CHEN Qun-ce, LI Fang-quan, MAO Ji-zhen, 2001. APPLICATION STUDY OF THREE DIMENSIONAL GEO-STRESS MEASUREMENTS BY USE OF HYDRAULIC FRACTURING METHOD. Journal of Geomechanics, 7 (1): 69-78.
Citation: YAN S K,WANG C H,GAO G Y,et al.,2024. Exploration and application of in-situ stress estimation method based on core disking phenomenon of boreholes[J]. Journal of Geomechanics,30(6):865−877 doi: 10.12090/j.issn.1006-6616.2023196

Exploration and application of in-situ stress estimation method based on core disking phenomenon of boreholes

doi: 10.12090/j.issn.1006-6616.2023196
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant No. 42174118).
More Information
  •   Objective  Rock core disking is a typical phenomenon that occurs in environments with high in-situ stress. The geometric characteristics and section shape of rock disking are related to the state of in-situ stress, and the site where this phenomenon occurs may be unsuitable for measuring in-situ stress. To obtain more comprehensive in-situ stress data from a wider range of sources, according to this phenomenon, in-situ stress estimation is conducted based on the internal relationship between the in-situ measurement data and the original in-situ stress, and the obtained result can supplement the in-situ stress measurement data.   Methods  According to the relevant hypotheses and theories worldwide, the change in core section stress and core internal energy during the core disking phenomenon was analyzed. The physical and geometric characteristics of the disked rock cores were measured, combined with the stress state of the original rock, and an in-situ stress estimation formula based on core disking characteristics was constructed. The results were compared with those of the other formulas.   Results  The geometric characteristics of 73 representative rock disks in the 30–120 m depth section of the Dalianshan borehole in Dandong, Liaoning Province, where the phenomenon of rock core disking occurs, are measured, and the physical properties of the core are tested. The value of the in-situ stress in this section is estimated using the established in-situ stress estimation formula to supplement and perfect the measured hydraulic fracturing data and better reveal the law of in-situ stress variation.   Conclusion  This section is estimated according to other in-situ stress estimation formulas based on the phenomenon of core disking proposed by scholars worldwide; the calculated results either deviate from reality or are dispersed in the distribution. Compared with these formulas, the in-situ stress data estimated by this formula are more in line with reality and meet the stress conditions for the generation of core disking.   Significance   The results show that the results obtained using this method can complement and perfect the in-situ stress data of the core disking depth section.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BUNGER A P, 2010. Stochastic analysis of core discing for estimation of in situ stress[J]. Rock Mechanics and Rock Engineering, 43(3): 275-286. doi: 10.1007/s00603-009-0051-3
    [2]
    HAIMSON B C, LEE M Y, 1995. Estimating in situ stress from borehole breakouts and core disking—experimental results in granite [C]//Proceedings of the international workshop on rock stress measurement at great depth. Tokyo: ISRM: 19-24.
    [3]
    HAST N, 1967. The state of stresses in the upper part of the earth’s crust[J]. Engineering Geology, 2(1): 5-17. doi: 10.1016/0013-7952(67)90002-6
    [4]
    HOU F L, JIA Y R, 1984. Stress analysis on disced rock cores[J]. Chinese Journal of Geotechnical Engineering, 6(5): 48-58. (in Chinese with English abstract
    [5]
    HOU F L, 1985. Critical under-ground stress of disked rock cores and the relation between the thickness of rock disk and under-ground stress[J]. Engineering Journal of Wuhan University(1): 37-48. (in Chinese with English abstract
    [6]
    JAEGER J C, Cook N G W, 1963. Pinching off and discing of rocks[J]. Journal of Geophysical Research, 68(6): 1759-1765. doi: 10.1029/JZ068i006p01759
    [7]
    JIANG A N, CENG Z W, TANG C A, 2010. Three-dimensional numerical test of element safety degree of rock core discing and feed-back analysis of geostresses[J]. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1610-1617. (in Chinese with English abstract
    [8]
