Volume 24 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
QIN Xianghui, CHEN Qunce, MENG Wen, et al., 2018. EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE. Journal of Geomechanics, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033
Citation: QIN Xianghui, CHEN Qunce, MENG Wen, et al., 2018. EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE. Journal of Geomechanics, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033

EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE

doi: 10.12090/j.issn.1006-6616.2018.24.03.033
More Information
  • Received: 2018-03-10
  • Revised: 2018-05-03
  • Published: 2018-06-01
  • Evaluating measured in-situ stress state changes associated with large earthquake events plays a crucial role in earthquake prediction using measured in-situ stress data, whereas typical examples were not stated systematically yet. In this study, the Qiaoqi and Yingxiu regions which contain measured in-situ stress data crossing two large earthquakes (the Wenchuan earthquake and the Lushan earthquake) were selected as examples to study this issue. The changes of the stress state before and after the Wenchuan and Lushan earthquakes in the Qiaoqi and Yingxiu regions were analyzed by comparing the magnitudes of gradient coefficient, characteristic indexes KHV (ratio of the maximum horizontal stress to vertical stress), KHh (ratio of the maximum horizontal stress to minimum horizontal stress), and μm (shear stress normalized by average stress) obtained before and after these two earthquakes. The results indicate that the average magnitudes of KHV, KHh, and μm obtained after the Lushan earthquake (QQ-14) in Qiaoqi region are larger than those obtained before the Wenchuan earthquake (QQ-99); and the mean magnitudes of these parameters obtained from QQ-99 are larger than those obtained after the Wenchuan earthquake (QQ-09). However, the evolution feature of gradient coefficient before and after these two earthquakes can be characterized by QQ-09>QQ-14>QQ-99. Based on above estimation, it was stated that the changes of KHV, KHh, μm can reflect the evolution trend of the regional tectonic stress filed in Qiaoqi region, while the gradient coefficient can not reflect the evolution feature accurately enough. The magnitudes of gradient coefficient, KHV, and μm obtained from measured in-situ stress data after the Wenchuan earthquake exceed those after this large earthquake in Yingxiu region, while the KHh shows contradictory trend. The tectonic stress evolution in Yingxiu region should be verified by supplementing additional stress data. Long-term measured in-situ stress data which can be compared is the key element in significant breakthrough of earthquake prediction using the change laws of stress state characteristics parameters. Conclusions drawn in this study is of great significance for tectonic stress field estimation and disaster prevention and reduction in Longmenshan region, and can provide reference for earthquake prediction research.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    Harris R A. Introduction to special section:stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research, 1998, 103(B10):24347~24358. doi: 10.1029/98JB01576
    [2]
    Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6762):605~609. doi: 10.1038/45144
    [3]
    Scholz C H. The mechanics of earthquakes and faulting[M]. Cambridge:Cambridge University Press, 2002.
    [4]
    Steacy S, Gomberg J, Cocco M. Introduction to special section:stress transfer, earthquake triggering, and time-dependent seismic hazard[J]. Journal of Geophysical Research, 2005, 110(B5):B005S01, doi: 10.1029/2005JB003692.
    [5]
    石耀霖, 张贝, 张斯奇, 等.地震数值预报[J].物理, 2013, 42(4):237~255. http://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201304003.htm

    SHI Yaolin, ZHANG Bei, ZHANG Siqi, et al. Numerical earthquake prediction[J]. Physics, 2013, 42(4):237~255. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201304003.htm
    [6]
    李方全, 孙世宗, 李立球.华北及郯庐断裂带地应力测量[J].岩石力学与工程学报, 1982, 1(1):73~86. http://mall.cnki.net/magazine/Article/HEFE200203001.htm

    LI Fangquan, SUN Shizong, LI Liqiu. In-situ stress measurements in North China and Tancheng-Lujiang fault zone[J]. Chinese Journal of Rock Mechanics and Engineering, 1982, 1(1):73~86. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/HEFE200203001.htm
    [7]
    田中丰, 藤森邦夫, 大塚成昭.地壳应力歪の测定观测による大地震发生の预测[J].地震, 1998, 50(2):201~208.(in Japanese)
    [8]
    Liao C T, Zhang C S, Wu M L, et al. Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake[J]. Geophysical Research Letter, 2003, 30(20):2027. http://www.researchgate.net/publication/241061058_stress_change_near_the_kunlun_fault_before_and_after_the_ms_8.1_kunlun_earthquake
    [9]
    Yamashita F, Fukuyama E, Omura K. Estimation of fault strength:reconstruction of stress before the 1995 Kobe Earthquake[J]. Science, 2004, 306(5694):261~263. doi: 10.1126/science.1101771
    [10]
    郭啟良, 王成虎, 马洪生, 等.汶川Ms8.0级大震前后的水压致裂原地应力测量[J].地球物理学报, 2009, 52(5):1395~1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200905029

