Citation: | TANG R,LI J X,LUO C,et al.,2024. Differences in crustal stress direction in the southern section of the Huayingshan fault zone in Sichuan Basin: Insights from in situ borehole image logging[J]. Journal of Geomechanics,30(4):547−562 doi: 10.12090/j.issn.1006-6616.2023109 |
[1] |
ARTYUSHKOV E V, 1973. Stresses in the lithosphere caused by crustal thickness inhomogeneities[J]. Journal of Geophysical Research, 78(32): 7675-7708. doi: 10.1029/JB078i032p07675
|
[2] |
BASHMAGH N M, LIN W R, MURATA S, et al., 2022. Magnitudes and orientations of present-day in-situ stresses in the Kurdistan region of Iraq: Insights into combined strike-slip and reverse faulting stress regimes[J]. Journal of Asian Earth Sciences, 239: 105398. doi: 10.1016/j.jseaes.2022.105398
|
[3] |
BASSETT D, ARNULF A, HENRYS S, et al., 2022. Crustal structure of the Hikurangi margin from SHIRE seismic data and the relationship between forearc structure and shallow megathrust slip behavior[J]. Geophysical Research Letters, 49(2): e2021GL096960. doi: 10.1029/2021GL096960
|
[4] |
BEHBOUDI E, MCNAMARA D D, LOKMER I, et al., 2022. Spatial variation of shallow stress orientation along the Hikurangi subduction margin: insights from in-situ borehole image logging[J]. Journal of Geophysical Research, 127(5): e2021JB023641. doi: 10.1029/2021JB023641
|
[5] |
BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
|
[6] |
BROOKE-BARNETT S, FLOTTMANN T, PAUL P K, et al., 2015. Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland[J]. Journal of Geophysical Research: Solid Earth, 120(7): 4946-4965. doi: 10.1002/2015JB011964
|
[7] |
BRUDY M, ZOBACK M D, 1999. Drilling-induced tensile wall-fractures: implications for determination of in-situ stress orientation and magnitude[J]. International Journal of Rock Mechanics and Mining Sciences, 36(2): 191-215. doi: 10.1016/S0148-9062(98)00182-X
|
[8] |
CHATTERJEE S, MUKHERJEE S, 2023. Review on drilling-induced fractures in drill cores[J]. Marine and Petroleum Geology, 151: 106089. doi: 10.1016/j.marpetgeo.2022.106089
|
[9] |
CHEN N, WANG C H, CHEN P Z, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data[J]. Journal of Geomechanics, 27(3): 430-440. (in Chinese with English abstract
|
[10] |
CHENG G X, JIANG B, LI M, et al., 2021. Structural evolution of southern Sichuan Basin (South China) and its control effects on tectonic fracture distribution in Longmaxi shale[J]. Journal of Structural Geology, 153: 104465. doi: 10.1016/j.jsg.2021.104465
|
[11] |
DENG B, LIU S G, LIU S, et al., 2009. Restoration of exhumation thickness and its significance in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 675-686. (in Chinese with English abstract
|
[12] |
DENG K L, 1992. Formation and evolution of Sichuan basin and domains for oil and gas exploration[J]. Atural Gas Industry, 12(5): 7-12. (in Chinese with English abstract
|
[13] |
ELO S, PIRTTIJÄRVI M, 2013. The effect of lateral density variations on the state of stress in the uppermost crust in Finland[J]. International Journal of Rock Mechanics and Mining Sciences, 63: 131-137. doi: 10.1016/j.ijrmms.2013.08.005
|
[14] |
FENG M, AN M J, WU Z H, et al., 2019. Focal mechanisms of earthquakes in Chongqing and geodynamical implications[J]. Acta Geoscientica Sinica, 40(2): 319-328. (in Chinese with English abstract
|
[15] |
GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416.