    KAGA N, MATSUKI K, SAKAGUCHI K, 2003. The in situ stress states associated with core discing estimated by analysis of principal tensile stress[J]. International Journal of Rock Mechanics and Mining Sciences, 40(5): 653-665. doi: 10.1016/S1365-1609(03)00057-1
    [9]
    LAN T W, ZHANG H W, HAN J, et al. , 2012. Study on rock burst mechanism based on geo-stress and energy principle[J]. Journal of Mining & Safety Engineering, 29(6): 840-844, 875. (in Chinese with English abstract
    [10]
    LI J, FAN P X, WANG M Y, 2019. The stress conditions of rock core disking based on an energy analysis[J]. Rock Mechanics and Rock Engineering, 52(2): 465-470. doi: 10.1007/s00603-018-1634-7
    [11]
    LI S S, NIE D X, REN G M, 2004. The fracture mechanism of discal drill core and its influence on characteristic of engineering geology[J]. Advance in Earth Science, 19(S1): 376-379. (in Chinese with English abstract
    [12]
    LI Y H, TAN K K, FENG L, 2012. Estimation of in situ geostress states from measuring shape of disked core[J]. Rock and Soil Mechanics, 33(S2): 224-228. (in Chinese with English abstract
    [13]
    LI Z H, LI S J, FENG X T, et al., 2011. Characteristics and formation mechanism of core discing in deep rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 30(11): 2254-2266. (in Chinese with English abstract
    [14]
    LIM S S, MARTIN C D, 2010. Core disking and its relationship with stress magnitude for Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences, 47(2): 254-264. doi: 10.1016/j.ijrmms.2009.11.007
    [15]
    LIU S H, 1988. Core discing phenomenon of Laxiwa hydropower Station[J]. Xibei Shuidian(3): 11-18. (in Chinese with English abstract
    [16]
    MA T H, WANG L, XU T, et al., 2016. Mechanism and stress analysis of rock core discing[J]. Journal of Northeastern University (Natural Science), 37(10): 1491-1495. (in Chinese with English abstract
    [17]
    MATSUKI K, KAGA N, YOKOYAMA T, et al., 2004. Determination of three dimensional in situ stress from core discing based on analysis of principal tensile stress[J]. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1167-1190. doi: 10.1016/j.ijrmms.2004.05.002
    [18]
    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese)
    [19]
    OBERT L, STEPHENSON D E, 1965. Stress conditions under which core discing occurs[J]. Society of Mining Engineers, 232(3): 227-235.
    [20]
    SHEOREY P R, 1994. A theory for in situ stresses in isotropic and transverseley isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1): 23-34.
    [21]
    TANG S H, WU Z J, CHEN X H, 2003. Approach to occurrence and mechanism of rockburst in deep underground mines[J]. Chinese Journal of Rock Mechanics and Engineering, 22(8): 1250-1254. (in Chinese with English abstract
    [22]
    WANG W Q, HU Q G, NING G Z, 2018. Estimation of the in-situ stress in rock mass in the tunnel of N-J hydropower station excavated with TBM[J]. Soil Engineering and Foundation, 32(4): 428-432. (in Chinese with English abstract
    [23]
    XIE F R, CUI X F, 2015. Crustal stress field map of China and its neighboring regions [M]. Beijing: SinoMaps Press.
    [24]
    ZHANG F S, LI M L, ZHANG C Y, et al., 2022. Study on fracture propagation and formation mechanism of core discing at depth under high in-situ stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 41(03): 533-542. (in Chinese with English abstract
    [25]
    ZHANG H W, RONG H, HAN J, et al., 2014. Study on rock core discing mechanism based on stress and energy principle[J]. Chinese Journal of Applied Mechanics, 31(4): 512-517. (in Chinese with English abstract
    [26]
    ZHANG X, GUO Q F, 2017. Characteristics of core disking and calculation of in-situ rock stress in deep rock mass[J]. Metal Mine(10): 163-170. (in Chinese with English abstract
    [27]
    ZHONG S, JIANG Q, FENG X T, et al., 2018. A case of in-situ stress measurement in Chinese Jinping underground laboratory[J]. Rock and Soil Mechanics, 39(1): 356-366. (in Chinese with English abstract
    [28]
    侯发亮,贾愚如,1984. 岩芯饼化的应力分析[J]. 岩土工程学报,6(5):48-58.
    [29]
    侯发亮,1985. 岩芯饼化的临界地应力及岩饼厚度与地应力的关系[J]. 武汉水利电力学院学报(1):37-48.
    [30]
    姜谙男,曾正文,唐春安,2010. 岩芯成饼单元安全度三维数值试验及地应力反馈分析[J]. 岩石力学与工程学报,29(8):1610-1617.
    [31]
    兰天伟,张宏伟,韩军,等,2012. 基于应力及能量条件的岩爆发生机理研究[J]. 采矿与安全工程学报,29(6):840-844,875.
    [32]
    李树森,聂德新,任光明,2004. 岩芯饼裂机制及其对工程地质特性影响的分析[J]. 地球科学进展,19(S1):376-379.
