Volume 30 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
WANG Y P,BAO Z D,ZHANG L J,et al.,2024. Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs[J]. Journal of Geomechanics,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062
Citation: WANG Y P,BAO Z D,ZHANG L J,et al.,2024. Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs[J]. Journal of Geomechanics,30(4):579−594 doi: 10.12090/j.issn.1006-6616.2024062

Diagenesis of microbial dolomite reservoirs in the second Member of Dengying Formation of Ediacaran in the Penglai area, Sichuan Basin: Insights into the formation and evolution of high-quality reservoirs

doi: 10.12090/j.issn.1006-6616.2024062
Funds:  This research is co-funded by the National Key Research and Development Program of China (Grant No. 2018YFC0604304) and the Special Project of the Department of Science and Technology, Sinopec (Grant No. P23180).
More Information
  • Received: 2024-06-02
  • Revised: 2024-06-23
  • Accepted: 2024-07-01
  • Available Online: 2024-07-15
  • Published: 2024-08-28
  •   Objective  The microbial dolomite of the second Member of the Dengying Formation(Deng 2 Member) in the Penglai area of the Sichuan Basin is widely distributed and considered a potential target for deep carbonate oil and gas exploration. Unlike conventional high-quality reservoirs characterized by porosity and karst fractures, the carbonate rocks of the Deng 2 Member mainly consist of microbial dolomite. The genesis and diagenetic evolution of these high-quality reservoirs remain unclear.   Methods  This study employed petrographic thin sections, scanning electron microscopy (SEM), cathodoluminescence, and computed tomography (CT)scanning to conduct a detailed analysis of the microbial dolomite reservoirs in the Dengying Formation, using field outcrop and core samples. The aim was to gain a deeper understanding of the effects of diagenesis on pore formation and the development of high-quality reservoirs.   Results and Conclusion   The microbial carbonate reservoirs in the study area were characterized by low porosity and very low permeability, predominantly consisting of fracture-porosity (cavity) type microbial dolomite. The reservoir space was primarily composed of intergranular dissolution pores, residual framework dissolution pores, intragranular dissolution pores, and small to medium-sized dissolution cavities, with minor occurrences of intercrystalline pores and intercrystalline dissolution pores. The Deng 2 Member has undergone multiple diagenetic processes; penecontemporaneous dissolution and early epigenetic dissolution were key factors in enhancing porosity.   Significance   These findings enhance the understanding of the genesis of high-quality microbial carbonate reservoirs in the Ediacaran System of the Sichuan Basin and provide valuable information for deep oil and gas exploration and development in the region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AHR W M, MANCINI E A, PARCELL W C, 2011. Pore characteristics in microbial carbonate reservoirs[JC]//AAPG annual convention and exhibition. Houston: Datapages, IncAAPG Search & Discovery Article, 30167: 10-13.
    [2]
    AL HADDAD S, MANCINI E A, 2013. Reservoir characterization, modeling, and evaluation of Upper Jurassic Smackover microbial carbonate and associated facies in Little Cedar Creek field, southwest Alabama, eastern Gulf coastal plain of the United States[J]. AAPG Bulletin, 97(11): 2059-2083. doi: 10.1306/07081312187
    [3]
    AMINU M D, NABAVI S A, ROCHELLE C A, et al., 2017. A review of developments in carbon dioxide storage[J]. Applied Energy, 208: 1389-1419. doi: 10.1016/j.apenergy.2017.09.015
    [4]
    BERGMANN K D, GROTZINGER J, OSBURN M, 2012. Telling time in microbial carbonates: a case study from the Latest Precambrian, Sultanate of Oman[C]//2012 AAPG annual convention and exhibition. Long Beach: Datapages, Inc.
