Citation: | CAO Pengju, CHENG Sanyou, LIN Haixing, et al., 2021. DEM in quantitative analysis of structural geomorphology: application and prospect. Journal of Geomechanics, 27 (6): 949-962. DOI: 10.12090/j.issn.1006-6616.2021.27.06.077 |
ARDIANSYAH P O D, YOKOYAMA R, 2002. DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 57(1-2): 86-101. doi: 10.1016/S0924-2716(02)00117-X
|
BERNATEK-JAKIEL A, JAKIEL M, 2021. Identification of soil piping-related depressions using an airborne LiDAR DEM: Role of land use changes[J]. Geomorphology, 378: 107591. doi: 10.1016/j.geomorph.2020.107591
|
CALVET M, GUNNELL Y, BRAUCHER R, et al., 2015. Cave levels as proxies for measuring post-orogenic uplift: Evidence from cosmogenic dating of alluvium-filled caves in the French Pyrenees[J]. Geomorphology, 246: 617-633. doi: 10.1016/j.geomorph.2015.07.013
|
CASTILLO M, FERRARI L, MUÑOZ-SALINAS E, 2017. Knickpoint retreat and landscape evolution of the Amatlán de Cañas half-graben (northern sector of Jalisco Block, western Mexico)[J]. Journal of South American Earth Sciences, 77: 108-122. doi: 10.1016/j.jsames.2017.05.003
|
CHANG Y C, SONG G S, HSU S K, 1998. Automatic extraction of ridge and valley axes using the profile recognition and polygon-breaking algorithm[J]. Computers & Geosciences, 24 (1): 83-93. http://howardzzh.com/research/terrain/PPA/doc/1998.CG.AutomaticExtraction.pdf
|
CHEN C F, LIU F Y, YAN C Q, et al., 2016. A Huber-derived robust multi-quadric interpolation method for DEM construction[J]. Geomatics and Information Science of Wuhan University, 41(6): 803-809. (in Chinese with English abstract) http://www.researchgate.net/publication/305159401_A_huber-derived_robust_multi-quadric_interpolation_method_for_DEM_construction
|
CHENG L, WU D Y, JIN W, et al., 2017. Geomorphic evolution of the Qiantang River drainage basin based on the analysis of topographic indexs[J]. Quaternary Sciences, 37 (2): 343-352. ].
|
CHEN X Y, 2020. Research on lithology classification based on terrain factors[D]. Changchun: Jilin University. (in Chinese with English abstract)
|
CHENG W M, ZHOU C H, CHAI H X, et al., 2009. Quantitative extraction and analysis of basic morphological types of land geomorphology in China[J]. Journal of Geo-Information Science, 11 (6): 725-736. (in Chinese with English abstract) http://www.researchgate.net/publication/250262115_Quantitative_Extraction_and_Analysis_of_Basic_Morphological_Types_of_Land_Geomorphology_in_China_Quantitative_Extraction_and_Analysis_of_Basic_Morphological_Types_of_Land_Geomorphology_in_China
|
CLARK M K, ROYDEN L H, WHIPPLE K X, et al., 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 111 (F3): F03002. http://deepblue.lib.umich.edu/bitstream/2027.42/96342/1/jgrf155.pdf
|
CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23 (1): TC1006. http://www.onacademic.com/detail/journal_1000035770625710_173a.html
|
DENG Y X, WILSON J P, SHENG J, 2006. Effects of variable attribute weights on landform classification[J]. Earth Surface Processes and Landforms, 31 (11): 1452-1462. doi: 10.1002/esp.1401
|
DIBIASE R A, WHIPPLE K X, HEIMSATH A M, et al., 2010. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA[J]. Earth and Planetary Science Letters, 289 (1-2): 134-144. doi: 10.1016/j.epsl.2009.10.036
|
EHSANI A H, QUIEL F, MALEKIAN A, 2010. Effect of SRTM resolution on morphometric feature identification using neural network-self organizing map[J]. GeoInformatica, 14 (4): 405-424. doi: 10.1007/s10707-009-0085-4