|
[16] |
GAO Y, SHI Y T, CHEN A G, 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the Ms8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 63(19): 1934-1948. (in Chinese with English abstract doi: 10.1360/N972018-00317
|
[17] |
Griffin A G,2019. Subsurface SHMAX determined from a borehole image log, onshore southern East Coast Basin, New Zealand[J]. New Zealand Journal of Geology and Geophysics,62(2):273-290
|
[18] |
GU Z D, WANG X, NUNNS A, et al., 2021. Structural styles and evolution of a thin-skinned fold-and-thrust belt with multiple detachments in the eastern Sichuan Basin, South China[J]. Journal of Structural Geology, 142: 104191. doi: 10.1016/j.jsg.2020.104191
|
[19] |
GUAN S W, LIANG H, JIANG H, et al., 2022. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures[J]. Earth Science Frontiers, 29(6): 252-264. (in Chinese with English abstract
|
[20] |
HE D F, LU R Q, HUANG H Y, et al., 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(5): 993-1006. (in Chinese with English abstract).
|
[21] |
HEIDBACH O, RAJABI M, CUI X F, et al., 2018. The World Stress Map database release 2016: crustal stress pattern across scales[J]. Tectonophysics, 744: 484-498. doi: 10.1016/j.tecto.2018.07.007
|
[22] |
HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005
|
[23] |
HU X P, CUI X F, ZHANG G W, et al., 2021. Analysis on the mechanical causes of the complex seismicity in Changning area, China[J]. Chinese Journal of Geophysics, 64(1): 1-17. (in Chinese with English abstract
|
[24] |
HUANG H Y, HE D F, LI Y Q, et al., 2019. Determination and formation mechanism of the Luzhou paleo-uplift in thesoutheastern Sichuan Basin[J]. Earth Science Frontiers, 26(1): 102-120. (in Chinese with English abstract
|
[25] |
KANG H P, JIANG T M, ZHANG X, et al., 2009. Research on in-situ stress field in Jincheng mining area and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 28(1): 1-8. (in Chinese with English abstract
|
[26] |
KAPETANIDIS V, KASSARAS I, 2019. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms[J]. Journal of Geodynamics, 123: 55-82. doi: 10.1016/j.jog.2018.11.004
|
[27] |
KRUSZEWSKI M, MONTEGROSSI G, PARISIO F, et al., 2022. Borehole observation-based in situ stress state estimation of the Los Humeros geothermal field (Mexico)[J]. Geomechanics for Energy and the Environment, 32: 100392. doi: 10.1016/j.gete.2022.100392
|
[28] |
LI C P, TANG M Y, GUO W Y, et al., 2022. A preliminary study on 3D velocity structure of Rongchang and its adjacent area[J]. Seismology and Geology, 44(1): 205-219. (in Chinese with English abstract
|
[29] |
LI J, LIU C, LIU H M, et al., 2021. Distribution and influencing factors of in-situ stress in complex fault tectonic region[J]. Journal of China University of Mining & Technology, 50(1): 123-137. (in Chinese with English abstract
|
[30] |
LI P W, CUI J W, WANG L J, et al., 2005. The determination of in-situ stress from wellbore breakouts in the main borehole of the Chinese Continental Scientific Drilling[J]. Acta Petrologica Sinica, 21(2): 421-426. (in Chinese with English abstract
|
[31] |
LI X W, ZHANG G W, XIE Z J, et al., 2022. Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region[J]. Chinese Journal of Geophysics, 65(11): 4284-4298. (in Chinese with English abstract
|
[32] |
LI Z Q, RAN L H, CHEN G S, et al., 2002. Genetic geologic model and gas-bearing analysis of high and steep structures in East Sichuan[J]. Journal of Chengdu University of Technology, 29(6): 605-609. (in Chinese with English abstract