    GUO Qiliang, WANG Chenghu, MA Hongsheng, et al. In-situ hydro-fracture stress measurement before and after the Wenchuan Ms8.0 earthquake of China[J]. Chinese Journal of Geophysics, 2009, 52(5):1395~1401. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200905029
    [11]
    Wu M L, Zhang Y Q, Liao C T, et al. Preliminary results of in-situ stress measurements along the Longmenshan fault zone after the Wenchuan Ms 8.0 earthquake[J]. Acta Geologica Sinica, 2009, 83(4):746~753. doi: 10.1111/j.1755-6724.2009.00098.x
    [12]
    秦向辉, 陈群策, 谭成轩, 等.龙门山断裂带西南段现今地应力状态与地震危险性分析[J].岩石力学与工程学报, 2013, 32(S1):2870~2876. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb2013z1038

    QIN Xianghui, CHEN Qunce, TAN Chengxuan, et al. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1):2870~2876. (in Chinese with English abstract) http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb2013z1038
    [13]
    丰成君, 陈群策, 谭成轩, 等.汶川Ms 8.0地震对龙门山断裂带附近地应力环境影响初探——以北川、江油地区为例[J].地震学报, 2013, 35(2):137~150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201302001

    FENG Chengjun, CHEN Qunce, TAN Chengxuan, et al. 2013. A preliminary study of the influence of Wenchuan Ms 8.0 earthquake on in-situ stress state near Longmenshan fault zone:a case study in Beichuan and Jiangyou areas[J]. Acta Seismologica Sinica, 2013, 35(2):137~150. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201302001
    [14]
    陈群策, 丰成君, 孟文, 等. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 2012, 55(12):3623~3632. doi: 10.6038/j.issn.0001-5733.2012.12.005

    CHEN Qunce, FENG Chengjun, MENG Wen, et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(12):3923~3932. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.005
    [15]
    孟文, 陈群策, 吴满路, 等.龙门山断裂带现今构造应力场特征及分段性研究[J].地球物理学进展, 2013, 28(3):1150~1160. http://mall.cnki.net/magazine/Article/DQWJ201303005.htm

    MENG Wen, CHEN Qunce, WU Manlu, et al. Research on segmentation and characteristic of Tectonic stress field of Longmenshan Fault Zone[J]. Progress in Geophysics, 2012, 28(3):1150~1160. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/DQWJ201303005.htm
    [16]
    Meng W, Chen Q C, Zhao Z, et al. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2015, 656:1~19. doi: 10.1016/j.tecto.2015.04.010
    [17]
    Wang C H, Song C K, Guo Q L, et al. New insights into stress changes before and after the Wenchuan Earthquake using hydraulic fracturing measurements[J]. Engineering Geology, 2015, 194:98~113. doi: 10.1016/j.enggeo.2015.05.016
    [18]
    Qin X H, Chen Q C, Wu M L, et al. In-situ stress measurements along the Beichuan-Yingxiu fault after the Wenchuan Earthquake[J]. Engineering Geology, 2015, 194:114~122. doi: 10.1016/j.enggeo.2015.04.029
    [19]
    Wu M L, Zhang C Y, Fan T Y. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the Ms 7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 2016, 121:9~19. doi: 10.1016/j.jseaes.2016.02.004
    [20]
    邓起东, 张培震, 冉勇, 等.中国活动构造基本特征[J].中国科学(D辑), 2002, 32(12):1020~1030. http://mall.cnki.net/magazine/article/JDXK200212006.htm

    DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2003, 46(4):356~372. http://mall.cnki.net/magazine/article/JDXK200212006.htm
    [21]
    Xu Z Q, Ji S C, Li H B, et al. Uplift of the Longmen Shan Range and the Wenchuan earthquake[J]. Episodes, 2008, 31(3):291~301 https://www.researchgate.net/publication/263445677_Uplift_of_the_Longmen_Shan_Range_and_the_Wenchuan_earthquake
    [22]
    Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 2009, 458(7235):194~197. doi: 10.1038/nature07837
    [23]
    邓起东, 陈社发, 赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质, 1994, 16(4):389~403. http://mall.cnki.net/magazine/Article/DZDZ404.013.htm

    DENG Qidong, CHEN Shefa, ZHAO Xiaolin. Tectonics, scismisity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology, 1994, 16(4):389~403. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/DZDZ404.013.htm
    [24]
    Burchfiel B C, Chen Z L, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 1995, 37(8):661~735. doi: 10.1080/00206819509465424
    [25]
    李勇, 周荣军, DENSMORE A L, 等.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究, 2006, 26(1):40~51. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj200601006

    LI Yong, ZHOU Rongjun, DENSMOR A L, et al. Geomorphic evidence for the Late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006, 26(1):40~51. (in Chinese with English abstract) http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj200601006
    [26]
    Zhou R J, Li Y, Densmore A L, et al. Active tectonics of the Longmen Shan region on the eastern margin of the Tibetan plateau[J]. Acta Geologica Sinica, 2007, 81(4):593~604. doi: 10.1111/acgs.2007.81.issue-4
    [27]
    李海兵, 付小方, VAN DER WORD J, 等.汶川地震(Ms 8.0)地表破裂及其同震右旋斜向逆冲作用[J].地质学报, 2008, 82(12):1623~1643. doi: 10.3321/j.issn:0001-5717.2008.12.002

    LI Haibin, FU Xiaofang, VAN DER WORD J, et al. Co-seisimic surface rupture and dextral-slip oblique thrusting of the Ms 8.0 Wenchuan earthquake[J]. Acta Geologica Sinica, 2008, 82(12):1623~1643. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.12.002
    [28]
    Li H B, Wang H, Xu Z Q, et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WSFD-1)[J]. Tectonophysics, 2013, 584:23~42. doi: 10.1016/j.tecto.2012.08.021
    [29]
    吴满路, 张岳桥, 廖椿庭, 等.汶川Ms 8.0地震后龙门山裂断带地应力状态研究[J].地球物理学进展, 2013, 28(3):1122~1130. doi: 10.6038/pg20130303

    WU Manlu, ZHANG Yueqiao, LIAO Chunting, et al. Research on the stress state along the Longmenshan fault belt after the Wenchuan Ms 8.0 earthquake[J]. Progress in Geophysics, 2013, 28(3):1122~1130. (in Chinese with English abstract) doi: 10.6038/pg20130303
    [30]
    Liu Y W, Chen T, Xie F R, et al. Analysis of fluid induced aftershocks following the 2008 Wenchuan Ms 8.0 earthquake[J]. Tectonophysics, 2014, 619~620:149~158. http://www.sciencedirect.com/science/article/pii/S0040195113005568
    [31]
    Zoback M D, Tsukahara H, Hickman S. Stress measurements at depth in the vicinity of the San Andreas fault:implications for the magnitude of shear stress at depth[J]. Journal of Geophysical Research, 1980, 85(B11):6157~6173. doi: 10.1029/JB085iB11p06157
    [32]
    Tan C X, Wang R J, Sun Y, et al. Numerical modelling estimation of the 'tectonic stress plane' (TSP) beneath topography with quasi-U-shaped valleys[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2):303~310. doi: 10.1016/S1365-1609(03)00096-0
    [33]
    de Vallejo L I G, Hijazo T. A new method of estimating the ratio between in situ rock stresses and tectonics based on empirical and probabilistic analyses[J]. Engineering Geology, 2008, 101(3~4):185~194. https://www.deepdyve.com/lp/elsevier/a-new-method-of-estimating-the-ratio-between-in-situ-rock-stresses-and-wikWQ4LMAO
    [34]
    Stephansson O, Zang A. ISRM suggested methods for rock stress estimation-part 5:establishing a model for the in situ stress at a given site[J]. Rock Mechanics and Rock Engineering, 2012, 45(6):955~969. doi: 10.1007/s00603-012-0270-x
    [35]
    Lu R Q, He D F, John S, et al. Structural model of the central Longmen Shan thrusts using seismic reflection profiles:implications for the sediments and deformations since the Mesozoic[J]. Tectonophysics, 2014, 630:43~53. doi: 10.1016/j.tecto.2014.05.003
    [36]
    Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):211~215. http://www.sciencedirect.com/science/article/pii/0148906278912275
    [37]
    王成虎, 宋成科, 郭启良, 等.利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J].地球物理学报, 2014, 57(1):102~114. doi: 10.6038/cjg20140110

