| Citation: | YU K C,SUN S S,DONG Y P,et al.,2025. Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling[J]. Journal of Geomechanics,31(3):386−410 doi: 10.12090/j.issn.1006-6616.2025008 |
| [1] |
BROWNLEE S J, HACKER B R, SALISBURY M, et al., 2011. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh‐pressure terrane[J]. Journal of Geophysical Research: Solid Earth, 116(B8): B08206.
|
| [2] |
CHENG C, SUN S S, DONG Y P, et al., 2022. Exhumation of plutons controlled by boundary faults: insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 134(11-12): 2723-2744. doi: 10.1130/B36073.1
|
| [3] |
CHEN H, HU J M, WU G L, et al., 2010. Study on the intracontinental deformation of the Mian–Lue suture belt, western Qiling[J]. Acta Petrologica Sinica, 26(4): 1277-1288. (in Chinese with English abstract
|
| [4] |
CHEN L Y, LIU Z H, LIU X C, et al., 2019. Metamorphism and its relation of Magmatism of the Foping gneiss dome in the South Qinling tectonic belt[J]. Earth Science, 44(12): 4178-4185. (in Chinese with English abstract
|
| [5] |
CHEN S Y, ZHANG B, ZHANG J J, et al., 2022. Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes: evidence from a structural, kinematic, and geochronological investigation of the Ramba gneiss dome[J]. Journal of Structural Geology, 155: 104527. doi: 10.1016/j.jsg.2022.104527
|
| [6] |
DAS J P, BHATTACHARYYA K, MOOKERJEE M, et al., 2016. Kinematic analyses of orogen–parallel L–tectonites from Pelling–Munsiari thrust of Sikkim Himalayan fold thrust belt: insights from multiple, incremental strain markers[J]. Journal of Structural Geology, 90: 61-75. doi: 10.1016/j.jsg.2016.07.005
|
| [7] |
DAS J P, BHATTACHARYYA K, MAMTANI M A, 2021. A kinematic approach for investigating magnetic and strain fabrics from constrictional and flattening domains of shear zones in Sikkim Himalayan fold thrust belt[J]. Journal of Structural Geology, 149: 104388. doi: 10.1016/j.jsg.2021.104388
|
| [8] |
DEWEY J F, HOLDSWORTH R E, STRACHAN R A, 1998. Transpression and transtension zones[M]//HOLDSWORTH R E, STRACHAN R A, DEWEY J F. Continental transpressional and transtensional tectonics. London: Geological Society, London, Special Publications, 135(1): 1-14.
|
| [9] |
DONG Y P, ZHANG G W, NEUBAUER F, et al., 2011. Tectonic evolution of the Qinling Orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002
|
| [10] |
DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005
|
| [11] |
DONG Y P, SANTOSH M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009
|
| [12] |
DONG Y P, ZHANG G W, SUN S S, et al., 2019. The “cross–tectonics” in China continent: formation, evolution, and its significance for continental dynamics[J]. Journal of Geomechanics, 25(5): 769-797. (in Chinese with English abstract
|
| [13] |
DONG Y P, SUN S S, SANTOSH M, et al., 2021. Central China Orogenic Belt and amalgamation of East Asian continents[J]. Gondwana Research, 100: 131-194. doi: 10.1016/j.gr.2021.03.006
|
| [14] |
FLINN D, 1962. On folding during three–dimensional progressive deformation[J]. Quarterly Journal of the Geological Society, 188(1-4): 385-428.
|
| [15] |
FOSSEN H, TIKOFF B, 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics[J]. Journal of Structural Geology, 15(3-5): 413-422. doi: 10.1016/0191-8141(93)90137-Y
|
| [16] |
FOSSEN H, 2016. Structural geology[M]. Cambridge: Cambridge University Press.
|
| [17] |
FOSSEN H, CAVALCANTE G C G, 2017. Shear zones–a review[J]. Earth-Science Reviews, 171: 434-455. doi: 10.1016/j.earscirev.2017.05.002
|
| [18] |
FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. Washington: United States Government Printing Office.
