoretical analysis shows that the Maximum Effective Moment, which cause preexisting cleavage or bedding to rotate, is related to the direction of pre-existing cleavage or bedding, and the Maximum Effective Moment Criterion (Meff=0.5(σ1-σ3) Lsin2αsinα, simplified as MEMC) proposed by Zheng et al is theoretically expanded to General Criterion of Maximum Effective Moment (MG-eff=0.5(σ1-σ3) Lsin2αsin (α-θ), simplified as GCMEM), which can be used to determine the Maximum Effective Moment with any direction of cleavage in this paper.MEMC is a special case of GCMEM when cleavage is parallel to maximum principal compressive stress (σ1).Theoretical analysis of GCMEM shows that:① when cleavage is parallel to σ1, there occur two values of Maximum Effective Moment symmetrically on either side of σ1 in the direction of ± 54.7°, and two conjugate deformation zone are predicted to appear with obtuse angle (109.4°) facing σ1 direction.② When cleavage is oblique to σ1, one Maximum Effective Moment, along which one deformation zone will appear, is predicted to occur on other side of σ1, and the angle between deformation zone and σ1 will decrease (from 54.7 ° when θ=0° reduced to 35.3° when θ=90°), while the angle between pre-existing cleavage and deformation zone will increase (from 54.7° when θ=0° increased to 125.3° when θ=90°) with pre-existing cleavage deviating from the σ1 direction.③ when cleavage is perpendicular to σ1, there also occur two values of Maximum Effective Moment symmetrically on either side of σ1 in the direction of ± 35.3°, but two conjugate deformation zone with acute angle (70.6°) facing σ1 direction.When the directions of pre-existing cleavage and deformation zone on principal strain surface and shear direction (sinistral or dextral) are known, the direction of maximum principal stress can be determined.GCMEM overcomes the incompatibility of MEMC with Slip Line Theory, and can be used to explain most of the kink zone development and other non-conjugate phenomena.It is expected to have wide application prospects in ductile deformation field.

     

  • loading
  • [1]
    ZHENG Ya-dong, WANG Tao, MA Ming-bo, et al.Maximum effective moment criterion and the origin of low-angle normal fault[J].Journal of Structural Geology, 2004, 26:271~285. doi: 10.1016/S0191-8141(03)00079-8
    [2]
    郑亚东, 王涛, 王新社.最大有效力矩准则的理论与实践[J].北京大学学报:自然科学版, 2007, 43(2):145~156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjdz200702000&dbname=CJFD&dbcode=CJFQ

    ZHENG Ya-dong, WNAG Tao, WANG Xin-she.Theory and practice of the Maximum Effective Moment Criterion (MEMC)[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2):145~156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjdz200702000&dbname=CJFD&dbcode=CJFQ
    [3]
    郑亚东, 杜思清. 共轭扭折带夹角的定量分析[C]//马宗晋. 国际交流地质学术论文集---为二十七届国际地质大会撰写(2). 北京: 地质出版社, 1985: 187~190.

    ZHENG Ya-dong, DU Si-qing. A quantitative analysis of the angle between conjugate joint drags[C]//MA Zong-jin. Geological symposium for international interchange: Writing for the 27 th International Geological Conference (Ⅱ). Beijing: Geological Publishing House, 1985: 187~190.
    [4]
    ZHENG Ya-dong. A quantitative analysis of the angle between conjugate sets of extensional crenulation cleavage: An explanation of the low-angle normal fault development[C]//Abstract of 29 th IGC. 1992: 131.
    [5]
    Wernicke B.Low-angle normal faults in the Basin and Ridge Province:Nappe tectonics in an extending orogeny[J].Nature, 1981, 291:645~648. doi: 10.1038/291645a0
    [6]
    Lister G S, Davis G A.The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA[J].Journal of Structural Geology, 1989, 11(1):65~94.
    [7]
    Wernicke B, Burchfiel B C.Modes of extensional tectonics[J].Journal of Structural Geology, 1982, 4(1):105~115.
    [8]
    Wernicke B, Axen G J.On the role of isostasy in the evolution of normal fault systems[J].Geology, 1988, 16(9):848~851. doi: 10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2
    [9]
    Anderson E M.The dynamics of faulting:2 nd edition[M].Edingburgh:Oliver and Boyd, 1951.
    [10]
    Ramsay J G.Shear zone geometry:A review[J].Journal of Structural Geology, 1980, 2(1-2):83~99. doi: 10.1016/0191-8141(80)90038-3
    [11]
    Paterson M S, Weiss L E.Experimental deformation and folding in phyllite[J].GSA Bulletin, 1966, 77(4):343~374. doi: 10.1130/0016-7606(1966)77[343:EDAFIP]2.0.CO;2
    [12]
    郑亚东, 张进江, 王涛.实践中发展的最大有效力矩准则[J].地质力学学报, 2009, 15(3):209~217. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090301&journal_id=dzlxxb

    ZHENG Ya-dong, ZHANG Jin-jiang, WANG Tao.The Maximum-Effective-Moment Criterion developing in practice[J].Journal of Geomechanics, 2009, 15(3):209~217. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090301&journal_id=dzlxxb
    [13]
    Hill R.The mathematical theory of plasticity[M].Oxford:Oxford University Press, 1950.
    [14]
    Platt J P, Vissers R L M.Extensional structures in anisotropic rocks[J].Journal of Structural Geology, 1980, 2(4):397~410. doi: 10.1016/0191-8141(80)90002-4
    [15]
    Price N J, Cosgrave J W.Analysis of geological structures[M].Cambridge:Cambridge University Press, 1990.
    [16]
    Johnson A M.Styles of folding:Mechanics and mechanisms of folding of natural elastic materials[M].New York:Elservier Scientific Publication Company, 1977.
    [17]
    Camerlo R H, Benson E F.Geometric and seismic interpretation of the Perdido fold belt:Northwestern deep-water Gulf of Mexico[J].AAPG Bulletin, 2006, 90(3):363~386. doi: 10.1306/10120505003
    [18]
    童亨茂, 孟令箭, 蔡东升, 等.裂陷盆地断层的形成和演化---目标砂箱模拟实验与认识[J].地质学报, 2009, 83(6):759~774. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200906003&dbname=CJFD&dbcode=CJFQ

    TONG Heng-mao, MENG Ling-jian, CAI Dong-sheng, et al.Fault formation and evolution in rift basins:Sandbox modeling and cognition[J].Acta Geologica Sinica, 2009, 83(6):759~774. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200906003&dbname=CJFD&dbcode=CJFQ
    [19]
    Reches Z.Analysis of faulting in three-dimensional strain field[J].Tectonophysics, 1978, 47(1-2):109-129. doi: 10.1016/0040-1951(78)90154-3
    [20]
    Krantz R W.Multiple fault sets and three-dimensional strain:Theory and application[J].Journal of Structural Geology, 1988, 10(3):225~237. doi: 10.1016/0191-8141(88)90056-9
    [21]
    Nieto-Samaniego, ángel F.Stress, strain and fault patterns[J].Journal of Structural Geology, 1999, 21(8-9):1065~1070. doi: 10.1016/S0191-8141(99)00016-4
    [22]
    TONG Heng-mao, CAI Dong-sheng, WU Yong-ping, et al.Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J].Science China:Earth Science, 2010, 53(1):1~11.
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (156) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return