|
[33] |
LIN H, KANG W H, OH J, et al., 2020. Numerical simulation on borehole breakout and borehole size effect using discrete element method[J]. International Journal of Mining Science and Technology, 30(5): 623-633. doi: 10.1016/j.ijmst.2020.05.019
|
[34] |
LIU H M, XIE Z J, LI H, et al. , 2022. Source properties and characteristics of tectonic stress field before the September 16, 2021, Luxian MS6.0 earthquake in the Sichuan Basin[J]. Journal of Geodesy and Geodynamics, 42(11): 1138-1142, 1155. (in Chinese with English abstract
|
[35] |
LIU Z C, LYU X R, LI Y K, et al., 2016. Mechanism of faults acting on in-situ stress field direction[J]. Oil & Gas Geology, 37(3): 387-393. (in Chinese with English abstract
|
[36] |
LJUNGGREN C, CHANG Y T, JANSON T, et al., 2003. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 975-989. doi: 10.1016/j.ijrmms.2003.07.003
|
[37] |
MANDAL P, 1999. Intraplate stress distribution induced by topography and crustal density heterogeneities beneath the south Indian shield, India[J]. Tectonophysics, 302(1-2): 159-172. doi: 10.1016/S0040-1951(98)00282-0
|
[38] |
MATIAS C, JOHN B, JOSE C, et al., 2021. Crustal folds alter local stress fields as demonstrated by magma sheet - Fold interactions in the Central Andes[J]. Earth and Planetary Science Letters, 570: 117080. doi: 10.1016/j.jpgl.2021.117080
|
[39] |
MEI L F, LIU Z Q, TANG J G, et al., 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section[J]. Earth Science-Journal of China University of Geosciences, 35(2): 161-174. (in Chinese with English abstract doi: 10.3799/dqkx.2010.017
|
[40] |
NELSON E J, MEYER J J, HILLIS R R, et al., 2005. Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime[J]. International Journal of Rock Mechanics and Mining Sciences, 42(3): 361-371. doi: 10.1016/j.ijrmms.2004.12.001
|
[41] |
NIAN T, WANG G W, XIAO C W, et al., 2016. The in situ stress determination from borehole image logs in the Kuqa Depression[J]. Journal of Natural Gas Science and Engineering, 34: 1077-1084. doi: 10.1016/j.jngse.2016.08.005
|
[42] |
NOURI A, RAHIMI B, VAVRYČUK V, et al., 2023. Spatially varying crustal stress along the Zagros seismic belt inferred from earthquake focal mechanisms[J]. Tectonophysics, 846: 229653. doi: 10.1016/j.tecto.2022.229653
|
[43] |
OLIVA S J, EBINGER C J, RIVALTA E, et al., 2022. State of stress and stress rotations: quantifying the role of surface topography and subsurface density contrasts in magmatic rift zones (Eastern Rift, Africa)[J]. Earth and Planetary Science Letters, 584: 117478. doi: 10.1016/j.jpgl.2022.117478
|
[44] |
QIN Z P, LIU S G, DENG B, et al., 2013. Multiphase structural features and evolution of Southeast Sichuan tectonic belt in China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 703-711. (in Chinese with English abstract
|
[45] |
RAJABI M, TINGAY M, KING R, et al., 2017. Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations[J]. Basin Research, 29(S1): 622-640. doi: 10.1111/bre.12175
|
[46] |
SONG H B, LUO Z L, 1995. The study of the basement and deep geological structures of Sichuan basin, China[J]. Earth Science Frontiers, 2(3-4): 231-237. (in Chinese with English abstract
|
[47] |
STRICKER K, SCHIMSCHAL S, MÜLLER B, et al., 2023. Importance of drilling-related processes on the origin of borehole breakouts-Insights from LWD observations[J]. Geomechanics for Energy and the Environment, 34: 100463. doi: 10.1016/j.gete.2023.100463
|
[48] |