    [33]
    李彦恒,谭可可,冯利,2012. 基于岩饼几何形态测量的原地应力测定方法[J]. 岩土力学,33(S2):224-228.
    [34]
    李占海,李邵军,冯夏庭,等,2011. 深部岩体岩芯饼化特征分析与形成机制研究[J]. 岩石力学与工程学报,30(11):2254-2266.
    [35]
    刘世煌,1988. 拉西瓦水电站的岩芯饼化现象[J]. 西北水电技术(3):11-18.
    [36]
    马天辉,王龙,徐涛,等,2016. 岩芯饼化机制及应力分析[J]. 东北大学学报(自然科学版),37(10):1491-1495.
    [37]
    唐绍辉,吴壮军,陈向华,2003. 地下深井矿山岩爆发生规律及形成机理研究[J]. 岩石力学与工程学报,22(8):1250-1254. doi: 10.3321/j.issn:1000-6915.2003.08.005
    [38]
    汪文桥,胡泉光,宁光忠,2018. 巴基斯坦N-J水电站引水隧洞地应力估算[J]. 土工基础,32(4):428-432.
    [39]
    谢富仁,崔效锋,2015. 中国及邻区现代地壳应力场图[M]. 北京:中国地图出版社.
    [40]
    张丰收,李猛利,张重远,等,2022. 高地应力下深部岩芯饼化裂缝发展规律及机制研究[J]. 岩石力学与工程学报,41(3):533-542.
    [41]
    张宏伟,荣海,韩军,等,2014. 基于应力及能量条件的岩芯饼化机理研究[J]. 应用力学学报,31(4):512-517.
    [42]
    张旭,郭奇峰,2017. 深部岩体岩芯饼化特征分析与原岩应力计算研究[J]. 金属矿山(10):163-170.
    [43]
    中华人民共和国住房和城乡建设部,2015. 工程岩体分级标准:GB/T 50218-2014[S]. 北京:中国计划出版社.
    [44]
    钟山,江权,冯夏庭,等,2018. 锦屏深部地下实验室初始地应力测量实践[J]. 岩土力学,39(1):356-366.
  • Relative Articles

    2025: Tectonic geomorphological evidence of Late Quaternary segmental activity of North Lajishan Fault. Journal of Geomechanics. doi: 10.12090/j.issn.1006-6616.2024125
    WANG An, WANG Guocan, WANG Tuanle, SHI Yan, WEI Jie, LI Haoruo, LYU Ganyu. 2023: Cenozoic tectonics and geomorphic evolution of the lower Jinsha River on the southeastern margin of the Tibetan Plateau. Journal of Geomechanics, 29(4): 453-464. doi: 10.12090/j.issn.1006-6616.2023043
    DENG Lujia, WU Kongyou, JIAO Hongyan, DONG Fang, ZHAO Haiyan, LIU Yulei, ZHANG Fabing. 2022: Paleogene fault system in the Xianhe mining area, Dongying Sag, Bohai Bay Basin and its evolution. Journal of Geomechanics, 28(3): 480-491. doi: 10.12090/j.issn.1006-6616.2021139
    WANG Lei, FANG Weixuan, LU Jia, LIU Zengren. 2022: A study on tectonic geomorphology and landscape ecological pattern in the Kangsu area, Wuqia, Xinjiang. Journal of Geomechanics, 28(1): 101-112. doi: 10.12090/j.issn.1006-6616.20222808
    CAO Pengju, CHENG Sanyou, LIN Haixing, WANG Xi, LI Manqi, CHEN Jing. 2021: DEM in quantitative analysis of structural geomorphology: application and prospect. Journal of Geomechanics, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077
    GUAN Xue, PANG Lichen, JIANG Yutong, LYU Honghua, ZHENG Xiangmin. 2021: Spatial characteristics of quantitative geomorphic indices in the Taihang Mountains, north China: Implications for tectonic geomorphology. Journal of Geomechanics, 27(2): 280-293. doi: 10.12090/j.issn.1006-6616.2021.27.02.026
    JI Changjun, WU Zhenhan, LIU Zhiwei, ZHAO Zhen. 2019: STRUCTURAL FEATURES OF THRUST NAPPES IN THE QIANGTANG BASIN AND HYDROCARBON RESOURCES EFFECT. Journal of Geomechanics, 25(S1): 66-71. doi: 10.12090/j.issn.1006-6616.2019.25.S1.012
    CHEN Xing-qiang, SHI Wei, HU Jian-min, DONG Shu-wen. 2016: SEDIMENTATION OF THE PLIOCENE-PLEISTOCENE CHAIZHUANG SECTION IN THE CENTRAL OF LINFEN BASIN, NORTH CHINA AND ITS TECTONIC SIGNIFICANCE. Journal of Geomechanics, 22(4): 984-993.
