Volume 29 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
WANG A,WANG G C,WANG T L,et al.,2023. Cenozoic tectonics and geomorphic evolution of the lower Jinsha River on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics,29(4):453−464 doi: 10.12090/j.issn.1006-6616.2023043
Citation: WANG A,WANG G C,WANG T L,et al.,2023. Cenozoic tectonics and geomorphic evolution of the lower Jinsha River on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics,29(4):453−464 doi: 10.12090/j.issn.1006-6616.2023043

Cenozoic tectonics and geomorphic evolution of the lower Jinsha River on the southeastern margin of the Tibetan Plateau

doi: 10.12090/j.issn.1006-6616.2023043
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grants No. 41972223 and 41672195).
More Information
  • Received: 2023-03-29
  • Revised: 2023-06-10
  • Accepted: 2023-06-12
  • Available Online: 2023-06-14
  • The southeastern margin of the Tibetan Plateau is distinguished by a vast transition zone with hundreds of thousands of square kilometers of low-relief surfaces, which provides an ideal window for unraveling the timing, process, and mechanisms of the tectonic propagation and surface uplift. In order to reveal the Cenozoic tectonic response and geomorphic evolution of the southeastern margin of the Tibetan Plateau, a comprehensive study in the lower Jinsha River was conducted with a tectonic investigation, tectonic-landform and low-temperature thermochronological data analysis. The results show that the southeastern margin of the Tibetan Plateau remained in NW-shortening as early as the Eocene, forming widespread folds. However, we suggest that in the Paleogene, the lower Jinsha River of the southeastern margin of the Tibetan Plateau was marked by a low hilly topography with rather limited surface uplift. In the Late Oligocene–Early Miocene, the study area was characterized by a long-term stage with low denudation rates, which promoted the formation of widespread low-relief surfaces. Since the late Neogene, the southeastern margin of the Tibetan Plateau has undergone regional shortening deformation and significant surface uplift with a simultaneous incision along large rivers, forming the present landforms characterized by high-elevation low-relief surfaces and deep gorges. The late Neogene surface uplift across the southeastern margin of the Tibetan Plateau is suggested to be closely related to the shortening deformation and associated crustal thickening. In contrast, the mid-lower crustal thickening by channel flow might not be indispensable.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AN Y F, HAN Z J, WAN J L, 2008. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China[J]. Science in China Series D: Earth Sciences, 51(9): 1238-1247. doi: 10.1007/s11430-008-0105-5
    [2]
    AN Z S, WU G X, LI J P, et al. , 2015. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 43: 29-77. doi: 10.1146/annurev-earth-060313-054623
    [3]
    BURCHFIEL B C, CHEN Z L, LIU Y, et al. , 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37(8): 661-735. doi: 10.1080/00206819509465424
    [4]
    CAO K, WANG G C, LELOUP P H, et al. , 2019. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting[J]. Tectonics, 38(1): 374-391. doi: 10.1029/2017TC004832
    [5]
    CAO P J, CHENG S Y, LIN H X, et al. , 2021. DEM in quantitative analysis of structural geomorphology: application and prospect[J]. Journal of Geomechanics, 27(6): 949-962. (in Chinese with English abstract)
    [6]
    CLARK M K, ROYDEN L H, 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    [7]
    CLARK M K, BUSH J W M, ROYDEN L H, 2005a. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J]. Geophysical Journal International, 162(2): 575-590. doi: 10.1111/j.1365-246X.2005.02580.x
    [8]
    CLARK M K, HOUSE M A, ROYDEN L H, et al. , 2005b. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 33(6): 525-528. doi: 10.1130/G21265.1
    [9]
    DENG B, LIU S G, ENKELMANN E, et al. , 2015. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau[J]. International Journal of Earth Sciences, 104(4): 1061-1081. doi: 10.1007/s00531-014-1129-z