|
EJARQUE A, BEAUGER A, MIRAS Y, et al., 2015. Historical fluvial palaeodynamics and multi-proxy palaeoenvironmental analyses of a palaeochannel, Allier River, France[J]. Geodinamica acta, 27 (1): 25-47. doi: 10.1080/09853111.2013.877232
|
FAN J R, ZHANG Z Y, LI L H, 2015. Mountain demarcation and mountainous area divisions of Sichuan province[J]. Geographical Research, 34 (1): 65-73. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201501007.htm
|
FLORINSKY I V, 2009. Computation of the third-order partial derivatives from a digital elevation model[J]. International journal of geographical information science, 23 (2): 213-231. doi: 10.1080/13658810802527499
|
FOX M, BODIN T, SHUSTER D L, 2015. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles[J]. Geomorphology, 238: 1-14. doi: 10.1016/j.geomorph.2015.02.022
|
GAO Z Y, XIE Y L, WANG N L, et al., 2019. Response of three global DEM data accuracy to different terrain factors in Qinghai-Tibet Plateau[J]. Bulletin of Soil and water conservation, 39 (2): 184-191. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-STTB201902030.htm
|
GU W Y, MENG X R, ZHU X C, et al., 2020. Geomorphological classification research based on BEMD decomposition[J]. Journal of Geo-Information Science, 22 (3): 464-473. (in Chinese with English abstract)
|
GURU D S, SHEKAR B H, NAGABHUSHAN P., 2004. A simple and robust line detection algorithm based on small eigenvalue analysis[J]. Pattern Recognition Letters, 25 (1): 1-13. doi: 10.1016/j.patrec.2003.08.007
|
HAREL M A, MUDD S M, ATTAL M, 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates[J]. Geomorphology, 268: 184-196. doi: 10.1016/j.geomorph.2016.05.035
|
HETZEL R, 2013. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 582: 1-24. doi: 10.1016/j.tecto.2012.10.027
|
HU J L, TANG M G, LUO M L, et al., 2020. The extraction of characteristic elements of mountain based on DEM[J]. Journal of Geo-Information Science, 22 (3): 422-430. (in Chinese with English abstract)
|
HU Z, NIE Y Y, 2015. DEM-based landform taxonomic features of Hunan Province[J]. Geography and Geo-Information Science, 31 (6): 67-71. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201506013.htm
|
HUANG F M, YANG J B, ZHANG B, et al., 2020. Regional Terrain Complexity Assessment Based on Principal Component Analysis and Geographic Information System: A Case of Jiangxi Province, China[J]. ISPRS International Journal of Geo-Information, 9 (9): 539. doi: 10.3390/ijgi9090539
|
HUANG Y F, LI Z H, NING H, et al., 2019. Research on Rock and Mineral Information Extraction Based on ASTER Remote Sensing Image[J]. Spacecraft Engineering 28 (6): 130-135. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HTGC201906021.htm
|
KANG X, WANG Y W, QIN C Z, et al., 2016. A new method of landform element classification based on multi-scale morphology[J]. Geographical Research, 35 (9): 1637-1646. (in Chinese with English abstract)
|
KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of structural geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009
|
LAGUE D, HOVIUS N, DAVY P, 2005. Discharge, discharge variability, and the bedrock channel profile[J]. Journal of Geophysical Research: Earth Surface, 110 (F4): F04006. http://hal.archives-ouvertes.fr/hal-00069334/document
|
LAKSHMI S E, YARRAKULA K, 2018. Review and critical analysis on digital elevation models[J]. Geofizika, 35 (2): 129-157.