|
| [19] |
FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2): 89-105. doi: 10.1016/0040-1951(79)90135-5
|
| [20] |
HAN Y G, YAN D P, LI Z L, 2015. A new solution for finite strain measurement by fry method in the CorelDRAW platform[J]. Geoscience, 29(3): 494-500. (in Chinese with English abstract
|
| [21] |
HE Z J, NIU B G, REN J S, 2005. Tectonic discriminations of sandstones geochemistry from the middlelate devonian liuling group in Shanyang area, southern Shaanxi[J]. Chinese Journal of Geology, 40(4): 594-607. (in Chinese with English abstract
|
| [22] |
HOLDAWAY M J, 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer[J]. American Mineralogist, 85(7-8): 881-892. doi: 10.2138/am-2000-0701
|
| [23] |
HU F Y, LIU S W, DUCEA M N, et al., 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: implications for oblique continental collision[J]. Gondwana Research, 88: 296-332. doi: 10.1016/j.gr.2020.07.006
|
| [24] |
HU L, LIU J L, JI M, et al. , 2009. Deformation microstructure identification manual[M]. Beijing: Geology Press. (in Chinese)
|
| [25] |
JI S C, SHAO T B, MICHIBAYASHI K, et al., 2015. Magnitude and symmetry of seismic anisotropy in mica– and amphibole–bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6404-6430. doi: 10.1002/2015JB012209
|
| [26] |
JIANG Y H, JIN G D, LIAO S Y, et al., 2010. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014
|
| [27] |
LAW R D, SEARLE M P, SIMPSON R L, 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet[J]. Journal of the Geological Society, 161(2): 305-320. doi: 10.1144/0016-764903-047
|
| [28] |
LAW R D, 2014. Deformation thermometry based on quartz c–axis fabrics and recrystallization microstructures: a review[J]. Journal of structural Geology, 66: 129-161. doi: 10.1016/j.jsg.2014.05.023
|
| [29] |
LI J Y, WANG Z Q, ZHAO M, 1999. 40Ar/39Ar thermochronological constraints on the timing of collisional orogeny in the Mian–Lüe collision belt, southern Qinling Mountains[J]. Acta Geologica Sinica (English Edition), 73(2): 208-215. doi: 10.1111/j.1755-6724.1999.tb00828.x
|
| [30] |
LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal tectonic framework of China and its formation processes: constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract
|
| [31] |
LI S K, ZHANG Y Q, JI J Q, et al., 2022. Orogen–parallel mid–lower crustal ductile flow during the late Triassic Qinling orogeny: structural geology and geochronology[J]. International Geology Review, 64(11): 1611-1634. doi: 10.1080/00206814.2021.1949639
|
| [32] |
LI Z Q, ZHANG B, GUO L, et al., 2024. Slab tear of subducted Indian lithosphere beneath the eastern Himalayan Syntaxis region[J]. Tectonics, 43(7): e2024TC008248. doi: 10.1029/2024TC008248
|
| [33] |
LIU S W, YANG P T, LI Q G, et al., 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling Orogen, China[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943. (in Chinese with English abstract
|
| [34] |
LIU Z H, LUO M, CHEN L Y, et al., 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA–ICP–MS U–Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 34(5): 1484-1502. (in Chinese with English abstract
|
| [35] |
LIU Z H, CHEN L Y, QU W, et al., 2019. Early Mesozoic metamorphism, Anataxis and deformation of Foping area in South Qinling belt: constrains from U–Pb Zircon dating[J]. Acta Geoscientica Sinica, 40(4): 545-562. (in Chinese with English abstract
|
| [36] |
LIU Z H, LIU X C, CHEN L Y, et al., 2024. Zircon U–Pb dating of the Dizhuanggou Formation, Changjiaoba Group in the South Qinling Belt and its tectonic significance[J]. Journal of Geomechanics, 30(6): 1012-1027. (in Chinese with English abstract
|
| [37] |
LIU Z H, CHEN L Y, LIU X C, et al., 2025. Petrological and geochronological constraints on the genesis of the Foping gneiss dome, South Qinling Belt, central China[J]. Journal of Asian Earth Sciences, 277: 106406. doi: 10.1016/j.jseaes.2024.106406
|
| [38] |
LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.
|
| [39] |
NACHIT H, IBHI A, ABIA E H, et al., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 337(16): 1415-1420. doi: 10.1016/j.crte.2005.09.002
|
| [40] |
O’BRIEN P J, 1999. Asymmetric zoning profiles in garnet from HP–HT granulite and implications for volume and grain–boundary diffusion[J]. Mineralogical Magazine, 63(2): 227-238. doi: 10.1180/002646199548457
|
| [41] |
PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin Heidelberg: Springer.
