Volume 28 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
QU Jingkai, YANG Weimin, SHEN Junfeng, et al., 2022. Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province. Journal of Geomechanics, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828
Citation: QU Jingkai, YANG Weimin, SHEN Junfeng, et al., 2022. Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province. Journal of Geomechanics, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828

Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province

doi: 10.12090/j.issn.1006-6616.20222828
Funds:

the Second Comprehensive Scientific Investigation and Research Project on the Qinghai-Tibet Plateau 2019QZKK0902

More Information
  • Received: 2022-06-07
  • Revised: 2022-09-18
  • In August 2020, due to the continuous rainfall in southeast Gansu, especially the heavy rainfall processes, debris flows broke out in the Hunshui gully. The left bank of the Fangjiashan landslide was destabilized and sliding, seriously threatening the safety of the Chengdu-Lanzhou Railway at the mouth of the gully. Based on the field investigation results, remote sensing interpretation, and laboratory tests, we studied the mud-coated gravel's morphology, mineral composition, and accumulation characteristics, analyzed the geological environment and mechanism for its formation and discussed its disaster-causing significance. The results show that mud-coated gravels are distributed in the lower reaches of the circulation area and the accumulation area. It presents a spherical and multi-layered structure composed of quartz, calcite, clay minerals, etc. Its formation is mainly controlled by the clay minerals in the Quaternary loess and Paleogene mudstone in the basin. The slow-moving gullies, landslides, and collapses developed on the bank slope as well as appropriate hydrodynamic conditions, promoted the formation and autogenesis of the mud-coated gravel. The impact force of debris flow increases with the particle size of mud-coated gravel, and the critical velocity required for restarting a debris flow is smaller than that of block rock. Mud-coated gravel is the result of the joint action of the Paleogene mudstone and debris flow, and it can aggravate the debris flow hazard. Therefore, it is urgent to control the debris flows in the Hunshui gully to ensure the safe operation of the Chengdu-Lanzhou Railway.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHEN C Y, REN J W, MENG G J, et al., 2013. Division, deformation and tectonic implication of active blocks in the eastern segment of Bayan Hlar block[J]. Chinese Journal of Geophysics, 56(12): 4125-4141. (in Chinese with English abstract) doi: 10.6038/cjg20131217
    CUI L, LEI X F, ZHAO F H, et al., 2011. Study on stability evaluation of surrounding rock based on weighted average method[J]. Coal Engineering(6): 77-78, 81. (in Chinese) doi: 10.3969/j.issn.1671-0959.2011.06.031
    DENG H, CHEN N S, HU G S, et al., 2011. Calculation of dynamics parameters of Sanyanyu gully in Zhouqu, Gansu[J]. Journal of Chongqing Jiaotong University (Natural Science), 30(4): 833-838. (in Chinese with English abstract)
    DING X L, LIU S M, 2006. Distribution law and prevention measures of geological disasters in Minxian county[J]. Scientific & Technical Information of Gansu, 35(5): 46-47. (in Chinese)
    GE W P, 2013. Discussion on the relationship between regional landform and seismogenic structure of the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 35(4): 840-847. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.840
    HE W G, ZHENG W J, WANG A G, et al., 2013. New activities of Lintan-Dangchang fault and its relations to Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 35(4): 751-760. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.751
    HE W S, FANG D, LIU X N, et al., 2003. Critical condition for starting motion of gravel[J]. Sichuan Water Power, 22(1): 64-65, 69. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-2184.2003.01.023