|
LANG K A, HUNTINGTON K W, BURMESTER R F, et al., 2016. Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene[J]. GSA Bulletin, 128 (9-10): 1403-1422. doi: 10.1130/B31419.1
|
LEASE R O, EHLERS T A, 2013. Incision into the Eastern Andean Plateau During Pliocene Cooling[J]. Science, 341 (6147): 774-776. doi: 10.1126/science.1239132
|
LI B, ZHANG J, YUE Z Y, et al., 2020. Deriving terrain factors from high-resolution lunar images: A case study of the Mons Rümker Region[J]. Geomorphology, 358: 107114. doi: 10.1016/j.geomorph.2020.107114
|
LI H, HUANG X Y, DENG Q L, et al., 2012. Mapping of planation surfaces in the southwest region of Hubei Province, China-Using the DEM-derived painted relief model[J]. Journal of Earth Science, 23 (5): 719-730. doi: 10.1007/s12583-012-0290-1
|
LI J J, FANG X M, PAN B T, et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 21 (5): 381-391. (in Chinese with English abstract) http://www.researchgate.net/publication/284098400_Late_Cenozoic_intensive_uplift_of_Qinghai-Xizang_Plateau_and_its_impacts_on_environments_in_surrounding_area
|
LI J J, MA Z H, LI X M, et al., 2017. Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau[J]. Geomorphology, 295: 393-405. doi: 10.1016/j.geomorph.2017.07.024
|
LIN L L, LI X M, ZHANG H P, et al., 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block[J]. Journal of Geomechanics, 27 (2): 294-303. (in Chinese with English abstract)
|
LIU J, ZHANG J Y, GE Y K, et al., 2018. Tectonic Geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 63 (30): 3070-3088. (in Chinese with English abstract) doi: 10.1360/N972018-00498
|
LIU L, ZHANG D, YOU J, 2007. Detecting Wide Lines Using Isotropic Nonlinear Filtering[J]. IEEE Transactions on Image Processing, 16 (6): 1584-1595. doi: 10.1109/TIP.2007.894288
|
LIU S F, WANG T, ZHANG H P, et al., 2005. Application of digital elevation model to surficial process research[J]. Earth Science Frontiers, 12(1): 303-309. (in Chinese with English abstract)
|
LIU X, WANG L, GAO P L, 2011. Extraction of stream runoff nodes based on geometric network[J]. Science of Surveying and Mapping, 36 (5): 85-86, 72. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHKD201105030.htm
|
LIU Y, WANG Y X, PAN B T, 1999. A preliminary approach on the 3D presentation and quantitative analysis of planation surface[J]. Geographical Research, 18(4): 391-399. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ199904008.htm
|
LIU Y X, 2014. The research and implementation n the skeleton feature extraction method for terrain model based on profile recognition and morphological simplification[D]. Changchun: Northeast Normal University. (in Chinese with English abstract)
|
LUCIEER A, TURNER D, KING D H, et al., 2014. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds[J]. International Journal of Applied Earth Observation and Geoinformation, 27: 53-62. doi: 10.1016/j.jag.2013.05.011
|
LUO W, LIU C C, 2018. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides, 15 (3): 465-474. doi: 10.1007/s10346-017-0893-9
|
MA J P, 2017. Quantitative study geomorphic indices and planation surfaces of the Taohe drainage system based on DEM[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
MA Z H, LI X M, PENG T J, et al., 2020. Landscape evolution of the Dabanshan planation surface: Implications for the uplift of the eastern tip of the Qilian Mountains since the Late Miocene[J]. Geomorphology, 356: 107091. doi: 10.1016/j.geomorph.2020.107091
|
NOH M J, HOWAT I M, 2015. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions[J]. GIScience & remote sensing, 52 (2): 198-217. doi: 10.1080/15481603.2015.1008621
|
POLIDORI L, EL HAGE M, 2020. Digital Elevation Model Quality Assessment Methods: A Critical Review[J]. Remote sensing, 12 (21): 3522. doi: 10.3390/rs12213522
|
PU Y, LUO M L, LIU W M, et al., 2018. Research on the correlation characteristics of peak points based on DEM: a case study of the main peak area of Huaying mountain of folded mountain system in East Sichuan[J]. Geography and GEO-information Science, 34 (4): 96-100. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201804015.htm
|
QUYE-SAWYER J, WHITTAKER A C, ROBERTS G G, 2020. Calibrating fluvial erosion laws and quantifying river response to faulting in Sardinia, Italy[J]. Geomorphology, 370: 107388. doi: 10.1016/j.geomorph.2020.107388
|
REN J S, NIU B G, ZHAO L, et al., 2019. Basic ideas of the multisphere tectonics of earth system[J]. Journal of Geomechanics, 25 (5): 607-612. (in Chinese with English abstract)
|