|
| [42] |
QIN J F, LAI S C, LI Y J, 2008a. Slab breakoff model for the Triassic post–collisional adakitic granitoids in the Qinling Orogen, Central China: zircon U–Pb ages, geochemistry, and Sr–Nd–Pb isotopic constraints[J]. International Geology Review, 50(12): 1080-1104. doi: 10.2747/0020-6814.50.12.1080
|
| [43] |
QIN J F, LAI S C, WANG J, et al., 2008b. Zircon LA–ICP–MS U–Pb age, Sr–Nd–Pb isotopic compositions and geochemistry of the Triassic post–collisional Wulong adakitic granodiorite in the South Qinling, central China, and its petrogenesis[J]. Acta Geologica Sinica (English Edition), 82(2): 425-437. doi: 10.1111/j.1755-6724.2008.tb00593.x
|
| [44] |
QIN J F, LAI S C, LI Y F, 2013. Multi–stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research, 24(3-4): 1108-1126. doi: 10.1016/j.gr.2013.02.005
|
| [45] |
QIU K F, DENG J, HE D Y, et al., 2023. Evidence of vertical slab tearing in the Late Triassic Qinling Orogen (central China) from multiproxy geochemical and isotopic imaging[J]. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025514. doi: 10.1029/2022JB025514
|
| [46] |
REY P, VANDERHAEGHE O, TEYSSIER C, 2001. Gravitational collapse of the continental crust: Definition, regimes and modes[J]. Tectonophysics, 342(3-4): 435-449. doi: 10.1016/S0040-1951(01)00174-3
|
| [47] |
RUBATTO D, 2017. Zircon: the metamorphic mineral[J]. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. doi: 10.2138/rmg.2017.83.9
|
| [48] |
Shaanxi Provincial Bureau of Geology and Mineral Resources, 1989. Regional geology of Shaanxi province[M]. Beijing: Geology Press. (in Chinese)
|
| [49] |
SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020a. Transpressive deformation in the southern European variscan belt: new insights from the aiguilles rouges massif (western alps)[J]. Tectonics, 39(6): e2020TC006153. doi: 10.1029/2020TC006153
|
| [50] |
SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (southern France)[J]. International Journal of Earth Sciences, 109(7): 2261-2285. doi: 10.1007/s00531-020-01898-6
|
| [51] |
STIPP M, STÜNITZ H, HEILBRONNER R, et al., 2002a. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C[J]. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
|
| [52] |
STIPP M, STÜNITZ H, HEILBRONNER R, et al. , 2002b. Dynamic recrystallization of quartz: correlation between natural and experimental conditions[M]//DE MEER S, DRURY M R, DE BRESSERJ H P, et al. Deformation mechanisms, rheology and tectonics: current status and future perspectives. London: Geological Society, London, Special Publications, 200(1): 171-190.
|
| [53] |
SUN S S, DONG Y P, HE D F, et al., 2019a. Thickening and partial melting of the northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 176: 1218-1231. doi: 10.1144/jgs2019-030
|
| [54] |
SUN S S, DONG Y P, SUN Y L, et al., 2019b. Re–Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China[J]. Gondwana Research, 70: 71-87. doi: 10.1016/j.gr.2018.12.016
|
| [55] |
SUN S S, DONG Y P, CHENG C, et al., 2022. Mesozoic intracontinental ductile shearing along the Paleozoic Shangdan suture in the Qinling Orogen: Constraints from deformation fabrics and geochronology[J]. Geological Society of America Bulletin, 134(9-10): 2649-2666. doi: 10.1130/B36293.1
|
| [56] |
SUN S S, DONG Y P, 2023. High temperature ductile deformation, lithological and geochemical differentiation along the Shagou shear zone, Qinling Orogen, China[J]. Journal of Structural Geology, 167: 104791. doi: 10.1016/j.jsg.2023.104791
|
| [57] |
SUN S S, DONG Y P, LI Y X, et al., 2024. Rheology of continental lithosphere and seismic anisotropy[J]. Science China Earth Sciences, 67(1): 31-60. doi: 10.1007/s11430-022-1171-3
|
| [58] |
TIWARI S K, BENIEST A, BISWAL T K, 2020. Variation in vorticity of flow during exhumation of lower crustal rocks (Neoproterozoic Ambaji granulite, NW India)[J]. Journal of Structural Geology, 130: 103912. doi: 10.1016/j.jsg.2019.103912