    [5]
    CHEN H W, WANG S L, HE Y, et al. , 2024. Sedimentary facies and reservoir characteristics of the fourth member of Dengying Formation in Well DB1l area, north-central Sichuan Basin[J/OLJ]. Petroleum Geology and Recovery Efficiency, 1-11[2024-07-06]. https://doi.org/10.13673/j.pgre.202308035.31(3): 31-411-11[2024-05-25]. (in Chinese with English abstract
    [6]
    CHEN J T, LEE J H, 2014. Current progress on the geological record of microbialites and microbial carbonates[J]. Acta Geologica Sinica-English Edition, 88(1): 260-275. doi: 10.1111/1755-6724.12196
    [7]
    CHEN X Q, TIAN X B, SHI J B, et al. , 2024. Sequence stratigraphic division and its control on favorable reserviors of Hechuan-Tongnan area in Sichuan Basin based on wavelet transform analysis: taking Member 4 of Upper Sinian Dengying Formation as an example[J/OL]. Petroleum Geology & Oilfield Development in Daqing, 1-9[2024-05-25]. https://doi.org/10.19597/J.ISSN.1000-3754.202309051. (in Chinese with English abstract
    [8]
    CHIDSEY JR T C, VANDEN BERG M D, EBY D E, 2015. Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin's Eocene Green River Formation in Utah, USA[J]. Geological Society, London, Special Publications, 418(1): 261-286. doi: 10.1144/SP418.6
    [9]
    COLLINS J, KENTER J, PLAYTON T, et al. , 2012. Characterization and controls on slope geometry, framework and internal heterogeneity in the unit 1 Tengiz Field (Kazakhstan), and comparison with outcrop analogs. Abstract[C]//American Association of Petroleum Geologists AAPG annual convention and exhibition. Long BeachMeeting, CA, 84: Datapages, Inc. : 79-88.
    [10]
    CROSS M M, MANNING D A C, BOTTRELL S H, et al., 2004. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 35(4): 393-404. doi: 10.1016/j.orggeochem.2004.01.005
    [11]
    DAVIES G R, SMITH JR L B, 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 90(11): 1641-1690. doi: 10.1306/05220605164
    [12]
    DU J H, HE H Q, ZHAO X Z, et al., 2017. Significant exploration breakthrough in Yangshuiwu ultra-deep and ultra-high temperature Ordovician buried-hill in Langgu sag, Bohai Bay Basin[J]. China Petroleum Exploration, 22(32): 1-12. (in Chinese with English abstract
    [13]
    DUAN J B, DAI L C, LI B S, et al., 2019. Reservoir characeteristices and their controlling factors of the fourth Member of Upper Sinian Dengying Fm in the northern Sichuan Basin[J]. Natural Gas Industry, 39(7): 9-20. (in Chinese with English abstract
    [14]
    DUPRAZ C, REID R P, BRAISSANT O, et al., 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141-162. doi: 10.1016/j.earscirev.2008.10.005
    [15]
    FENG M Y, QIANG Z T, SHEN P, et al., 2016. Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Acta Petrolei Sinica, 37(5): 587-598. (in Chinese with English abstract
    [16]
    FU X D, ZHANG B J, WANG Z C, et al., 2023. Functions on Hydrocarbon Accumulation Strike-slip faults in central and western Sichuan Basin and their control functions on hydrocarbon accumulation[J]. Earth Science, 48(6): 2221-2237. (in Chinese with English abstract
    [17]
    GUO X S, HU D F, DUAN J B, et al., 2018. Rock features and sedimentary environment of the fourth member of Dengying Formation in Huijiaba section of Ningqiang, northern Sichuan Basin[J]. Petroleum Geology & Experiment, 40(6): 749-756. (in Chinese with English abstract
    [18]
    HE ZY L, JIN Z J, LI S J, et al., 2023. Prototypes, modifications, and hydrocarbon enrichment variations in basins influenced by Tethyan evolution: a comparative analysis of the Persian Gulf Basin and the Sichuan Basin[J]. Science China Earth Sciences, 66(12): 2871-2897. (in Chinese with English abstract doi: 10.1007/s11430-023-1207-x
    [19]