ROOD D H, BURBANK D W, FINKEL R C, 2011. Chronology of glaciations in the Sierra Nevada, California, from 10Be surface exposure dating[J]. Quaternary Science Reviews, 30 (5-6): 646-661. doi: 10.1016/j.quascirev.2010.12.001
|
SCHOENBOHM L M, BURCHFIEL B C, CHEN L, et al., 2005. Exhumation of the Ailao Shan shear zone recorded by Cenozoic sedimentary rocks, Yunnan Province, China[J]. Tectonics, 24 (6): TC6015. http://ibrarian.net/navon/paper/Exhumation_of_the_Ailao_Shan_shear_zone_recorded_.pdf?paperid=5203903
|
SCOWN M W, THOMS M C, DE JAGER N R, 2015. Floodplain complexity and surface metrics: Influences of scale and geomorphology[J]. Geomorphology, 245: 102-116. doi: 10.1016/j.geomorph.2015.05.024
|
ŚLEDŹ S, EWERTOWSKI M W, PIEKARCZYK J, 2021. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology[J]. Geomorphology, 378: 107620. doi: 10.1016/j.geomorph.2021.107620
|
SOFIA G, 2020. Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward[J]. Geomorphology, 355: 107055. doi: 10.1016/j.geomorph.2020.107055
|
STEER P, HUISMANS R S, VALLA P G, et al., 2012. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia[J]. Nature Geoscience, 5 (9): 635-639. doi: 10.1038/ngeo1549
|
SUN C L, WANG J L, 2008. The progress on automatic basin streamline extracting & classifying methods based on DEM[J]. Progress in Geography, 27(1): 118-124. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKJ200801018.htm
|
TANG G A, 2014. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 69 (9): 1305-1325. (in Chinese with English abstract)
|
TANG G A, LI F Y, XIONG L Y, 2017a. Progress of Digital Terrain Analysis in the Loess Plateau of China[J]. Geography and Geo-Information Science, 33 (4): 1-7. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201704001.htm
|
TANG G A, NA J M, CHENG W M, 2017b. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et CartographicaSinica, 46 (10): 1570-1591. (in Chinese with English abstract)
|
TANG X M, LI S J, LI T, et al., 2021. Review on global digital elevation products[J]. Journal of Remote Sensing, 25 (1): 167-181. (in Chinese with English abstract)
|
TU X J, CHEN X H, 2010. Characteristics variability study of regional river runoff time series based on change point recognition[J]. Journal of Natural Resources 25 (11): 1930-1937. (in Chinese with English abstract) http://www.cqvip.com/QK/96143X/201011/36056825.html
|
VALENTINE A, KALNINS L, 2016. An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics[J]. Earth Surface Dynamics, 4 (2): 445-460. doi: 10.5194/esurf-4-445-2016
|
VAYSSIōRE A, CASTANET C, GAUTIER E, et al., 2020. Readjustments of a sinuous river during the last 6000 years in northwestern Europe (Cher River, France): from an active meandering river to a stable river course under human forcing[J]. Geomorphology, 370: 107395. doi: 10.1016/j.geomorph.2020.107395
|
WANG J Y, CUI T J, MIAO G Q, 2004. Digital elevation model and its data structure[J]. Hydrographic Surveying and Charting, 24 (3): 1-4. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYCH200403001.htm
|
WANG Y G, ZHU C Q WANG Z W, 2008. A surface model of grid DEM based on coons surface[J]. Acta Geodaetica et Cartographica Sinica 37 (2): 217-222. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXB200802017.htm
|
WANG Y W, QIN C Z, 2017. Review of methods for landform automatic classification[J]. Geography and Geo-Information Science, 33 (4): 16-21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201704003.htm
|
WANG Y Z, ZHANG H P, ZHENG D W, et al., 2017. How a stationary knickpoint is sustained: New insights into the formation of the deep YarlungTsangpo Gorge[J]. Geomorphology, 285: 28-43. doi: 10.1016/j.geomorph.2017.02.005
|
WANG Y Z, ZHENG D W, ZHANG H P, et al., 2019. The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles[J]. Tectonophysics, 759: 15-29. doi: 10.1016/j.tecto.2019.04.001
|
WANG Y Z, ZHENG D W, ZHANG H P, et al., 2020. Activity Characteristics of the Huashan Piedmont Normal Fault: Insights from Fluvial Geomorphic Parameters[J]. Seismology and Geology 42 (2): 382-398. (in Chinese with English abstract)
|
WHIPPLE K X, 2004. Bedrock Rivers and the Geomorphology of Active Orogens[J]. Annual Review of Earth and Planetary Sciences, 32: 151-185. doi: 10.1146/annurev.earth.32.101802.120356
|
WHIPPLE K X, FORTE A M, DIBIASE R A, et al., 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution[J]. Journal of Geophysical Research: Earth Surface, 122 (1): 248-273. doi: 10.1002/2016JF003973
|
WILLETT S D, MCCOY S W, PERRON J T, et al., 2014. Dynamic Reorganization of River Basins[J]. Science, 343 (6175): 1248765. doi: 10.1126/science.1248765
|
WILSON J P, 2018. Geomorphometry: Today and tomorrow[J]. Peer J Preprints 6: e27197v1.