    HE X Y, 2014. Experimental study on the shock characteristics of debris flow considering different slurry viscosity and gradation particles[D]. Chongqing: Chongqing Jiaotong University. (in Chinese with English abstract)
    HE X Y, CHEN H K, TANG H M, 2016. Experimental study on the energy distribution characteristics of impacting signals of debris flow considering the slurry viscosity and particle collision[J]. Journal of Vibration and Shock, 35(6): 64-69. (in Chinese with English abstract)
    HU G S, CHEN N S, DENG M F, et al., 2011. Analysis of the characteristics of impact force of massive stones of the Sanyanyu debris flow gully in Zhouqu, Gansu Province[J]. Earth and Environment, 39(4): 478-484. (in Chinese with English abstract)
    HU L, XIN P, WANG T, et al., 2021. Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides[J]. Journal of Geomechanics, 27(1): 73-82. (in Chinese with English abstract)
    LI C Y, FU H L, CAI H L, et al., 2009. Water character of flowering sheet stone[J]. Journal of Railway Science and Engineering, 6(1): 74-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2009.01.015
    LI J F, 2021. Comparative study on formulas of pebble starting velocity[J]. Yangtze River, 52(11): 201-206, 218. (in Chinese with English abstract)
    LI P Z, GAO Y, GUO M J, 2015. Research status and development trend of debris-flow impact Force[J]. Structural Engineers, 31(1): 200-206. (in Chinese with English abstract)
    LI X B, XU G B, 1985. Characteristics of sediments of quaternary period Glaice in Pan Ji coal Mine Area[J]. Journal of Huainan Institute of Mining(1): 1-11. (in Chinese with English abstract)
    LI X B, LIU H Q, ZHANG Z Y, et al., 2014. "Argillaceous parcel" Structure: A direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation, Upper Triassic, the Ordos Basin[J]. Acta Sedimentologica Sinica, 32(4): 611-622. (in Chinese with English abstract)
    LIAO J B, LI X B, ZHAO H Z, et al., 2017. Genetic mechanism of mud-coated intraclasts within deep-water massive sandstone in Yanchang Formation, Ordos Basin[J]. Journal of China University of Petroleum, 41(4): 46-53. (in Chinese with English abstract)
    LIU D C, YOU Y, DU J, et al., 2019. Spatio-temporal distribution of the impact force of debris flow[J]. Advanced Engineering Sciences, 51(3): 17-25. (in Chinese with English abstract)
    LIU J J, MA C, LI C Y, 2020. Fundamental problems and prospects in the study of deposition dynamics of viscous debris flow in the gully-river junction[J]. Journal of Geomechanics, 26(4): 544-555. (in Chinese with English abstract)
    LIU Y, YOU Y, WANG H F, et al., 2020. Research status and discussion on granular flow impact force[J]. Journal of Disaster Prevention and Mitigation Engineering, 40(5): 714-723. (in Chinese with English abstract)
    LUO L Y, 2011. Research on geometric shapes influencing on incipient motion of gravel[D]. Chongqing: Chongqing Jiaotong University. (in Chinese with English abstract)
    SUN X W, LIU Y P, 2018. Debris flow characteristics and its impact force test in the engineering areas of Dagu and Jiexu hydropower stations in Tibet[J]. Journal of Water Resources and Architectural Engineering, 16(2): 167-172. (in Chinese with English abstract)
    TIAN L Q, 1994. Genetic classification of accumulational landforms of channel viscous debris folw[J]. Mountain Research, 12(1): 9-14. (in Chinese with English abstract)
    WANG Y B, 2019. Debris flow impact forces on bridge piers[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
    YANG H J, WEI F Q, HU K H, et al., 2016. Rheological parameters of debris flow slurries with different maximum grain sizes[J]. Journal of Hydraulic Engineering, 47(7): 884-890. (in Chinese with English abstract)
    YANG W Y, LI H Y, 1988. Environmental engineering geology in Nanguanling area of Dalian[C]//Selected papers of the third national engineering geology conference (vol. 2). Chengdu: Chengdu University of Science and Technology Press. (in Chinese)
