Volume 29 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
FAN Y L,CAO J W,YU S,et al.,2023. Prediction and analysis on large deformation of surrounding rocks in the Muzhailing Tunnel of the Weiyuan–Wudu Expressway under high in-situ stress[J]. Journal of Geomechanics,29(6):786−800 doi: 10.12090/j.issn.1006-6616.2022110
Citation: FAN Y L,CAO J W,YU S,et al.,2023. Prediction and analysis on large deformation of surrounding rocks in the Muzhailing Tunnel of the Weiyuan–Wudu Expressway under high in-situ stress[J]. Journal of Geomechanics,29(6):786−800 doi: 10.12090/j.issn.1006-6616.2022110

Prediction and analysis on large deformation of surrounding rocks in the Muzhailing Tunnel of the Weiyuan–Wudu Expressway under high in-situ stress

doi: 10.12090/j.issn.1006-6616.2022110
Funds:  This research is financially supported by the Geological Survey Projects of the China Geological Survey (Grants No. DD20190317 and DD20221738).
More Information
  • Received: 2022-07-08
  • Revised: 2023-06-10
  • Accepted: 2023-09-21
  • This study aims to solve the significant deformation issue in the soft surrounding rocks under high in-situ stress encountered during the construction of the Muzhailing Tunnel on the Weiyuan–Wudu Expressway. We established a three-dimensional geological model to invert the in-situ stress field using ANSYS based on measured in-situ stress data in the engineering area. Then, we calculated and analyzed the deformation of the surrounding rocks by combining the inverted results with the Hoek deformation prediction formula. The result showed that the in-situ stress field in the engineering area was primarily controlled by faults, with secondary influences from rock strength and topography. In the intense tectonic deformation zone, horizontal principal stress values are generally lower than in the weak structural deformation zone. The relationship between the three principal stresses along the tunnel axis is SH>Sh>SV. The maximum horizontal principal stress in the intense tectonic deformation zone was the highest in the G8 section and the lowest in the G6 and G11 sections. In the weak structural deformation zone, horizontal principal stress gradually increases from the G12 section until it decreases due to reduced burial depth starting from the middle of the G14 section. The maximum horizontal principal stress orientation was generally in the NE direction, and the extruded structural belt between the faults was mostly deflected to the NEE –nearly EW direction. The deformation of the surrounding rocks was affected by rock mass strength and in-situ stress field, with rock mass strength playing a dominant role. The deformation of the surrounding rocks is mainly concentrated in the range of 20 to 80 cm, and the deformation levels are mainly moderate and intense.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ANAGNOSTOU G, 1993. A model for swelling rock in tunnelling[J]. Rock Mechanics and Rock Engineering, 26(4): 307-331. doi: 10.1007/BF01027115
    [2]
    AYDAN Ö, AKAGI T, KAWAMOTO T, 1996. The squeezing potential of rock around tunnels: Theory and prediction with examples taken from Japan[J]. Rock Mechanics and Rock Engineering, 29(3): 125-143. doi: 10.1007/BF01032650
    [3]
    CAO C Y, SHI C H, LEI M F, et al. , 2018. Squeezing failure of tunnels: a case study[J]. Tunnelling and Underground Space Technology, 77: 188-203. doi: 10.1016/j.tust.2018.04.007
    [4]
    CHEN J X, LIU W W, CHEN L J, et al. , 2020. Failure mechanisms and modes of tunnels in monoclinic and soft-hard interbedded rocks: a case study[J]. KSCE Journal of Civil Engineering, 24(4): 1357-1373. doi: 10.1007/s12205-020-1324-3
    [5]
    CHEN S J, XIAO M, CHEN J T, et al. , 2020. Disturbance law of faults to in-situ stress field directions and its inversion analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 39(7): 1434-1444. (in Chinese with English abstract)
    [6]
    FAN Y L, 2017. The measurement of in-situ stress in the typical project area of the Muzhailing Tunnel of Lanzhou-Chongqing railway and its engineering geological significance[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [7]
    FANG X H, YANG Z, YANG J S, et al. , 2020. Large deformation characteristics and control measures of surrounding rock in altered granite stratum of high ground stress tunnel[J]. China Railway Science, 41(5): 92-101. (in Chinese with English abstract)
    [8]
    GOEL R K, JETHWA J L, PAITHANKAR A G, 1995. Tunnelling through the young Himalayas-A case history of the Maneri-Uttarkashi power tunnel[J]. Engineering Geology, 39(1-2): 31-44. doi: 10.1016/0013-7952(94)00002-J
    [9]
    HE M C, LV X J, JING H H, 2002. Characters of surrounding rockmass in deep engineering and its non-linear dynamic-mechanical design concept[J]. Chinese Journal of Rock Mechanics and Engineering, 21(8): 1215-1224. (in Chinese with English abstract)
    [10]
    HOEK E, MARINOS P, 2000. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling International, 32(11): 45-51.