|
WU Q J, CHEN Y M, ZHOU H Y, et al., 2020. A New Algorithm for Calculating the Flow Path Curvature (C) from the Square-Grid Digital Elevation Model (DEM)[J]. ISPRS International Journal of Geo-Information, 9 (9): 510. doi: 10.3390/ijgi9090510
|
XIA S, RUAN R Z, SHE Y J, et al., 2012. Classification of remote sensing image based on C4.5 algorithm[J]. Geospatial Information, 10 (4): 89-91, 94. (in Chinese with English abstract)
|
XIAO Z, FUJI N, IIDAKA T, et al., 2020. Seismic structure beneath the Tibetan Plateau from iterative finite-frequency tomography based on ChinArray: New insights into the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018344. doi: 10.1029/2019JB018344
|
XIE Y Q, ZHU H C, TANG G A, et al., 2013. Extraction and analysis of gully feature points based on DEM[J]. Journal of Geo-Information Science, 15 (1): 61-67. (in Chinese with English abstract) doi: 10.3724/SP.J.1047.2013.00061
|
XIN X, 2018. The study on the mapping and hazard assessment of shallow landslides in gully loess area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
XIONG L Y, TANG G A, YANG X, et al., 2021. Geomorphology-oriented digital terrain analysis: Progress and perspectives[J]. Acta Geographica Sinica, 76 (3): 595-611. (in Chinese with English abstract)
|
XU L, LI J H, LIU C H, et al., 2017. Research on Geomorphological Morphology and Regionalization of Hoh Xil Based on Digital Elevation Model (DEM)[J]. Acta ScientiarumNaturalium Universitatis Pekinensis, 53 (5): 833-842. (in Chinese with English abstract)
|
YANG R, WILLETT S D, GOREN L, 2015. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 520 (7548): 526-529. doi: 10.1038/nature14354
|
YANG X, TANG G A, XIAO C C, et al., 2011. The scaling method of specific catchment area from DEMs[J]. Journal of Geographical Sciences, 21 (4): 689-704. doi: 10.1007/s11442-011-0873-2
|
YAO H J, BEGHEIN C, VAN DER HILST R D, 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two station analysis II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173 (1): 205-219. doi: 10.1111/j.1365-246X.2007.03696.x
|
ZAIDI S M, AKBARI A, GISEN J I, et al., 2018. Utilization of Satellite-based Digital Elevation Model (DEM) for Hydrologic Applications: A Review[J]. Journal of the Geological Society of India, 92 (3): 329-336. doi: 10.1007/s12594-018-1016-5
|
ZEITLER P K, 2001. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism[J]. GSA Today, 11 (1): 4-94. doi: 10.1130/1052-5173(2001)011<0004:EHGATG>2.0.CO;2
|
ZHANG H P, 2006. Study on late Cenozoic geomorphic processes of typical regions along the eastern and northeastern Tibetan margins[D]. Beijing: China University of Geosciences(Beijing). (in Chinese with English abstract)
|
ZHANG H P, CRADDOCK W H, LEASE R O, et al., 2012. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau[J]. Basin Research, 24 (1): 31-50. doi: 10.1111/j.1365-2117.2011.00512.x
|
ZHANG H P, KIRBY E, PITLICK J, et al., 2017. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 122 (2): 546-572. doi: 10.1002/2015JF003715