    HE ZY L, MA Y S, ZHU D Y, et al., 2021. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 42(3): 533-546. (in Chinese with English abstract
    [20]
    HUANG S P, JIANG H, WANG T S, et al., 2023. Accumulation conditions and favorable exploration zones for natural gas in 8000 meters marine ultra-deep strata in the Sichuan basin[J]. Acta Geologica Sinica, 97(5): 1544-1560. (in Chinese with English abstract
    [21]
    JIANG L, HU A P, OU Y L, et al., 2023. Diagenetic evolution and effects on reservoir development of the Dengying and Longwangmiao formations, Central Sichuan Basin, Southwestern China[J]. Petroleum Science, 20(6): 3379-3393. doi: 10.1016/j.petsci.2023.09.025
    [22]
    JIANG L, HU S Y, ZHAO W Z, et al., 2018a. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China[J]. AAPG Bulletin, 102(12): 2599-2628. doi: 10.1306/05111817021
    [23]
    JIANG L, WORDEN R H, CAI C F, et al., 2018c. Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China[J]. Marine and Petroleum Geology, 92: 332-351. doi: 10.1016/j.marpetgeo.2017.10.029
    [24]
    JIANG L, WORDEN R H, YANG C B, 2018b. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 223: 127-140. doi: 10.1016/j.gca.2017.11.032
    [25]
    JIAO F Z, 2018. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 39(2): 207-216. (in Chinese with English abstract
    [26]
    LI P W, LUO P, SONG J M, et al., 2015. Characteristics of Upper Sinian dolostonedolomite reservoirs in northwestern margin of Tarim Basin[J]. Marine Origin Petroleum Geology, 20(4): 1-12. (in Chinese with English abstract
    [27]
    LI Y, WANG X Z, FENG M Y, et al., 2019. Reservoir characteristics and genetice differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 46(1): 52-64. (in Chinese with English abstract
    [28]
    LI Z W, RAN B, XIAO B, et al., 2019. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hyvdrocarbhon expnloration[J]. Earth Science Frontiers, 26(1): 59-85. (in Chinese with English abstract
    [29]
    LIU Q Y, ZHU D Y, MENG Q Q, et al., 2024. Organic-inorganic interactions in the Earth's multi-spheres and resources effects[J]. Natural Gas Geoscience, 35(5): 741-762. (in Chinese with English abstract
    [30]
    LUO B, YANG Y M, LUO W J, et al., 2015. Controlling factors and distribution of reservoir development in Dengying Formation of paleo-uplift in central Sichuan Basin[J]. Acta Petrolei Sinica, 36(4): 416-426. (in Chinese with English abstract
    [31]
    LUO B, YANG Y, ZHOU G, et al., 2018. Basic characteristics and accumulation mechanism of Sinian−Cambrian giant highly mature and oil-cracking gas reservoirs in the Sichuan Basin, SW China[J]. Energy Exploration & Exploitation, 36(4): 568-590.
    [32]
    MA X H, YANG Y, WEN L, et al., 2019. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1-13. (in Chinese with English abstract doi: 10.1016/S1876-3804(19)30001-1
    [33]
    MA Y S, CAI X Y, ZHAO P R, et al., 2010. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: a case study from the Puguang Oilfield in SichuanThe development mechanism of deep ultra-deep carbonate high-quality reservoirs and the' ternary reservoir control' model[J]. Acta Geologica Sinica, 84(8): 1087-1094235. (in Chinese with English abstract
    [34]
    MANCINI E A, PARCELL W C, AHR W M, et al., 2008. Upper Jurassic updip stratigraphic trap and associated Smackover microbial and nearshore carbonate facies, eastern Gulf coastal plain[J]. AAPG Bulletin, 92(4): 417-442. doi: 10.1306/11140707076
    [35]
    MUNIZ M C, BOSENCE D, 2012. Carbonate platforms in non-marine rift system in the Early Cretaceous (Pre-salt) of the Campos Basin, Brazil[C]//AAPG annual convention and exhibition. Long Beach: Datapages, Inc22-25.