    [11]
    HOEK E, 2001. Big tunnels in bad rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127(9): 726-740. doi: 10.1061/(ASCE)1090-0241(2001)127:9(726)
    [12]
    HU Y F, LIU Z Q, WANG J Y, 2011. Squeezing deformation prediction of soft rocks under high ground stress and its application[J]. Modern Tunnelling Technology, 48(3): 28-34. (in Chinese with English abstract)
    [13]
    HU Y F, WANG J Y, SONG Z, et al. , 2013. Predicting and controlling of the squeezing deformation in soft rock under high ground stress in Muzhailing Tunnel on Lanzhou-Chongqing Railway[C]//Proceedings of the 12th tunnel and underground engineering symposium across the strait. Emeishan: China Civil Engineering Society: 244-249. (in Chinese)
    [14]
    HUANG M L, ZHAO J M, TAN Z S, et al. , 2016. Analysis of the deformation and mechanical characteristics of the surrounding rock-Lining structure of the muzhailing tunnel[J]. Modern Tunnelling Technology, 53(6): 89-99, 107. (in Chinese with English abstract)
    [15]
    JETHWA J L, SINGH B, SINGH B, 1984. Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions-A new approach[C]//Proceedings of ISRM symposium on design and performance of underground excavations. Cambridge: ISRM Symposium, 231-238.
    [16]
    JIMENEZ R, RECIO D, 2011. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan Tunnels[J]. Engineering Geology, 121(3-4): 101-109. doi: 10.1016/j.enggeo.2011.05.006
    [17]
    JU X Q, 2010. Analysis on characteristics of ground stress in Muzhailing Tunnel around mountainous areas as well as its application[J]. Railway Investigation and Surveying, 36(2): 33-35. (in Chinese with English abstract)
    [18]
    LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: Engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202. (in Chinese with English abstract)
    [19]
    LI J C, 2019. Optimization of excavation method for Muzhailing Tunnel in Weiwu expressway research on deformation control measures[D]. Lanzhou: Lanzhou Jiaotong University. (in Chinese with English abstract)
    [20]
    LI J Q, 2019. Study on construction deformation prediction and large deformation classification standard of Muzhailing Tunnel of Weiwu Expressway[D]. Lanzhou: Lanzhou Jiaotong University. (in Chinese with English abstract)
    [21]
    LI J W, LEI S Y, LI Z, et al. , 2012. Investigation on rheologic properties of carbonaceous slate in Muzhailing Tunnel[J]. Tunnel Construction, 32(1): 36-40. (in Chinese with English abstract)
    [22]
    LI P F, ZHAO Y, LIU J Y, 2014. Deformation characteristics and control method of tunnel with weak surrounding rock[J]. China Railway Science, 35(5): 55-61. (in Chinese with English abstract)
    [23]
    LI Y Z, GAO P, ZOU C, et al. , 2011. Deformation analysis and primary support parameter optimization: case study on Muzhailing Tunnel[J]. Tunnel Construction, 31(3): 320-324, 339. (in Chinese with English abstract)
    [24]
    LI Z J, GUO X X, MA Z W, et al. , 2020. Research status and high-strength pre-stressed primary (type) support system for tunnels with large deformation under squeezing conditions[J]. Tunnel Construction, 40(6): 769-782. (in Chinese with English abstract)
    [25]
    LIU Y R, TANG H M, 1999. Rockmass mechanics[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    [26]
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese)
    [27]
    PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract)
    [28]
    QI B S, ZHANG P, FENG C J, et al. , 2016. Current in-situ stress state and seismic risk in Sichuan-Gansu-Shaanxi border area[J]. Geology in China, 43(5): 1814-1827. (in Chinese with English abstract)
    [29]
    SAARI K, 1982. Analysis of plastic deformation (squeezing) of layers intersecting tunnels and shafts in rock[D]. Berkeley: University of California.