|
ZHANG H Q, LIU X Y, YANG S, et al., 2017. Retrieval of remote sensing images based on semisupervised deep learning[J]. Journal of Remote Sensing, 21 (3): 406-414. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB201703008.htm
|
ZHAO W F, XIONG L Y, DING H, et al., 2017. Automatic recognition of loess landforms using Random Forest method[J]. Journal of Mountain Science, 14 (5): 885-897. doi: 10.1007/s11629-016-4320-9
|
ZHU H C, ZHAO Y P, XU Y X, et al., 2018. Hierarchy structure characteristics analysis for the China Loess watersheds based on gully node calibration[J]. Journal of Mountain Science, 15 (12): 2637-2650. doi: 10.1007/s11629-018-5000-8
|
ZUFFETTI C, BERSEZIO R, 2020. Morphostructural evidence of Late Quaternary tectonics at the Po Plain-Northern Apennines border (Lombardy, Italy)[J]. Geomorphology, 364: 107245. doi: 10.1016/j.geomorph.2020.107245
|
ZUZA A V, YIN A, 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227-240. doi: 10.1016/j.tecto.2016.04.007
|
陈传法, 刘凤英, 闫长青, 等, 2016. DEM建模的多面函数Huber抗差算法[J]. 武汉大学学报(信息科学版), 41 (6): 803-809. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201606014.htm
|
程璐, 武登云, 靳文, 等, 2017. 基于地貌计量指标分析的钱塘江流域地貌演化特征[J]. 第四纪研究, 37 (2): 343-352.
|
陈霄燕, 2020. 基于地形因子的岩性分类方法研究[D]. 长春: 吉林大学.
|
程维明, 周成虎, 柴慧霞, 等, 2009. 中国陆地地貌基本形态类型定量提取与分析[J]. 地球信息科学学报, 11 (6): 725-736. doi: 10.3969/j.issn.1560-8999.2009.06.007
|
范建容, 张子瑜, 李立华, 2015. 四川省山地类型界定与山区类型划分[J]. 地理研究, 34 (1): 65-73. doi: 10.3969/j.issn.1003-2363.2015.01.012
|
高志远, 谢元礼, 王宁练, 等, 2019. 青藏高原地区3种全球DEM精度对不同地形因子的响应[J]. 水土保持通报, 39 (2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201902030.htm
|
顾文亚, 孟祥瑞, 朱晓晨, 等, 2020. 基于BEMD分解的地貌分类研究[J]. 地球信息科学学报, 22 (3): 464-473. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202003015.htm
|
胡金龙, 唐梦鸽, 罗明良, 等, 2020. 基于DEM的一体化山地特征要素提取[J]. 地球信息科学学报, 22 (3): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202003011.htm
|
胡最, 聂阳意, 2015. 基于DEM的湖南省地貌形态特征分类[J]. 地理与地理信息科学, 31 (6): 67-71. doi: 10.3969/j.issn.1672-0504.2015.06.013
|
黄宇飞, 李智慧, 宁慧, 等, 2019. 应用ASTER遥感图像的岩矿信息提取研究[J]. 航天器工程, 28 (6): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201906021.htm
|
康鑫, 王彦文, 秦承志, 等, 2016. 多分析尺度下综合判别的地形元素分类方法[J]. 地理研究, 35 (9): 1637-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201609005.htm
|
李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, (5): 381. doi: 10.3321/j.issn:1001-7410.2001.05.001
|
林玲玲, 李雪梅, 张会平, 等, 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究[J]. 地质力学学报, 27(2): 294-303. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20210212&journal_id=dzlxxb
|
刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 63 (30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm
|
刘少峰, 王陶, 张会平, 等, 2005. 数字高程模型在地表过程研究中的应用[J]. 地学前缘, 12(1): 303-309. doi: 10.3321/j.issn:1005-2321.2005.01.040
|
刘晓, 王雷, 高佩玲, 2011. 利用几何网络提取河网径流节点的方法研究[J]. 测绘科学, 36 (5): 85-86, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201105030.htm
|
刘亚鑫, 2014. 基于剖面识别和形态简化的地形骨架特征提取方法研究与实现[D]. 长春: 东北师范大学.