    [10]
    DENG B, CHEW D, JIANG L, et al. , 2018a. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time[J]. GSA Bulletin, 130(11-12): 2087-2109. doi: 10.1130/B32037.1
    [11]
    DENG B, LIU S G, JIANG L, et al. , 2018b. Tectonic uplift of the Xichang Basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data[J]. Basin Research, 30(1): 75-96. doi: 10.1111/bre.12243
    [12]
    GOURBET L, YANG R, FELLIN M G, et al. , 2020. Evolution of the Yangtze River network, southeastern Tibet: Insights from thermochronology and sedimentology[J]. Lithosphere, 12(1): 3-18. doi: 10.1130/L1104.1
    [13]
    GUO Z W, DENG K L, HAN Y H, et al. , 1996. The formation and development of Sichuan Basin[M]. Beijing: Geology Press: 48-82. (in Chinese)
    [14]
    HAN M M, CHEN L C, ZENG D, et al. , 2022. Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone[J]. Journal of Geomechanics, 28(6): 969-980. (in Chinese with English abstract)
    [15]
    HE D F, LI Y Q, HUANG H Y, et al. , 2020. Formation and evolution of the polycyclic superimposed Sichuan Basin and hydrocarbon accumulation[M]. Beijing: Science Press: 98-120. (in Chinese)
    [16]
    HE S L, DING L, XIONG Z Y, et al. , 2022. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 67(21): 2245-2258. doi: 10.1016/j.scib.2022.10.006
    [17]
    HOKE G D, LIU-ZENG J, HREN M T, et al. , 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 394: 270-278. doi: 10.1016/j.jpgl.2014.03.007
    [18]
    HOKE G D, 2018. Geochronology transforms our view of how Tibet’s southeast margin evolved[J]. Geology, 46(1): 95-96. doi: 10.1130/focus012018.1
    [19]
    KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009
    [20]
    LAI Q Z, DING L, WANG H W, et al. , 2006. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology[J]. Science in China Series D: Earth Sciences, 50(2): 172-183.
    [21]
    LEI H J, SHEN X M, LIU X J, et al. , 2022. Oligocene-early Miocene rapid exhumation along the Xianshuihe fault system: Implications for the growth of the Southeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 240: 105443. doi: 10.1016/j.jseaes.2022.105443
    [22]
    LELOUP P H, LACASSIN R, TAPPONNIER P, et al. , 1995. The Ailao Shan-red river shear zone (Yunnan, China), tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4): 3-84. doi: 10.1016/0040-1951(95)00070-4
    [23]
    LELOUP P H, ARNAUD N, LACASSIN R, et al. , 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear Zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6683-6732. doi: 10.1029/2000JB900322
    [24]
    LI S Y, CURRIE B S, ROWLEY D B, et al. , 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region[J]. Earth and Planetary Science Letters, 432: 415-424. doi: 10.1016/j.jpgl.2015.09.044
    [25]
    LIU-ZENG J, TAPPONNIER P, GAUDEMER Y, et al. , 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface, 113(F4): F04018.
    [26]
    LIU-ZENG J, ZHANG J Y, MCPHILLIPS D, et al. , 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 490: 62-76. doi: 10.1016/j.jpgl.2018.03.011
    [27]
    MENG K, WANG E, WANG G, 2016. Uplift of the Emei Shan, western Sichuan Basin: implication for eastward propagation of the Tibetan Plateau in early Miocene[J]. Journal of Asian Earth Sciences, 115: 29-39. doi: 10.1016/j.jseaes.2015.09.020
    [28]
    OUIMET W, WHIPPLE K, ROYDEN L, et al. , 2010. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere, 2(1): 50-63. doi: 10.1130/L57.1
    [29]
    PERRON J T, ROYDEN L, 2013. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 38(6): 570-576. doi: 10.1002/esp.3302
    [30]
    PITARD P, REPLUMAZ A, CHEVALIER M L, et al. , 2021. Exhumation history along the Muli thrust—implication for crustal thickening mechanism in Eastern Tibet[J]. Geophysical Research Letters, 48(14): e2021GL093677.
    [31]
    REPLUMAZ A, SAN JOSÉ M, MARGIRIER A, et al. , 2020. Tectonic control on rapid late Miocene—quaternary incision of the Mekong river Knickzone, Southeast Tibetan Plateau[J]. Tectonics, 39(2): e2019TC005782.