|
| [59] |
WANG D S, 2015. Deformation and metamorphism characteristics of rocks in South Qinling Acctionary Complex belt[D]. Beijing: Beijing: China University of Geosciences (Beijing): 1-167. (in Chinese with English abstract
|
| [60] |
WANG G B, LI S Z, 1998. Preliminary discussion on uplift bedding-delamination structures in Foping area, Qinling[J]. Journal of Changchun University of Science and Technology, 28(1): 23-29. (in Chinese with English abstract
|
| [61] |
WANG X H, GUO T, LI X Z, et al., 2022. A study on the geochemical characteristics and metallogenesis of the Lanmugou gold deposit in the South Qinling Belt, Shaanxi, China[J]. Journal of Geomechanics, 28(3): 464-479. (in Chinese with English abstract
|
| [62] |
WEI C J, YANG C H, ZHANG S G, et al., 1998. Discovery of granulite from the Fuping area in southern Qinling Mountains and its geological significance[J]. Chinese Science Bulletin, 43(16): 1358-1362. doi: 10.1007/BF02883682
|
| [63] |
WEI C J, ZHANG C G, 2002. pT path of medium–pressure metamorphism of continental collision orogenic belt: exemplified by the southern Qinling orogenic belt[J]. Acta Petorlogica et Mineralogica, 21(4): 356-362. (in Chinese with English abstract
|
| [64] |
WEI C J, 2011. Approaches and advancement of the study of metamorphic p-T-t paths[J]. Earth Science Frontiers, 18(2): 1-16. (in Chinese with English abstract
|
| [65] |
WU C M, ZHANG J, REN L D, 2004. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium–to high–grade metapelites[J]. Journal of Petrology, 45(9): 1907-1921. doi: 10.1093/petrology/egh038
|
| [66] |
WU Y B, 2021. Metamorphic zircon[M]//ALDERTON D, ELIAS S A. Encyclopedia of geology. 2nd ed. London: Academic Press: 584-596.
|
| [67] |
WU Y W, ZHANG J X, ZHANG B, et al., 2024. Early Paleozoic oblique convergence from subduction to collision: Insights from timing and structural style of the transpressional dextral shear zone in the Qilian orogen, northern Tibet of China[J]. Geological Society of America Bulletin, 136(5-6): 1889-1915.
|
| [68] |
XIANG B W, ZHANG Z K, XU D R, et al., 2024. The genesis of L–tectonics and its rheological significance[J]. Chinese Journal of Geology, 59(6): 1562-1574. (in Chinese with English abstract
|
| [69] |
XYPOLIAS P, 2010. Vorticity analysis in shear zones: A review of methods and applications[J]. Journal of structural Geology, 32(12): 2072-2092. doi: 10.1016/j.jsg.2010.08.009
|
| [70] |
YANG C H, WEI C J, ZHANG S G, et al., 1999. U–Pb zircon dating of granulite facies rocks from the Foping area in the southern Qinling Mountains[J]. Geological Review, 45(2): 173-179. (in Chinese with English abstract
|
| [71] |
YANG X X, WANG Y J, LI Z H, et al., 2018. Zircon U-Pb dating and Lu-Hf isotopic study of hornblende biotite schist from the Foping area in South Qinling[J]. Chinese Journal of Geology, 53(3): 1100-1118. (in Chinese with English abstract
|
| [72] |
YOU J L, YANG Z, GOU L L, et al., 2024. Metamorphism and geochronology of the Foping gneiss dome: insights into Early Triassic collision of the Qinling Orogen, Central China[J]. Lithos, 488-489: 107827. doi: 10.1016/j.lithos.2024.107827
|
| [73] |
ZHA X F, 2010. Discussion on the genesis of Foping dome in southern Qinling: evidence form structural analysis[D]. Xi’an: Northwest University. (in Chinese with English abstract
|
| [74] |
ZHA X F, DONG Y P, LI W, et al., 2010. Uplifting process of foping dome in southern Qinling: constrained by structural analysis[J]. Geotectonica et Metallogeni, 34(3): 331-339. (in Chinese with English Abstract
|
| [75] |
ZHAI G Y, 2000. Analysis of metamorphism and tectonic dynamics of domes in Foping county of East Qinling[J]. Journal of Mineralogy and Petrology, 20(2): 86-90. (in Chinese with English abstract
|
| [76] |
ZHANG B, ZHANG J, ZHONG D L, et al., 2012. Polystage deformation of the Gaoligong metamorphic zone: structures, 40Ar/39Ar mica ages, and tectonic implications[J]. Journal of Structural Geology, 37: 1-18. doi: 10.1016/j.jsg.2012.02.007