    [30]
    SHI Y, 2012. Formation and tectonic evolution of the eastern Qinling Orogen, Central China[D]. Nanjing: Nanjing University. (in Chinese with English abstract)
    [31]
    SINGH B, JETHWA J L, DUBE A K, et al. , 1992. Correlation between observed support pressure and rock mass quality[J]. Tunnelling and Underground Space Technology, 7(1): 59-74. doi: 10.1016/0886-7798(92)90114-W
    [32]
    SU S R, ZHU H H, WANG S T, et al. , 2002. The effect of fracture properties on stress field in the vicinity of a fracture[J]. Journal of Northwest University (Natural Science Edition), 32(6): 655-658. (in Chinese with English abstract)
    [33]
    SUN S F, 2012. Characteristics of soft rock tunnels and large deformation control technology in the Lanzhou-Chongqing railway[J]. Modern Tunnelling Technology, 49(3): 125-130. (in Chinese with English abstract)
    [34]
    SUN Y C, GAO B, XU Z L, et al. , 2012. Research on prediction method for squeezing deformation of surrounding rock of tunnel[J]. Journal of Railway Engineering Society, 29(2): 50-54. (in Chinese with English abstract)
    [35]
    TANIMOTO C, 1984. NATM-1[M]. Tokyo: Morikita Shuppan.
    [36]
    TAO Z G, LUO S L, KANG H W, et al. , 2020. Analysis of deformation law and creep characteristics of carbonaceous slate in highway tunnel[J]. Journal of China University of Mining & Technology, 49(5): 898-906. (in Chinese with English abstract)
    [37]
    TAPPONNIER P, ZHIQIN X, ROGER F, et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    [38]
    TERZAGHI K, 1946. Rock defects and loads on tunnel supports[C]//Introduction to rock tunnelling with steel support, RV proctor and TC white. Youngstown: Commercial Shearing and Stamping Company.
    [39]
    WANG C H, SHA P, HU Y F, et al. , 2011. Study of squeezing deformation problems during tunneling[J]. Rock and Soil Mechanics, 32(S2): 143-147. (in Chinese with English abstract)
    [40]
    WANG D, WANG J F, LI T B, et al. , 2021. Analysis of three-dimensional movement characteristics of rockfall: A case study at a railway tunnel entrance in the southwestern mountainous area, China[J]. Journal of Geomechanics, 27(1): 96-104. (in Chinese with English abstract)
    [41]
    WANG J J, HUANG Y, 2009. Engineering geological investigation report of Muzhailing Tunnel of Lanzhou-Chongqing Railway[R]. Xi’an: China Railway First Survey and Design Institute Group Co. , Ltd. (in Chinese)
    [42]
    WANG Y G, DING W Q, LIU Z Q, et al. , 2020. Classification standard of large deformation and construction time of second lining in Muzhailing Tunnel[J]. Chinese Journal of Underground Space and Engineering, 16(4): 1116-1122. (in Chinese with English abstract)
    [43]
    WOOD A M M, 1972. Tunnels for roads and motorways[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 5(1-2): 111-126. doi: 10.1144/GSL.QJEG.1972.005.01.12
    [44]
    YAN T Y, CUI Z, ZHANG Y H, et al. , 2018. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering[J]. Rock and Soil Mechanics, 39(S1): 378-386. (in Chinese with English abstract)
    [45]
    YANG S Q, CHEN M, JING H W, et al. , 2017. A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China[J]. Engineering Geology, 217: 89-101. doi: 10.1016/j.enggeo.2016.12.012
    [46]