TAN C X, SUN W F, SUN Y, et al.,2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica,80(10):1627-1632. (in Chinese with English abstract
|
[49] |
TANG S L, YAN D P, WANG C L, et al.,2011. Deformational Process from Thick-skinned to Thin-skinned Thrust in Xuefeng Mountain, South China: Evidence from Sangzhi-Anhua Tectonic Section[J]. Geoscience,25(1):22-30. (in Chinese with English abstract
|
[50] |
TREŠL J, 1992. Stress field in the lithosphere caused by terrain topography and crustal density inhomogeneities[J]. Physics of the Earth and Planetary Interiors, 69(3-4): 294-298. doi: 10.1016/0031-9201(92)90148-O
|
[51] |
WANG C H, 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J]. Geological Review, 60(5): 971-996. (in Chinese with English abstract
|
[52] |
WANG X, JIANG W L, ZHANG J F, et al., 2022. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault zone, eastern Chinese mainland[J]. Journal of Asian Earth Sciences, 224: 105027. doi: 10.1016/j.jseaes.2021.105027
|
[53] |
WANG X L, MA S L, LIE X L, 2011. Monitoring of injection-induced seismicity at Rongchang, Chongqing[J]. Seismology and Geology, 33(1): 151-156. (in Chinese with English abstract
|
[54] |
WANG Z J, WANG H C, DONG D, et al. , 2018. Review of geophysical results of Huayingshan fault zone[J]. Earthquake Research in Sichuan(3): 6-12. (in Chinese with English abstract
|
[55] |
WU X H, 2017. Application to in-situ stress evaluation based on cross-dipole logging data in southeast Sichuan block[D]. Qingdao: China University of Petroleum. (in Chinese with English abstract
|
[56] |
XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract
|
[57] |
XIONG X S, GAO R, ZHANG J S, et al., 2015. Differences of structure in mid-lower crust between the eastern and western blocks of the Sichuan basin[J]. Chinese Journal of Geophysics, 58(7): 2413-2423. (in Chinese with English abstract
|
[58] |
XU S R, XU J H, 1986. The new results of seismic exploration in Huayingshan fault zone[J]. Acta Petrolei Sinica, 7(3): 39-48. (in Chinese with English abstract
|
[59] |
YANG X, LI Y H, GE Z X, et al., 2022. Upper crustal anisotropy in the Southeastern Sichuan Basin, China from shear-wave splitting measurements[J]. Tectonophysics, 837: 229431. doi: 10.1016/j.tecto.2022.229431
|
[60] |
YI G X, LONG F, LIANG M J, et al., 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 Ms6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 62(09): 3432-3447. (in Chinese with English abstract
|
[61] |
YI G X, ZHAO M, LONG F, et al., 2020. Geometry and tectonic deformation of seismogenic structures in the Rongxian-Weiyuan-Zizhong region, Sichuan Basin: insights from focalmechanism solutions[J]. Chinese Journal of Geophysics, 63(09): 3275-3291. (in Chinese with English abstract
|
[62] |
YU J S, TAN K, ZHANG C H, et al., 2019. Present-day crustal movement of the Chinese mainland based on Global Navigation Satellite System data from 1998 to 2018[J]. Advances in Space Research, 63(2): 840-856. doi: 10.1016/j.asr.2018.10.001
|
[63] |
ZHANG A, STEPHANSSON O, 2010. Crustal stress models[M]//ZANG A, STEPHANSSON O. Stress field of the earth’s crust. Dordrecht: Springer.
|
[64] |
ZHANG Y Q, DONG S W, LI J H, et al., 2011. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan basin[J]. Geology in China, 38(2): 233-250. (in Chinese with English abstract
|
[65] |
ZHANG Y Q, 2020. Seismogenic structures of the south Sichuan basin seismic zone and its neotectonic setting[J]. Acta Geologica Sinica, 94(11): 3161-3177. (in Chinese with English abstract).