    [36]
    REN Y, ZHONG D K, GAO C L, et al., 2015. Characteristics and controlling factors of the Lower Cambrian Longwangmiao Formation reservoirs in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography (Chinese Edition), 17(6): 829-840. (in Chinese with English abstract
    [37]
    SHI Y P, LIU Z G, WANG S C, et al. , 2024. Genetic mechanism and main controlling factors of high-quality clastic rock reservoirs in deep and ultra-deep layers: a case study of Oligocene Linhe Formation in Linhe Depression, Hetao Basin, NW China[J]. Petroleum Exploration and Development, 51(3): 478-4891-12[2024-05-25]. (in Chinese with English abstract
    [38]
    SI C S, HAO Y, ZHOU J G, et al., 2014. Reservoir Characteristics and main controlling factors of reservoir in Sinian Dengying Formation, in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 266-273. (in Chinese with English abstract
    [39]
    SONG J M, LIU S G, SUN W, et al., 2013. Control of Xingkai taphrogenesis on Dengying Formation high quality reservoirs in Upper Sinian of Sichuan Basin, ChinaThe control effect of Xingkai ground fissure movement on the high quality reservoir of Dengying Formation in Sichuan Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 658-670. (in Chinese with English abstract
    [40]
    TULL S J, 1997. The diversity of hydrocarbon habitat in Russia[J]. Petroleum Geoscience, 3(4): 315-325. doi: 10.1144/petgeo.3.4.315
    [41]
    WANG B S, YUAN H F, WANG T, et al. , 2024. Reservoir diagenesis, pore evolution and oil and gashydrocarbon charging inof the fourth member of the Sinian Dengying Formation in the Penglai area, central Sichuan Basin[J/OL]. Acta Sedimentologica Sinica, 1-24[2024-05-25]. https://doi.org/10.14027/j.issn.1000-0550.2024.012. (in Chinese with English abstract
    [42]
    WANG G Z, LIU S G, LI N, et al., 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin[J]. Acta Petrologica Sinica, 30(3): 667-678. (in Chinese with English abstract
    [43]
    WANG J Q, DENG J X, LIU Z H, et al., 2023. Petrophysical properties and their influencing factors of carbonates in the fourth member of Sinian Dengying Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(6): 1185-1198. (in Chinese with English abstract
    [44]
    WANG W Y, PANG X Q, CHEN Z X, et al., 2019. Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China[J]. Energy, 174: 861-872. doi: 10.1016/j.energy.2019.03.018
    [45]
    WANG Z C, JIANG H, CHEN Z Y, et al., 2020. Tectonice paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region, South China[J]. Petroleum Exploration and Development, 47(5): 884-897. (in Chinese with English abstract
    [46]
    WANG Z W, ZHANG K, WU Q H, et al.,2023. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration,51(6):163-174. (in Chinese with English abstract
    [47]
    WEI G Q, DU J H, XU C C, et al., 2016. Characteristics and accumulation mode of large-scale Sinian-Cambrian gas reservoirs in the Gaoshiti-Moxi region, Sichuan Basin[J]. Petroleum Research, 1(2): 164-177. doi: 10.1016/S2096-2495(17)30040-6
    [48]
    WEN L, ZHANG J Y, PAN L YG, et al., 2023. Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongijiang area of central Sichuan Basin[J]. Petroleum Geology & Experiment, 45(5): 982-993. (in Chinese with English abstract
    [49]
    XIE J R, ZHANG Z L, ZHONG Y, et al., 2022. New understanding and potential analysis of natural gas exploration ofin the Dengying Member 2second member of Dengying Formation in central-northern area of Sichuan Basin[J]. Marine Origin Petroleum Geology, 27(3): 225-235. (in Chinese with English abstract
    [50]
    XIE W R, YANG W, WANG Z C, et al., 2021. Characteristics and main controlling factors on the development of a platform margin belt and its effect on hydrocarbon accumulation: a case study of Dengying Formation in Sichuan BasinCharacteristics of platform margin zone, main controlling factors of formation and their control on hydrocarbon accumulation: A case study of Dengying Formation in Sichuan Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica), 56(3): 867-883. (in Chinese with English abstract
    [51]
    XING F C, HU H R, HOU M C, et al., 2018. Carbonate reservoirs cycles and assemblages under the tectonic and palaeogeography control: a case study from Sichuan Basin[J]. Earth Science, 43(10): 3540-3552. (in Chinese with English abstract