    YANG Y,YAN Q H, YI J J, et al, 2021.Application of Integrated Geophysical Exploration Technology to the Survey of the Songshan Tunnel in Yanqing, Beijing[J].Geology and Exploration, 57(6):1374-1383. (in Chinese with English abstract)
    [47]
    YE K K, 2018. Dismantling and enlarging technology for ridge core section of Muzhailing Tunnel on Lanzhou-Chongqing Railway[J]. Tunnel Construction, 38(4): 640-648. (in Chinese with English abstract)
    [48]
    YU Y Y, CHEN Z M, LI G L, et al. , 2015. Three dimensional FE regression analysis of multivariate geo-stress field of Muzhailing Tunnel[J]. Journal of Lanzhou Jiaotong University, 34(1): 6-11. (in Chinese with English abstract)
    [49]
    ZHANG B, 2014. Study on deformation mechanism of slate in Muzhailing Tunnel[J]. Railway Engineering(5): 57-59. (in Chinese with English abstract)
    [50]
    ZHANG L C,ZHOU C,TANG J T,et al.,2022.Application of the Two-Component Wide-Field Electromagnetic Method to Engineering Survey of A Deep Tunnel [J].Geology and Exploration,58(4):857-865. (in Chinese with English abstract)
    [51]
    ZHANG P, SUN Z G, WANG Q N, et al. , 2017. In-situ stress measurement and stability analysis of surrounding rocks in the north section of deep buried tunnel in Muzhailing[J]. Journal of Geomechanics, 23(6): 893-903. (in Chinese with English abstract)
    [52]
    ZHANG P Z, WANG Q, MA Z J, 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 9(2): 430-441. (in Chinese with English abstract)
    [53]
    ZHANG Z D, 2003. Discussion and study on large deformation of tunnel in squeezing ground[J]. Modern Tunnelling Technology, 40(2): 5-12, 40. (in Chinese with English abstract)
    [54]
    ZHAO D A, LI G L, CHEN Z M, et al. , 2009. Three-dimensional FE regression analysis of multivariate geostress field of Wushaoling Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 2687-2694. (in Chinese with English abstract)
    [55]
    ZHAO D,TIAN Q,HAO F J,2022.Study on Large Deformation Classification of Deep Buried Carbonaceous Slate Tunnels[J].Geology and Exploration, 58(6):1261-1271.(in Chinese with English abstract)
    [56]
    陈世杰, 肖明, 陈俊涛, 等, 2020. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 39(7): 1434-1444.
    [57]
    范玉璐, 2017. 兰渝铁路木寨岭隧道典型工程区地应力测量及工程地质意义[D]. 北京: 中国地质大学(北京).
    [58]
    方星桦, 杨曾, 阳军生, 等, 2020. 高地应力隧道蚀变花岗岩地层围岩大变形特征及控制措施[J]. 中国铁道科学, 41(5): 92-101.
    [59]
    何满潮, 吕晓俭, 景海河, 2002. 深部工程围岩特性及非线性动态力学设计理念[J]. 岩石力学与工程学报, 21(8): 1215-1224.
    [60]
    胡元芳, 刘志强, 王建宇, 2011. 高地应力软岩条件下挤压变形预测及应用[J]. 现代隧道技术, 48(3): 28-34.
    [61]
    胡元芳, 王建宇, 宋冶, 等, 2013. 兰渝线木寨岭隧道高地应力软岩挤压大变形预测及控制[C]//第十二届海峡两岸隧道与地下工程学术与技术研讨会论文集. 峨眉山: 中国土木工程学会: 244-249.
    [62]
    黄明利, 赵建明, 谭忠盛, 等, 2016. 兰渝铁路木寨岭隧道岭脊段衬砌-围岩结构体系变形受力特征分析[J]. 现代隧道技术, 53(6): 89-99, 107.
    [63]
    巨小强, 2010. 木寨岭隧道越岭区区域地应力特征分析及应用[J]. 铁道勘察, 36(2): 33-35.
    [64]
    李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202.
    [65]
    李佳琪, 2019. 渭武高速木寨岭隧道施工变形预测及大变形分级标准研究[D]. 兰州: 兰州交通大学.
    [66]
    李剑超, 2019. 渭武高速木寨岭隧道开挖工法优化与变形控制措施研究[D]. 兰州: 兰州交通大学.
    [67]
    李建伟, 雷胜友, 李振, 等, 2012. 木寨岭隧道炭质板岩流变力学特性研究[J]. 隧道建设, 32(1): 36-40.
    [68]
    李鹏飞, 赵勇, 刘建友, 2014. 隧道软弱围岩变形特征与控制方法[J]. 中国铁道科学, 35(5): 55-61.
    [69]
    李沿宗, 高攀, 邹翀, 等, 2011. 木寨岭隧道变形分析及初期支护参数优化研究[J]. 隧道建设, 31(3): 320-324, 339.