    [32]
    ROGER F, CALASSOU S, LANCELOT J, et al. , 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): geodynamic implications[J]. Earth and Planetary Science Letters, 130(1-4): 201-216. doi: 10.1016/0012-821X(94)00252-T
    [33]
    ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D, 2008. The geological evolution of the Tibetan Plateau[J]. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371
    [34]
    SHEN X M, TIAN Y T, LI D W, et al. , 2016. Oligocene-early Miocene river incision near the first bend of the Yangze River: Insights from apatite (U-Th-Sm)/He thermochronology[J]. Tectonophysics, 687: 223-231. doi: 10.1016/j.tecto.2016.08.006
    [35]
    SHEN X M, BRAUN J, YUAN X P, 2022. Southeastern margin of the Tibetan Plateau stopped expanding in the late Miocene[J]. Earth and Planetary Science Letters, 583: 117446. doi: 10.1016/j.jpgl.2022.117446
    [36]
    SU T, SPICER R A, LI S H, et al. , 2018. Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet[J]. National Science Review, 6(3): 495-504.
    [37]
    TAN X B, XU X W, LI Y X, et al. , 2010. Apatite fission track evidence for rapid uplift of the Gongga Mountain and discussion of its mechanism[J]. Chinese Journal of Geophysics, 53(8): 1859-1867. (in Chinese with English abstract)
    [38]
    TAN X B, LEE Y H, CHEN W Y, et al. , 2014. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet[J]. Journal of Asian Earth Sciences, 81: 91-104. doi: 10.1016/j.jseaes.2013.12.002
    [39]
    TAO Y L, ZHANG H P, ZHANG J W, et al. , 2022. Late cretaceous–early Cenozoic exhumation across the Yalong thrust belt in eastern Tibet and its implications for outward plateau growth[J]. Global and Planetary Change, 216: 103897. doi: 10.1016/j.gloplacha.2022.103897
    [40]
    TAPPONNIER P, XU Z Q, ROGER F, et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    [41]
    TIAN Y T, KOHN B P, GLEADOW A J W, et al. , 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 119(1): 676-698. doi: 10.1002/2013JB010429
    [42]
    TIAN Y T, KOHN B P, HU S B, et al. , 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: implications for crustal dynamics[J]. Geophysical Research Letters, 42(1): 29-35. doi: 10.1002/2014GL062383
    [43]
    WANG E, BURCHFIEL B C, ROYDEN L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Colorado, Geological Society of America: 1-108.
    [44]
    WANG E, MENG K, SU Z, et al. , 2014. Block rotation: tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault[J]. Tectonics, 33(5): 686-718. doi: 10.1002/2013TC003337
    [45]
    WANG E Q, YIN J Y, 2009. Cenozoic multi-stage deformation occurred in southwest Sichuan: cause for the dismemberment of the proto-Sichuan Basin[J]. Journal of Northwest University (Natural Science Edition), 39(3): 359-367. (in Chinese with English abstract)
    [46]
    WANG H, TIAN Y T, LIANG M J, 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Tibetan Plateau: insights from apatite fission-track thermochronology[J]. Journal of the Geological Society, 174(5): 883-891. doi: 10.1144/jgs2017-005
    [47]
    WANG H, LI K J, TIAN Y T, et al. , 2022. Oligocene-early Miocene exhumation and shortening along the Anninghe fault in the southeastern Tibetan Plateau: insights from zircon and apatite (U-Th)/He thermochronology[J]. International Geology Review, 64(3): 390-404. doi: 10.1080/00206814.2020.1858354
    [48]
    WANG H Z, 1985. Atlas of the palaeogeography of China[M]. Beijing: Cartographic Publishing House: 93-126. (in Chinese)
    [49]
    WANG S F, JIANG G G, XU T D, et al. , 2012. The Jinhe–Qinghe fault—An inactive branch of the Xianshuihe–Xiaojiang fault zone, Eastern Tibet[J]. Tectonophysics, 544-545: 93-102. doi: 10.1016/j.tecto.2012.04.004
    [50]
    WATTS A B, 2001. Isostasy and flexure of the lithosphere[M]. New York: Cambridge University Press, 176-221.