    [52]
    XU C C, SHEN P, YANG Y M, et al., 2020. New understandings and potential of Sinian-Lower Paleozoic natural gas exploration in the central Sichuan paleo-uplift of the Sichuan Basin[J]. Natural Gas Industry, 40(7): 1-9. (in Chinese with English abstract
    [53]
    XU S L, MA K, YANG Q, et al., 2024. Reservoir characteristics of the second member of Sinian Dengying Formation in Penglai gas area of Sichuan Basin and their controlling factors[J]. Special Oil & Gas Reservoirs, 31(2): 47-56. (in Chinese with English abstract
    [54]
    YANG W, WEI G Q, WU S JWEI Y, GUOQI W E I, SAIJUN W U, et al., 2023. Regional unconformities and their controls on hydrocarbon accumulation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(3): 573-587. doi: 10.1016/S1876-3804(23)60411-2
    [55]
    YANG Y, HUANG X P, ZHANG J, et al., 2014. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 34(3): 38-43. (in Chinese with English abstract
    [56]
    YANG Y, WEN L, ZHOU G, et al., 2023. New fields, new types and resource potentials of hydrocarbonoil and gas exploration in Sichuan Basin[J]. Acta Petrolei Sinica, 44(12): 2045-2069. (in Chinese with English abstract
    [57]
    ZHANG B J, MA H L, LI W Z, et al., 2023a. Reservoir characteristics and main controlling factors in the second member of the Dengying Formation in the Penglai Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 34(11): 1899-1915. (in Chinese with English abstract
    [58]
    ZHANG B J, ZHONG Y, ZHOU G, et al., 2023b. Sedimentary microfacies evolution and gas reservoir comprehensive evaluation of gas reservoirthe second member of the Dengying Member 2Formation in Penglai area, central Sichuan Basin[J]. Marine Origin Petroleum Geology, 28(1): 1-10. (in Chinese with English abstract
    [59]
    ZHANG X H, LI Y, ZHANG B J, et al., 2023. Characteristics and formation mechanism of high quality reservoir of the second member of the Dengying Formation in Zhongjiang-Penglai area, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 50(3): 301-312. (in Chinese with English abstract
    [60]
    ZHANG Y Y, LI Y, MUNNECKE A, 2014. Late Ordovician microbial reefs in the Lianglitag Formation (Bachu, Tarim, NW China)[J]. Facies, 60(2): 663-684. doi: 10.1007/s10347-014-0396-2
    [61]
    ZHANG Z L, QIAO Y P, DOU S, et al., 2024. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China[J]. Oil & Gas Geology, 45(1): 200-214. (in Chinese with English abstract
    [62]
    ZHAO H, SUN Y, WU Y, et al., 2023. Seismic identification and favorable area prediction of hilly-shoal reservoir in the second member of Dengying Formation in Zhongjiang-Penglai area, Sichuan Basin[J]. Natural Gas Geoscience, 34(6): 980-991. (in Chinese with English abstract
    [63]
    ZHAO W Z, SHEN A J, HU S Y, et al., 2012. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 39(1): 1-12. (in Chinese with English abstract doi: 10.1016/S1876-3804(12)60010-X
    [64]
    ZHENG J, WEN L, GE Y H, et al., 2023. U–Pb dating of fibrous dolomite in the hydrothermal dolostone of the Dengying Formation, central Sichuan Basin, and its response to supercontinent breakup[J]. Minerals, 13(10): 1353. doi: 10.3390/min13101353
    [65]
    ZHOU J G, YAO G S, YANG G, et al., 2015. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue gas field, Sichuan Basin[J]. Natural Gas Industry, 35(1): 36-44. (in Chinese with English abstract
    [66]
    ZHU D Y, JIN Z J, ZHANG R Q, et al., 2014. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karstSuperimposed development characteristics and mechanism of multi-stage karst reservoirs in dolomite of Sinian Dengying Formation[J]. Earth Science Frontiers, 21(6): 335-345. (in Chinese with English abstract
    [67]
    ZOU C N, DU J H, XU C C, et al., 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278-293. (in Chinese with English abstract
    [68]
    陈泓位,王时林,和源,等,2024. 四川盆地中北部DB1井区灯影组四段沉积相及储层特征[J/OL]. 油气地质与采收率:1-11[2024-07-06]. https://doi.org/10.13673/j.pgre.202308035.
    [69]
    陈孝全,田小彬,师江波,等,2024. 四川盆地合川-潼南地区基于小波变换的层序地层划分及其对有利储层的控制作用:以上震旦统灯影组四段为例[J/OL]. 大庆石油地质与开发,1-9[2024-05-25]. https://doi.org/10.19597/J.ISSN.1000-3754.202309051.