    WANG Chenghu, SONG Chengke, GUO Qiliang, et al. Stress build-up in the shallow crust before the Lushan earthquake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 2014, 57(1):102~114. (in Chinese with English abstract) doi: 10.6038/cjg20140110
    [38]
    Ljunggren C, Chang Y T, Janson T, et al. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7~8):975~989. https://www.researchgate.net/publication/222633034_An_Overview_of_Rock_Stress_Measurement_Methods
    [39]
    Haimson B C. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results[A]. Proceedings of 2010 International Symposium on In-Situ Rock Stress[C]. Beijing, China: International Society for Rock Mechanics and Rock Engineering, 2010.
    [40]
    陈运泰, 杨智娴, 张勇, 等.浅谈芦山地震[J].地震学报, 2013, 35(3):285~295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201303001

    CHEN Yuntai, YANG Zhixian, ZHANG Yong, et al. A brief talk on the 20 April 2013 Lushan Mw 6.7 earthquake[J]. Acta Seismologica Sinica, 2013, 35(3):285~295. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201303001
    [41]
    单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J].中国科学:地球科学, 2013, 43(6):1002~1009. http://mall.cnki.net/magazine/Article/JDXK201306008.htm

    SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 2013, 56(7):1169~1176. http://mall.cnki.net/magazine/Article/JDXK201306008.htm
    [42]
    谭成轩, 张鹏, 丰成君, 等.探索首都圈地区深孔地应力测量与实时监测及其在地震地质研究中应用[J].地质学报, 2014, 88(8):1436~1452. http://www.oalib.com/paper/4875165

    TAN Chengxuan, ZHANG Peng, FENG Chengjun, et al. An approach to deep borehole crustal stress measuring and real-time monitoring and its application in seismogeology research in Capital Beijing region[J]. Acta Geologica Sinica, 2014, 88(8):1436~1452. (in Chinese with English abstract) http://www.oalib.com/paper/4875165
    [43]
    Zhang C Y, Wu M L, Chen Q C, et al. Piezomagnetic in-situ stress monitoring and its application in the Longmenshan fault zone[J]. Acta Geologica Sinica, 2014, 88(5):1592~1602. doi: 10.1111/1755-6724.12321
    [44]
    郭祥云, 陈学忠, 李艳娥, 等.四川芦山7.0级地震前中小地震P轴方位角CV值的变化[J].地震工程学报, 2016, 38(2):242~248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201602011

    GUO Xiangyun, CHEN Xuezhong, LI Yan'e, et al. CV value variation of P-axis azimuth for small to moderate earthquakes before the Lushan Ms7.0 earthquake in Sichuan[J]. China Earthquake Engineering Journal, 2016, 38(2):242~248. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201602011
    [45]
    李秋红, 李英, 陈双贵.汶川地震(Ms8.0)前的地磁低频峰值变化[J].地震工程学报, 2016, 38(4):606~608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201604017

    LI Qiuhong, LI Ying, CHEN Shuanggui. Peak value change of power spectrum at low frequency before Wenchuan Ms8.0 earthquake[J]. China Earthquake Engineering Journal, 2016, 38(4):606~608. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201604017
    [46]
    王宁, 王生文, 吕健, 等.四川地区地震前跨断层数据异常分析[J].地震工程学报, 2017, 39(2):294~300. http://mall.cnki.net/magazine/Article/HDKD198404010.htm

    WANG Ning, WANG Shengwen, LV Jian, et al. Pre-earthquake anomaly analysis of cross-fault data in Sichuan[J]. China Earthquake Engineering Journal, 2017, 39(2):294~300. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/HDKD198404010.htm
    [47]
    Zoback M D, Townend J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 2001, 336(1/4):19~30. https://www.deepdyve.com/lp/elsevier/implications-of-hydrostatic-pore-pressures-and-high-crustal-strength-NE1t4xnQFi
  • 加载中

Catalog

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (422) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return