|
| [77] |
ZHANG B, YIN C Y, ZHANG J J, et al., 2017a. Midcrustal shearing and doming in a Cenozoic compressive setting along the Ailao Shan-Red River shear zone[J]. Geochemistry Geophysics Geosystems, 18(1): 400-433. doi: 10.1002/2016GC006520
|
| [78] |
ZHANG B, CHAI Z, YIN C Y, et al., 2017b. Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia[J]. Journal of Structural Geology, 97: 48-70. doi: 10.1016/j.jsg.2017.02.010
|
| [79] |
ZHANG B, CHEN S Y, WANG Y, et al., 2022b. Crustal deformation and exhumation within the India-Eurasia oblique convergence zone: New insights from the Ailao Shan-Red River shear zone[J]. Geological Scoiety of America Bulletin, 134(5-6): 1443-1467. doi: 10.1130/B35975.1
|
| [80] |
ZHANG C L, WANG T, WANG X X, 2008. Origin and tectonic setting of the early Mesozoic granitoids in qinling orogenic belt[J]. Geological Journal of China Universities, 14(3): 304-316. (in Chinese with English abstract
|
| [81] |
ZHANG G W, ZHANG Z Q, DONG Y P, 1995. Nature of main tectono–lithostratigraphic units of the Qinling Orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 11(2): 101-114. (in Chinese with English abstract
|
| [82] |
ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract
|
| [83] |
ZHANG H, YE R S, LIU B X, et al., 2016. Partial melting of the South Qinling orogenic crust, China: Evidence from Triassic migmatites and diorites of the Foping dome[J]. Lithos, 260: 44-57. doi: 10.1016/j.lithos.2016.05.007
|
| [84] |
ZHANG H, LI S Q, FANG B W, et al., 2018. Zircon U–Pb ages and geochemistry of migmatites and granites in the Foping dome: evidence for Late Triassic crustal evolution in South Qinling, China[J]. Lithos, 296-299: 129-141. doi: 10.1016/j.lithos.2017.10.024
|
| [85] |
ZHANG H, WU G H, CHENG H, et al., 2019. Late Triassic high Mg diorites of the Wulong pluton in the South Qinling Belt, China: petrogenesis and implications for crust–mantle interaction[J]. Lithos, 332-333: 135-146. doi: 10.1016/j.lithos.2019.01.038
|
| [86] |
ZHANG H, CHENG H, WU G H, et al., 2021. Fluid–fluxed melting of orogenic crust in the south qinling belt, central China: implications from migmatites of the foping dome[J]. Journal of Asian Earth Sciences, 206(5): 104606.
|
| [87] |
ZHANG K, YANG X K, YU H B, et al., 2020. Analysis of ore-controlling structure in the Changgou gold deposit of the northern Hanyin gold orefield, southern Qinling Mountains[J]. Journal of Geomechanics, 26(3): 363-375. (in Chinese with English Abstract
|
| [88] |
ZHANG L, ZHANG B, ZHANG J J, et al., 2022a. The rheology and deformation of the South Tibetan detachment system as exposed at Zherger La, east-central Himalaya: implications for exhumation of the Himalayan metamorphic core[J]. Journal of Structural Geology, 157: 104559. doi: 10.1016/j.jsg.2022.104559
|
| [89] |
ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 159-177. (in Chinese with English Abstract
|
| [90] |
ZHANG Z Q, SONG B, TANG S H, et al., 2004. Age and material composition of the Foping metamorphic crystalline complex in the Qinling Mountains: SHRIMP zircon U–Pb and whole–rock Sm–Nd geochronology[J]. Geology in China, 31(2): 161-168. (in Chinese with English Abstract
|
| [91] |
陈虹,胡健民,武国利,等,2010. 西秦岭勉略带陆内构造变形研究[J]. 岩石学报,26(04):1277-1288.
|
| [92] |
陈龙耀,刘志慧,刘晓春,等,2019. 南秦岭佛坪片麻岩穹隆变质作用及与岩浆作用的关系[J]. 地球科学,44(12):4178-4185.
|
| [93] |
董云鹏,张国伟,孙圣思,等,2019. 中国大陆“十字构造”形成演化及其大陆动力学意义[J]. 地质力学学报,25(5):769-797. doi: 10.12090/j.issn.1006-6616.2019.25.05.065
|
| [94] |
韩阳光,颜丹平,李政林,2015. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质,29(3):494-500. doi: 10.3969/j.issn.1000-8527.2015.03.002
|
| [95] |
和政军,牛宝贵,任纪舜,2005. 陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J]. 地质科学,40(4):594-607. doi: 10.3321/j.issn:0563-5020.2005.04.015
|
| [96] |
胡玲,刘俊来,纪沫,等,2009. 变形显微构造识别手册[M]. 北京:地质出版社.