    [70]
    杜金虎,何海清,赵贤正,等,2017. 渤海湾盆地廊固凹陷杨税务超深超高温奥陶系潜山油气勘探重大突破实践与启示[J]. 中国石油勘探,22(32):1-12.
    [71]
    段金宝,代林呈,李毕松,等,2019. 四川盆地北部上震旦统灯影组四段储层特征及其控制因素[J]. 天然气工业,39(7):9-20. doi: 10.3787/j.issn.1000-0976.2019.07.002
    [72]
    冯明友,强子同,沈平,等,2016. 四川盆地高石梯−磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报,37(5):587-598. doi: 10.7623/syxb201605003
    [73]
    付小东,张本健,汪泽成,等,2023. 四川盆地中西部走滑断裂及其对油气成藏控制作用[J]. 地球科学,48(6):2221-2237.
    [74]
    郭旭升,胡东风,段金宝,等,2018. 四川盆地北部宁强胡家坝灯影组四段岩石特征及沉积环境分析[J]. 石油实验地质,40(6):749-756. doi: 10.11781/sysydz201806749
    [75]
    何治亮,金之钧,李双建,等,2023. 特提斯演化控制下盆地原型、改造与油气差异富集:基于波斯湾盆地与四川盆地的比较分析[J]. 中国科学:地球科学,53(12):2914-2936.
    [76]
    何治亮,马永生,朱东亚,等,2021. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质,42(3):533-546. doi: 10.11743/ogg20210301
    [77]
    黄士鹏,姜华,王铜山,等,2023. 四川盆地8000m海相超深层天然气成藏条件及有利勘探区带[J]. 地质学报,97(5):1544-1560. doi: 10.3969/j.issn.0001-5717.2023.05.013
    [78]
    焦方正,2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,39(2):207-216. doi: 10.11743/ogg20180201
    [79]
    李朋威,罗平,宋金民,等,2015. 塔里木盆地西北缘上震旦统白云岩储层特征[J]. 海相油气地质,20(4):1-12. doi: 10.3969/j.issn.1672-9854.2015.04.001
    [80]
    李勇,王兴志,冯明友,等,2019. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发,46(1):52-64. doi: 10.11698/PED.2019.01.05
    [81]
    李智武,冉波,肖斌,等,2019. 四川盆地北缘震旦纪—早寒武世隆−坳格局及其油气勘探意义[J]. 地学前缘,26(1):59-85.
    [82]
    刘全有,朱东亚,孟庆强,等,2024. 地球多层圈有机—无机相互作用的资源效应[J]. 天然气地球科学,35(5):741-762. doi: 10.11764/j.issn.1672-1926.2024.04.001
    [83]
    罗冰,杨跃明,罗文军,等,2015. 川中古隆起灯影组储层发育控制因素及展布[J]. 石油学报,36(4):416-426. doi: 10.7623/syxb201504003
    [84]
    马新华,杨雨,文龙,等,2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发,46(1):1-13. doi: 10.11698/PED.2019.01.01
    [85]
    马永生,蔡勋育,赵培荣,等,2010. 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式:以四川普光气田为例[J]. 地质学报,84(8):1087-1094235.
    [86]
    任影,钟大康,高崇龙,等,2015. 川东及其周缘地区下寒武统龙王庙组储集层特征与控制因素[J]. 古地理学报,17(6):829-840. doi: 10.7605/gdlxb.2015.06.068
    [87]
    史原鹏,刘占国,王少春,等,2024. 深层—超深层优质碎屑岩储层成因及主控因素:以河套盆地临河坳陷古近系渐新统临河组为例[J]. 石油勘探与开发,51(3):478-4891-12[2024-05-25].
    [88]
    斯春松,郝毅,周进高,等,2014. 四川盆地灯影组储层特征及主控因素[J]. 成都理工大学学报(自然科学版),41(3):266-273. doi: 10.3969/j.issn.1671-9727.2014.03.02
    [89]
    宋金民,刘树根,孙玮,等,2013. 兴凯地裂运动对四川盆地灯影组优质储层的控制作用[J]. 成都理工大学学报(自然科学版),40(6):658-670.