    [51]
    WHIPPLE K X, DIBIASE R A, OUIMET W B, et al. , 2017. Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms[J]. Geology, 45(1): 91-94. doi: 10.1130/G38490.1
    [52]
    WILSON C J L, FOWLER A P, 2011. Denudational response to surface uplift in east Tibet: Evidence from apatite fission-track thermochronology[J]. Geological Society of America Bulletin, 123(9-10): 1966-1987. doi: 10.1130/B30331.1
    [53]
    XIONG Z Y, DING L, SPICER R A, et al. , 2020. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest[J]. Earth and Planetary Science Letters, 543: 116312. doi: 10.1016/j.jpgl.2020.116312
    [54]
    XU G Q, KAMP P J J, 2000. Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan Plateau: Constraints from fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth, 105(B8): 19231-19251. doi: 10.1029/2000JB900159
    [55]
    YAN B, LIN A M, 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe Fault Zone, Tibetan Plateau[J]. Journal of Geodynamics, 87: 13-25. doi: 10.1016/j.jog.2015.03.002
    [56]
    YANG R, FELLIN M G, HERMAN F, et al. , 2016. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet[J]. Earth and Planetary Science Letters, 433: 10-20. doi: 10.1016/j.jpgl.2015.10.032
    [57]
    YANG R, SUHAIL H A, GOURBET L, et al. , 2020. Early Pleistocene drainage pattern changes in Eastern Tibet: constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 531: 115955. doi: 10.1016/j.jpgl.2019.115955
    [58]
    ZHANG G H, TIAN Y T, LI R, et al. , 2022. Progressive tectonic evolution from crustal shortening to mid-lower crustal expansion in the southeast Tibetan Plateau: A synthesis of structural and thermochronological insights[J]. Earth-Science Reviews, 226: 103951. doi: 10.1016/j.earscirev.2022.103951
    [59]
    ZHANG H P, OSKIN M E, LIU-ZENG J, et al. , 2016. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 449: 176-185. doi: 10.1016/j.jpgl.2016.05.048
    [60]
    ZHANG Y Z, REPLUMAZ A, WANG G C, et al. , 2015. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet[J]. Tectonics, 34(6): 1219-1243. doi: 10.1002/2014TC003671
    [61]
    ZHANG Y Z, REPLUMAZ A, LELOUP P H, et al. , 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet[J]. Earth and Planetary Science Letters, 465: 1-15. doi: 10.1016/j.jpgl.2017.02.025
    [62]
    ZHU C Y, WANG G C, LELOUP P H, et al. , 2021. Role of the early Miocene Jinhe-Qinghe thrust belt in the building of the southeastern Tibetan Plateau topography[J]. Tectonophysics, 811: 228871. doi: 10.1016/j.tecto.2021.228871
    [63]
    安艳芬, 韩竹军, 万景林, 2008. 川南马边地区新生代抬升过程的裂变径迹年代学研究[J]. 中国科学 D辑: ·地球科学, 38(5): 555-563.
    [64]
    曹鹏举, 程三友, 林海星, 等, 2021. DEM在构造地貌定量分析中的应用与展望[J]. 地质力学学报, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077
    [65]
    郭正吾, 邓康龄, 韩永辉, 等, 1996. 四川盆地形成与演化[M]. 北京: 地质出版社: 48-82.
    [66]
    韩明明, 陈立春, 曾蒂, 等, 2022. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论[J]. 地质力学学报, 28(6): 969-980. doi: 10.12090/j.issn.1006-6616.20222824
    [67]
    何登发, 李英强, 黄涵宇, 等, 2020. 四川多旋回叠合盆地的形成演化与油气聚集[M]. 北京: 科学出版社: 98-120.
    [68]
    来庆洲, 丁林, 王宏伟, 等, 2006. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J]. 中国科学 D辑·地球科学, 36(9): 785-796.
    [69]
    谭锡斌, 徐锡伟, 李元希, 等, 2010. 贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论[J]. 地球物理学报, 53(8): 1859-1867. doi: 10.3969/j.issn.0001-5733.2010.08.011
    [70]
    王二七, 尹纪云, 2009. 川西南新生代构造作用以及四川原型盆地的破坏[J]. 西北大学学报(自然科学版), 39(3): 359-367. doi: 10.16152/j.cnki.xdxbzr.2009.03.018
    [71]
    王鸿祯, 1985. 中国古地理图集[M]. 北京: 地图出版社: 93-126.
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views (1203) PDF downloads(302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return