    CHEN Qi-guang, SHAO Zhao-gang, HAN Jian-en, MENG Xian-gang, YU Jia, WANG Jin. 2014: ANALYSIS OF GEOMORPHOLOGIC CHARACTERISTICS OF THE YAMZHO YUMCO REGION BASED ON ASTER-GDEM. Journal of Geomechanics, 20(3): 304-316.
    YAO Hong-xin, LI Wen-sheng, WANG Gen-hou. 2013: OIL AND GAS CHARACTERISTICS OF THRUSTING-NAPPE STRUCTURE BELT IN HUOYANSHAN, XINJIANG. Journal of Geomechanics, 19(2): 206-213.
    QIAN Cheng, CUI Tian-ri, LI Lin-chuan, CHEN Hui-jun, QIN Tao, LU Lu. 2013: APPLICATION OF ASTER-GDEM DATA IN THE GEOMORPHIC CHARACTERISTICS ANALYSIS OF NORTHERN GREAT HIGGNAN LING MOUNTAINS. Journal of Geomechanics, 19(1): 82-92.
    ZHANG Pei-quan, LI Bing-su. 2012: GEOMORPHOLOGICAL FEATURES IN LUOYANGSHAN AREA, GUANGXI ZHUANG AUTONOMOUS REGION AND ITS RELATIONS WITH THE MAXIMUM EFFECTIVE MOMENT CRITERION. Journal of Geomechanics, 18(1): 79-90.
    GAO Ming-xiu. 2008: STUDY ON LATE CENOZOIC CRUSTAL TECTONISM. Journal of Geomechanics, 14(4): 295-319.
    MA Bao-qi, LI De-wen. 2008: STAGES OF THE NEOTECTONIC MOVEMENT OF THE MENYUAN BASIN IN THE MIDDLE SEGMENT OF THE QILIAN MOUNTAINS. Journal of Geomechanics, 14(3): 201-211.
    CHENG San-you, LIU Shao-feng, ZHANG Hui-ping, SHEN Xu-hui, SU San, LEI Guo-jing. 2005: DEM ANALYSIS OF THE TECTONOGEOMORPHOLOGY OF THE DABIE OROGENIC BELT. Journal of Geomechanics, 11(4): 333-340.
    HU Xiao-meng, YANG Jing-chun. 2001: THE RESPONSE OF THE DEVELOPMENT OF FEN RIVER TO NEOTECTONIC MOVEMENT AND PALEOCLIMATE CHANGES SINCE LAST NON-GLACIATION STAGE. Journal of Geomechanics, 7(2): 176-180.
    WANG Gen-hou, RAN Shu-ming, LI Ming. 2001: THE CHARACTERISTICS OF NEOGENE SERTENGSHAN XIETIESHAN OBLIQUE THRUST FAULT IN THE NORTHERN MARGIN OF QAIDAM BASIN. Journal of Geomechanics, 7(3): 224-230.
    WU Zhen-han, CUI Sheng-qin, ZHU Da-gang, FENG Xiang-yang. 1999: THERMAL HISTORY AND TECTONO-GEOMORPHIC EVOLUTION OF PANSHAN PLUTON AT SOUTHERN MARGIN OF THE YANSHAN OROGENIC BELT. Journal of Geomechanics, 5(3): 28-32.
    CHEN Yun, TONG Guo-bang, CAO Jia-dong, LI Zheng-hua, JIA Yan-kun, XU Jian-ming, YANG Zhen-jing. 1999: TECTONIC CLIMATE RESPONSE IN THE GEOMORPHOLOGY OF THE WEIHE RIVER VALLEY AROUND BAOJI, SHAANXI PROVINCE. Journal of Geomechanics, 5(4): 51-58.
    Li Youli, Yang Jingchun, Li Baojun, Tan Lihua. 1997: ON THE TECTONIC LANDFORM OF THE YUMU MOUNTAIN, HEXI CORRIDOR,GANSU PROVINCE. Journal of Geomechanics, 3(4): 20-26.