    [70]
    李志军, 郭新新, 马振旺, 等, 2020. 挤压大变形隧道研究现状及高强预应力一次(型)支护体系[J]. 隧道建设(中英文), 40(6): 769-782.
    [71]
    刘佑荣, 唐辉明, 1999. 岩体力学[M]. 武汉: 中国地质大学出版社.
    [72]
    彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389.
    [73]
    戚帮申, 张鹏, 丰成君, 等, 2016. 川甘陕交汇地区现今地应力环境与地震危险性[J]. 中国地质, 43(5): 1814-1827.
    [74]
    时毓, 2012. 中国中部东秦岭造山带的形成和演化[D]. 南京: 南京大学.
    [75]
    苏生瑞, 朱合华, 王士天, 等, 2002. 断裂物理力学性质对其附近地应力场的影响[J]. 西北大学学报(自然科学版), 32(6): 655-658.
    [76]
    孙绍峰, 2012. 兰渝铁路软岩隧道特征及大变形控制技术[J]. 现代隧道技术, 49(3): 125-130.
    [77]
    孙元春, 高波, 许再良, 等, 2012. 隧道围岩挤压变形预测方法研究[J]. 铁道工程学报, 29(2): 50-54.
    [78]
    陶志刚, 罗森林, 康宏伟, 等, 2020. 公路隧道炭质板岩变形规律及蠕变特性研究[J]. 中国矿业大学学报, 49(5): 898-906.
    [79]
    王成虎, 沙鹏, 胡元芳, 等, 2011. 隧道围岩挤压变形问题探究[J]. 岩土力学, 32(S2): 143-147.
    [80]
    王栋, 王剑锋, 李天斌, 等, 2021. 西南山区某铁路隧道口高位落石三维运动特征分析[J]. 地质力学学报, 27(1): 96-104.
    [81]
    王建军, 黄勇, 2009. 兰渝铁路木寨岭隧道工程地质勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司.
    [82]
    王永刚, 丁文其, 刘志强, 等, 2020. 木寨岭隧道大变形分级标准与支护时机研究[J]. 地下空间与工程学报, 16(4): 1116-1122.
    [83]
    颜天佑, 崔臻, 张勇慧, 等, 2018. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. 岩土力学, 39(S1): 378-386.
    [84]
    阳映, 闫清华, 衣骏杰, 等, 2021.综合物探技术在北京延庆松山隧道勘察中的应用[J].地质与勘探,57(6):1374-1383.
    [85]
    叶康慨, 2018. 兰渝铁路木寨岭隧道岭脊核心段扩拆技术[J]. 隧道建设(中英文), 38(4): 640-648.
    [86]
    余云燕, 陈志敏, 李国良, 等, 2015. 木寨岭隧道三维地应力场多元回归宏观拓展分析[J]. 兰州交通大学学报, 34(1): 6-11. doi: 10.3969/j.issn.1001-4373.2015.01.002
    [87]
    张波, 2014. 木寨岭隧道板岩变形机理研究[J]. 铁道建筑(5): 57-59.
    [88]
    张林成, 周聪, 汤井田, 等, 2022.双分量广域电磁法在深埋隧洞工程勘察中的应用 [J].地质与勘探,58(4):857-865.
    [89]
    张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 9(2): 430-441.
    [90]
    张鹏, 孙治国, 王秋宁, 等, 2017. 木寨岭深埋隧道北段地应力测量与围岩稳定性分析[J]. 地质力学学报, 23(6): 893-903.
    [91]
    张祉道, 2003. 关于挤压性围岩隧道大变形的探讨和研究[J]. 现代隧道技术, 40
    [92]
    赵德安, 李国良, 陈志敏, 等, 2009. 乌鞘岭隧道三维地应力场多元有限元回归拓展分析[J]. 岩石力学与工程学报, 28(S1): 2687-2694.
    [93]
    赵东, 田倩, 郝付军, 2022.深埋炭质板岩隧道的大变形分级研究[J].地质与勘探,58(6):1261-1271.
    [94]
    中华人民共和国建设部, 2015. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社.
  • 加载中

Catalog

    Figures(8)  / Tables(9)

    Article Metrics

    Article views (962) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return