|
[66] |
ZHAO B, GAO Y, HUANG Z B, et al., 2013. Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence[J]. Chinese Journal of Geophysics, 56(10): 3385-3395. (in Chinese with English abstract
|
[67] |
ZHAO C J, 1984. On the characteristics, types and mechanism of vertical structural variations in Sichuan basin[J]. Acta Petrolei Sinica, 5(2): 11-21. (in Chinese with English abstract
|
[68] |
ZHU H C, TAO Z Y, 1994. A preliminary analysis on ground stress vs and topography morphology[J]. Water Resources and Hydropower Engineering(1): 29-34. (in Chinese with English abstract
|
[69] |
ZHU H, HE C, 2014. Focal mechanism changing character of earthquake sequence induced by water injection: a case study of Changning Sequence, Sichuan Province[J]. Earth Science-Journal of China University of Geosciences, 39(12): 1776-1782. (in Chinese with English abstract doi: 10.3799/dqkx.2014.161
|
[70] |
ZOBACK M D, BARTON C A, BRUDY M, et al., 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1049-1076. doi: 10.1016/j.ijrmms.2003.07.001
|
[71] |
陈念,王成虎,陈平志,等,2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征[J]. 地质力学学报,27(3):430-440. doi: 10.12090/j.issn.1006-6616.2021.27.03.039
|
[72] |
邓宾,刘树根,刘顺,等,2009. 四川盆地地表剥蚀量恢复及其意义[J]. 成都理工大学学报(自然科学版),36(6):675-686. doi: 10.3969/j.issn.1671-9727.2009.06.013
|
[73] |
邓康龄,1992. 四川盆地形成演化与油气勘探领域[J]. 天然气工业,12(5):7-12.
|
[74] |
冯梅,安美建,吴中海,等,2019. 重庆地区地震震源机制解及动力环境分析[J]. 地球学报,40(2):319-328. doi: 10.3975/cagsb.2018.070201
|
[75] |
高原,石玉涛,陈安国,2018. 青藏高原东缘地震各向异性、应力及汶川地震影响[J]. 科学通报,63(19):1934-1948.
|
[76] |
管树巍,梁瀚,姜华,等,2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘,29(6):252-264.
|
[77] |
何登发,鲁人齐,黄涵宇,等,2019. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发,46(5):993-1006. doi: 10.11698/PED.2019.05.19
|
[78] |
胡幸平,崔效锋,张广伟,等,2021. 长宁地区复杂地震活动的力学成因分析[J]. 地球物理学报,64(1):1-17. doi: 10.6038/cjg2021O0232
|
[79] |
黄涵宇,何登发,李英强,等,2019. 四川盆地东南部泸州古隆起的厘定及其成因机制[J]. 地学前缘,26(1):102-120.
|
[80] |
康红普,姜铁明,张晓,等,2009. 晋城矿区地应力场研究及应用[J]. 岩石力学与工程学报,28(1):1-8. doi: 10.3321/j.issn:1000-6915.2009.01.001
|
[81] |
李翠平,唐茂云,郭卫英,等,2022. 荣昌及周边三维速度结构初步研究[J]. 地震地质,44(1):205-219. doi: 10.3969/j.issn.0253-4967.2022.01.013
|
[82] |
李静,刘晨,刘惠民,等,2021. 复杂断层构造区地应力分布规律及其影响因素[J]. 中国矿业大学学报,50(1):123-137.
|
[83] |
李朋武,崔军文,王连捷,等,2005. 中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定[J]. 岩石学报,21(2):421-426. doi: 10.3321/j.issn:1000-0569.2005.02.016
|
[84] |
李欣蔚,张广伟,谢卓娟,等,2022. 2021年四川泸县M6.0地震发震机理及地震活动时空演化特征[J]. 地球物理学报,65(11):4284-4298. doi: 10.6038/cjg2022Q0045
|
[85] |
李忠权,冉隆辉,陈更生,等,2002. 川东高陡构造成因地质模式与含气性分析[J]. 成都理工学院学报,29(6):605-609.
|
[86] |
刘慧敏,谢祖军,李赫,等,2022. 2021年四川泸县MS6.0地震震源性质及震前区域应力场特征[J]. 大地测量与地球动力学,42(11):1138-1142,1155.