  • Cited by

    Periodical cited type(2)

    1. 江晨轶,潘家伟,张丽军,李海兵,孙知明,Marie-Luce Chevalier,刘富财,苏强. UAV SfM技术在活动构造研究中的应用——以青藏高原西北部龙木错断裂为例. 地质力学学报. 2024(02): 332-347 . 本站查看
    2. 杨勇忠,李占飞,任俊杰,徐锡伟,李康,程佳,康文君. 基岩地质差异对活动断层地表几何形态的控制作用——以祁连山北缘佛洞庙-红崖子断层为例. 地质力学学报. 2024(02): 348-362 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.9 %FULLTEXT: 21.9 %META: 70.4 %META: 70.4 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.3 %其他: 6.3 %其他: 0.1 %其他: 0.1 %Balmain: 0.2 %Balmain: 0.2 %China: 0.6 %China: 0.6 %Kao-sung: 0.2 %Kao-sung: 0.2 %七台河: 0.1 %七台河: 0.1 %上海: 1.0 %上海: 1.0 %东京: 0.1 %东京: 0.1 %东莞: 0.3 %东莞: 0.3 %中卫: 0.8 %中卫: 0.8 %临夏: 0.2 %临夏: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.1 %保定: 0.1 %克利爾沃特: 0.1 %克利爾沃特: 0.1 %兰州: 2.8 %兰州: 2.8 %内江: 0.3 %内江: 0.3 %北京: 13.2 %北京: 13.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.7 %南京: 0.7 %南宁: 0.2 %南宁: 0.2 %南昌: 0.1 %南昌: 0.1 %古吉拉特: 0.1 %古吉拉特: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.4 %嘉兴: 0.4 %大同: 0.7 %大同: 0.7 %天津: 2.2 %天津: 2.2 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 1.2 %安康: 1.2 %定西: 0.1 %定西: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.6 %宣城: 0.6 %宿州: 0.1 %宿州: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.0 %广州: 1.0 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.2 %延安: 0.2 %张家口: 4.3 %张家口: 4.3 %张掖: 0.1 %张掖: 0.1 %徐州: 0.3 %徐州: 0.3 %忻州: 0.2 %忻州: 0.2 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.9 %扬州: 0.9 %斯特灵: 0.1 %斯特灵: 0.1 %昆明: 0.6 %昆明: 0.6 %昌迪加尔: 0.1 %昌迪加尔: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.0 %杭州: 1.0 %格兰特县: 0.2 %格兰特县: 0.2 %武威: 0.1 %武威: 0.1 %武汉: 0.5 %武汉: 0.5 %永州: 0.1 %永州: 0.1 %池州: 0.1 %池州: 0.1 %沈阳: 0.6 %沈阳: 0.6 %沧州: 0.1 %沧州: 0.1 %波士顿: 0.1 %波士顿: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.3 %济南: 0.3 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %滁州: 0.1 %滁州: 0.1 %漯河: 1.8 %漯河: 1.8 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %白银: 0.1 %白银: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %维多利亚: 0.1 %维多利亚: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 17.4 %芒廷维尤: 17.4 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %萍乡: 1.1 %萍乡: 1.1 %蚌埠: 0.2 %蚌埠: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 15.8 %西宁: 15.8 %西安: 1.9 %西安: 1.9 %诺沃克: 4.4 %诺沃克: 4.4 %贵阳: 0.7 %贵阳: 0.7 %费利蒙: 0.1 %费利蒙: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.9 %运城: 0.9 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.2 %遂宁: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %郴州: 0.1 %郴州: 0.1 %酒泉: 0.3 %酒泉: 0.3 %里约热内卢: 0.2 %里约热内卢: 0.2 %重庆: 0.4 %重庆: 0.4 %银川: 0.2 %银川: 0.2 %锦州: 0.1 %锦州: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.2 %长沙: 2.2 %青岛: 0.4 %青岛: 0.4 %马德里: 0.1 %马德里: 0.1 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他BalmainChinaKao-sung七台河上海东京东莞中卫临夏丹东乌鲁木齐保定克利爾沃特兰州内江北京十堰南京南宁南昌古吉拉特合肥咸阳哈尔滨哥伦布嘉兴大同天津安卡拉安康定西宝鸡宣城宿州巴中常州平顶山广州库比蒂诺廊坊延安张家口张掖徐州忻州慕尼黑成都扬州斯特灵昆明昌迪加尔朝阳杭州格兰特县武威武汉永州池州沈阳沧州波士顿洛阳济南深圳温州滁州漯河潍坊烟台白银石嘴山石家庄秦皇岛纽约维多利亚舟山芒廷维尤芝加哥苏州莫斯科萍乡蚌埠衢州西宁西安诺沃克贵阳费利蒙赣州运城连云港遂宁遵义邯郸郑州郴州酒泉里约热内卢重庆银川锦州长春长沙青岛马德里马鞍山

Catalog

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (430) PDF downloads(82) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return