|
刘勇, 王义祥, 潘保田, 1999. 夷平面的三维显示与定量分析方法初探[J]. 地理研究, 18(4): 391-399. doi: 10.3321/j.issn:1000-0585.1999.04.008
|
马金萍, 2017. 基于DEM的洮河流域水系地貌参数与夷平面定量化研究[D]. 兰州: 兰州大学.
|
蒲阳, 罗明良, 刘维明, 等, 2018. 基于DEM的山顶点关联特征研究: 以川东褶皱山系华蓥山主峰区为例[J]. 地理与地理信息科学, 34 (4): 96-100. doi: 10.3969/j.issn.1672-0504.2018.04.015
|
任纪舜, 牛宝贵, 赵磊, 等, 2019. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 25 (5): 607-612. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190502&journal_id=dzlxxb
|
孙崇亮, 王卷乐, 2008. 基于DEM的水系自动提取与分级研究进展[J]. 地理科学进展, 27(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200801018.htm
|
汤国安, 2014. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 69 (9): 1305-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201409007.htm
|
汤国安, 李发源, 熊礼阳, 2017a. 黄土高原数字地形分析研究进展[J]. 地理与地理信息科学, 33 (4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201704001.htm
|
汤国安, 那嘉明, 程维明, 2017b. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 46 (10): 1570-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710040.htm
|
唐新明, 李世金, 李涛, 等, 2021. 全球数字高程产品概述[J]. 遥感学报, 25 (1): 167-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101011.htm
|
涂新军, 陈晓宏, 2010. 基于变点识别的区域河川径流量特征值变异研究[J]. 自然资源学报, 25 (11): 1930-1937. doi: 10.11849/zrzyxb.2010.11.012
|
王家耀, 崔铁军, 苗国强, 2004. 数字高程模型及其数据结构[J]. 海洋测绘, 24(3): 1-4. doi: 10.3969/j.issn.1671-3044.2004.03.001
|
王彦文, 秦承志, 2017. 地貌形态类型的自动分类方法综述[J]. 地理与地理信息科学, 33 (4): 16-21. doi: 10.3969/j.issn.1672-0504.2017.04.003
|
王耀革, 朱长青, 王志伟, 2008. 基于Coons曲面的规则格网DEM表面模型[J]. 测绘学报, 37 (2): 217-222. doi: 10.3321/j.issn:1001-1595.2008.02.016
|
王一舟, 郑德文, 张会平, 等, 2020. 华山山前正断层的分段活动特征: 来自河流地貌参数的约束[J]. 地震地质, 42 (2): 382-398. doi: 10.3969/j.issn.0253-4967.2020.02.009
|
夏双, 阮仁宗, 佘远见, 等, 2012. 基于C4.5算法的遥感影像分类[J]. 地理空间信息, 10 (4): 89-91, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201204031.htm
|
谢轶群, 朱红春, 汤国安, 等, 2013. 基于DEM的沟谷特征点提取与分析[J]. 地球信息科学学报, 15 (1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201301010.htm
|
辛星, 2018. 黄土沟壑区浅层滑坡的制图和危险性评价研究[D]. 兰州: 兰州大学.
|
熊礼阳, 汤国安, 杨昕, 等, 2021. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 76 (3): 595-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202103009.htm
|
许丽, 李江海, 刘持恒, 等, 2017. 基于数字高程模型(DEM)的可可西里地貌及区划研究[J]. 北京大学学报(自然科学版), 53 (5): 833-842. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201705006.htm
|
张会平, 2006. 青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[D]. 北京: 中国地质大学(北京).
|
张洪群, 刘雪莹, 杨森, 等, 2017. 深度学习的半监督遥感图像检索[J]. 遥感学报, 21 (3): 406-414. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201703008.htm
|