|
[87] |
刘中春,吕心瑞,李玉坤,等,2016. 断层对地应力场方向的影响机理[J]. 石油与天然气地质,37(3):387-393. doi: 10.11743/ogg20160311
|
[88] |
梅廉夫,刘昭茜,汤济广,等,2010. 湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J]. 地球科学-中国地质大学学报,35(2):161-174.
|
[89] |
覃作鹏,刘树根,邓宾,等,2013. 川东南构造带中新生代多期构造特征及演化[J]. 成都理工大学学报(自然科学版),40(6):703-711.
|
[90] |
宋鸿彪,罗志立,1995. 四川盆地基底及深部地质结构研究的进展[J]. 地学前缘,2(3-4):231-237.
|
[91] |
谭成轩,孙炜锋,孙叶,等,2006. 地应力测量及其地下工程应用的思考[J]. 地质学报,80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018
|
[92] |
汤双立,颜丹平,汪昌亮,等,2011. 华南雪峰山薄皮-厚皮构造转换过程:来自桑植—安化剖面的证据[J]. 现代地质,25(01):22-30. doi: 10.3969/j.issn.1000-8527.2011.01.003
|
[93] |
王成虎,2014. 地应力主要测试和估算方法回顾与展望[J]. 地质论评,60(5):971-996.
|
[94] |
王小龙,马胜利,雷兴林,等,2011. 重庆荣昌地区注水诱发地震加密观测[J]. 地震地质,33(1):151-156. doi: 10.3969/j.issn.0253-4967.2011.01.015
|
[95] |
王赞军,王宏超,董娣,等,2018. 华蓥山断裂带的物探成果综述[J]. 四川地震(3):6-12.
|
[96] |
武小何,2017. 正交偶极测井资料在川东南区块地应力评价中的应用研究[D]. 青岛:中国石油大学(华东).
|
[97] |
谢富仁,崔效锋,赵建涛,等,2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报,47(4):654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016
|
[98] |
熊小松,高锐,张季生,等,2015. 四川盆地东西陆块中下地壳结构存在差异[J]. 地球物理学报,58(7):2413-2423. doi: 10.6038/cjg20150718
|
[99] |
徐世荣,徐锦华,1986. 华蓥山断裂带地震勘探新成果[J]. 石油学报,7(3):39-48. doi: 10.7623/syxb198603006
|
[100] |
易桂喜,龙锋,梁明剑,等,2019. 2019年6月17日四川长宁M_S6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(09):3432-3447.
|
[101] |
易桂喜,赵敏,龙锋,等,2020. 四川盆地荣县—威远—资中地区发震构造几何结构与构造变形特征:基于震源机制解的认识和启示[J]. 地球物理学报,63(09):3275-3291.
|
[102] |
张岳桥,董树文,李建华,等,2011. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质,38(2):233-250. doi: 10.3969/j.issn.1000-3657.2011.02.001
|
[103] |
张岳桥,2020. 四川盆地南部地震区发震构造及其新构造背景[J]. 地质学报,94(11):3161-3177. doi: 10.3969/j.issn.0001-5717.2020.11.001
|
[104] |
赵博,高原,黄志斌,等,2013. 四川芦山MS7.0地震余震序列双差定位、震源机制及应力场反演[J]. 地球物理学报,56(10):3385-3395. doi: 10.6038/cjg20131014
|
[105] |
赵从俊,1984. 四川盆地构造垂向变异特征类型及其机理探讨[J]. 石油学报,5(2):11-21. doi: 10.7623/syxb198402003
|
[106] |
朱航,何畅,2014. 注水诱发地震序列的震源机制变化特征:以四川长宁序列为例[J]. 地球科学-中国地质大学学报,39(12):1776-1782.
|
[107] |
朱焕春,陶振宇,1994. 地形地貌与地应力分布的初步分析[J]. 水利水电技术(1):29-34.
|