|
| [97] |
李锦轶,张进,刘建峰,等,2019. 中国地壳结构构造与形成过程:来自构造变形的约束[J]. 地质力学学报,25(5):678-698. doi: 10.12090/j.issn.1006-6616.2019.25.05.061
|
| [98] |
刘守偈,李江海,SANTOSH M,2008. 内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及P-T指示[J]. 岩石学报,24(6):1185-1192.
|
| [99] |
刘树文,杨朋涛,李秋根,等,2011. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),41(6):1928-1943.
|
| [100] |
刘志慧,罗敏,陈龙耀,等,2018. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA–ICP–MS U–Pb定年提供的制约[J]. 岩石学报,34(5):1484-1502.
|
| [101] |
刘志慧,陈龙耀,曲玮,等,2019. 南秦岭佛坪地区早中生代变质–深熔–变形作用的锆石U–Pb年代学制约[J]. 地球学报,40(4):545-562. doi: 10.3975/cagsb.2019.011102
|
| [102] |
刘志慧,刘晓春,陈龙耀,等,2024. 南秦岭长角坝群低庄沟组的锆石U–Pb年龄及其构造意义[J]. 地质力学学报,30(6):1012-1027.
|
| [103] |
陕西省地质矿产局,1989. 陕西省区域地质志[M]. 北京:地质出版社.
|
| [104] |
孙圣思,董云鹏,黎乙希,等,2024. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学,54(1):31-63.
|
| [105] |
王东升,2015. 南秦岭增生杂岩带内岩石变质变形作用研究[D]. 北京:中国地质大学(北京):1-167.
|
| [106] |
王根宝,李三忠,1998. 论秦岭佛坪地区隆–滑构造[J]. 长春科技大学学报,28(1):23-39.
|
| [107] |
王晓虎,郭涛,李效壮,等,2022. 南秦岭烂木沟金矿床地球化学特征与矿床成因研究[J]. 地质力学学报,28(3):464-479. doi: 10.12090/j.issn.1006-6616.2021002
|
| [108] |
魏春景,杨崇辉,张寿广,等,1998. 南秦岭佛坪地区麻粒岩的发现及其地质意义[J]. 科学通报,43(9):982-985. doi: 10.3321/j.issn:0023-074X.1998.09.020
|
| [109] |
魏春景,2011. 变质作用p-T-t轨迹的研究方法与进展[J]. 地学前缘,18(2):1-16.
|
| [110] |
向必伟,张子康,许德如,等,2024. L构造岩成因及其岩石流变学意义[J]. 地质科学,59(6):1562-1574. doi: 10.12017/dzkx.2024.108
|
| [111] |
杨崇辉,魏春景,张寿广,等,1999. 南秦岭佛坪地区麻粒岩相岩石锆石U–Pb年龄[J]. 地质论评,45(2):173-179. doi: 10.3321/j.issn:0371-5736.1999.02.010
|
| [112] |
查显锋,2010. 南秦岭佛坪隆起的构造过程及成因机制[D]. 西安:西北大学.
|
| [113] |
查显锋,董云鹏,李玮,等,2010. 南秦岭佛坪隆起的成因探讨–构造解析的证据[J]. 大地构造与成矿学,34(3):331-339. doi: 10.3969/j.issn.1001-1552.2010.03.004
|
| [114] |
翟刚毅,2000. 东秦岭佛坪穹隆变质作用与构造动力学分析[J]. 矿物岩石,20(2):86-90. doi: 10.3969/j.issn.1001-6872.2000.02.018
|
| [115] |
张成立,王涛,王晓霞,2008. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报,14(3):304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003
|
| [116] |
张国伟,郭安林,董云鹏,等,2019. 关于秦岭造山带[J]. 地质力学学报,25(5):746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
|
| [117] |
张康,杨兴科,于恒彬,等,2020. 南秦岭汉阴北部金矿田长沟金矿区控矿构造解析[J]. 地质力学学报,26(3):363-375. doi: 10.12090/j.issn.1006-6616.2020.26.03.032
|
| [118] |
张逸鹏,郑文俊,袁道阳,等,2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报,27(2):159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017
|
| [119] |
张宗清,宋彪,唐索寒,等,2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征:SHRIMP锆英石U–Pb年代学和全岩Sm–Nd年代学数据[J]. 中国地质,31(2):161-168. doi: 10.3969/j.issn.1000-3657.2004.02.007
|