    [90]
    汪泽成,姜华,陈志勇,等,2020. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发,47(5):884-897. doi: 10.11698/PED.2020.05.04
    [91]
    王炳森,袁海锋,王涛,等,2024. 川中蓬莱地区震旦系灯影组四段储层成岩作用、孔隙演化及油气充注[J/OL]. 沉积学报,1-24[2024-05-25]. https://doi.org/10.14027/j.issn.1000-0550.2024.012.
    [92]
    王国芝,刘树根,李娜,等,2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制[J]. 岩石学报,30(3):667-678.
    [93]
    王佳庆,邓继新,刘忠华,等,2023. 四川盆地震旦系灯影组四段碳酸盐岩岩石物理特征及影响因素[J]. 石油勘探与开发,50(6):1185-1198. doi: 10.11698/PED.20230303
    [94]
    王志伟, 张凯, 武群虎, 等,2023. 基于井震裂缝识别敏感性参数模型的碳酸盐岩储层裂缝预测方法[J]. 煤田地质与勘探,51(6):163-174
    [95]
    文龙,张建勇,潘立银,等,2023. 川中蓬莱—中江地区灯二段微生物白云岩储层特征、发育主控因素与勘探领域[J]. 石油实验地质,45(5):982-993. doi: 10.11781/sysydz202305982
    [96]
    谢继容,张自力,钟原,等,2022. 四川盆地中部—北部地区灯影组二段天然气勘探新认识及潜力分析[J]. 海相油气地质,27(3):225-235. doi: 10.3969/j.issn.1672-9854.2022.03.001
    [97]
    谢武仁,杨威,汪泽成,等,2021. 台缘带特征、形成主控因素及其对油气成藏的控制:以四川盆地灯影组为例[J]. 地质科学,56(3):867-883. doi: 10.12017/dzkx.2021.045
    [98]
    邢凤存,胡华蕊,侯明才,等,2018. 构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例[J]. 地球科学,43(10):3540-3552.
    [99]
    徐春春,沈平,杨跃明,等,2020. 四川盆地川中古隆起震旦系—下古生界天然气勘探新认识及勘探潜力[J]. 天然气工业,40(7):1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001
    [100]
    徐少立,马奎,杨强,等,2024. 四川盆地蓬莱气区震旦系灯影组二段储层特征及其控制因素[J]. 特种油气藏,31(2):47-56. doi: 10.3969/j.issn.1006-6535.2024.02.006
    [101]
    杨雨,黄先平,张健,等,2014. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业,34(3):38-43. doi: 10.3787/j.issn.1000-0976.2014.03.0016
    [102]
    杨雨,文龙,周刚,等,2023. 四川盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报,44(12):2045-2069. doi: 10.7623/syxb202312004
    [103]
    张本健,马华灵,李文正,等,2023a. 四川盆地蓬莱气区灯二段储集层特征及主控因素[J]. 天然气地球科学,34(11):1899-1915.
    [104]
    张本健,钟原,周刚,等,2023b. 四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J]. 海相油气地质,28(1):1-10.
    [105]
    张玺华,李勇,张本健,等,2023. 四川盆地中江−蓬莱地区灯二段储层特征及优质储层成因机制[J]. 成都理工大学学报(自然科学版),50(3):301-312. doi: 10.3969/j.issn.1671-9727.2023.03.05
    [106]
    张自力,乔艳萍,豆霜,等,2024. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质,45(1):200-214. doi: 10.11743/ogg20240114
    [107]
    赵虎,孙勇,吴勇,等,2023. 四川盆地中江—蓬莱地区灯二段丘滩体储层地震识别及有利区预测[J]. 天然气地球科学,34(6):980-991.
    [108]
    赵文智,沈安江,胡素云,等,2012. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发,39(1):1-12.
    [109]
    周进高,姚根顺,杨光,等,2015. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业,35(1):36-44. doi: 10.3787/j.issn.1000-0976.2015.01.004
    [110]
    朱东亚,金之钧,张荣强,等,2014. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘,21(6):335-345.
    [111]
    邹才能,杜金虎,徐春春,等,2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,41(3):278-293. doi: 10.11698/PED.2014.03.03
  • 加载中

Catalog

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (207) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return