    YU X B, CHEN X Q, WANG D Z, et al., 2017. Study on the impact rule of viscous debris flow to check dams[J]. Yellow River, 39(3): 37-44. (in Chinese with English abstract)
    ZANG X L, LIN G Y, 2011. Discussion on nomenclature of soil layer in Shenyang area[J]. Science & Technology Information(5): 36. (in Chinese)
    ZENG C, SU Z M, LEI Y, et al., 2015. An experimental study of the characteristics of impact forces between debris flow slurry and large-sized particles[J]. Rock and Soil Mechanics, 36(7): 1923-1930, 1938. (in Chinese with English abstract)
    ZHANG B, TIAN Q J, WANG A G, et al., 2021. Studies on new activity of Lintan-Dangchang Fault, West Qinling[J]. Seismology and Geology, 43(1): 72-91. (in Chinese with English abstract)
    ZHANG Z T, YAO Y L, 1989. Research on starting velocity of the bed gravel in upper Yangtze River[J]. Journal of Yangtze River Scientific Research Institute(2): 1-10. (in Chinese with English abstract)
    ZHENG W J, YUAN D Y, HE W G, et al., 2013. Geometric pattern and active tectonics in Southeastern Gansu province: Discussion on seismogenic mechanism of the MinxianZhangxian MS6.6 earthquake on July 22, 2013[J]. Chinese Journal of Geophysics, 56(12): 4058-4071. (in Chinese with English abstract)
    ZHOU H J, WANG X, YUAN Y, et al., 2014. Rapid-assessing methods of loss in extremely heavy rainfall disaster chain in semiarid region: a case study on a flash flood debris flow in Minxian county, Gansu province[J]. Arid Zone Research, 31(3): 440-445. (in Chinese with English abstract)
    陈长云, 任金卫, 孟国杰, 等, 2013. 巴颜喀拉块体东部活动块体的划分、形变特征及构造意义[J]. 地球物理学报, 56(12): 4125-4141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312017.htm
    崔亮, 雷学峰, 赵飞虎, 等, 2011. 基于加权平均法的围岩稳定性评价研究[J]. 煤炭工程(6): 77-78, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201106031.htm
    邓虎, 陈宁生, 胡桂胜, 等, 2011. 甘肃舟曲三眼峪沟泥石流动力学特征参数计算[J]. 重庆交通大学学报(自然科学版), 30(4): 833-838. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104030.htm
    丁晓莉, 刘世梅, 2006. 岷县地质灾害分布规律及防治措施[J]. 甘肃科技纵横, 35(5): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-LZKQ200605036.htm
    葛伟鹏, 2013. 岷县漳县6.6级地震发震构造与区域地形地貌特征关系讨论[J]. 地震工程学报, 35(4): 840-847. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201304019.htm
    何文贵, 郑文俊, 王爱国, 等, 2013. 临潭-宕昌断裂新活动特征与岷县漳县MS6.6地震关系研究[J]. 地震工程学报, 35(4): 751-760. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201304006.htm
    何文社, 方铎, 刘兴年, 等, 2003. 砾卵石起动临界条件[J]. 四川水力发电, 22(1): 64-65, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSL200301023.htm
    何晓英, 2014. 浆体与级配颗粒组合条件下泥石流冲击特性实验研究[D]. 重庆: 重庆交通大学.
    何晓英, 陈洪凯, 唐红梅, 2016. 泥石流浆体与固体颗粒冲击信号能量分布研究[J]. 振动与冲击, 35(6): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201606011.htm
    胡桂胜, 陈宁生, 邓明枫, 等, 2011. 甘肃舟曲三眼峪沟泥石流粗大颗粒冲击力特征分析[J]. 地球与环境, 39(4): 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201104007.htm
    胡乐, 辛鹏, 王涛, 等, 2021. 硬土软岩滑坡近水平滑移的离心机模型试验研究[J]. 地质力学学报, 27(1): 73-82. doi: 10.12090/j.issn.1006-6616.2021.27.01.008
    李昌友, 傅鹤林, 蔡海良, 等, 2009. 风化板岩水理特性研究[J]. 铁道科学与工程学报, 6(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200901014.htm
    李江峰, 2021. 卵石起动流速公式对比研究[J]. 人民长江, 52(11): 201-206, 218. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202111033.htm
    李培振, 高宇, 郭沫君, 2015. 泥石流冲击力的研究现状[J]. 结构工程师, 31(1): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201501031.htm
    李祥碧, 徐广标, 1985. 潘集矿区第四纪冰川沉积物的特征[J]. 淮南矿业学院学报(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB198501000.htm
    李相博, 刘化清, 张忠义, 等, 2014. 深水块状砂岩碎屑流成因的直接证据: "泥包砾"结构: 以鄂尔多斯盆地上三叠统延长组研究为例[J]. 沉积学报, 32(4): 611-622. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201404001.htm
    廖建波, 李相博, 赵惠周, 等, 2017. 鄂尔多斯盆地延长组深水块状砂岩"泥包砾"结构成因机制[J]. 中国石油大学学报(自然科学版), 41(4): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201704006.htm
    刘道川, 游勇, 杜杰, 等, 2019. 泥石流冲击力的时空分布特征[J]. 工程科学与技术, 51(3): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm
    刘晶晶, 马春, 李春雨, 2020. 粘性泥石流入汇区河床堆积动力学研究的问题与展望[J]. 地质力学学报, 26(4): 544-555. doi: 10.12090/j.issn.1006-6616.2020.26.04.047
    刘洋, 游勇, 王海帆, 等, 2020. 颗粒流冲击力研究现状及讨论[J]. 防灾减灾工程学报, 40(5): 714-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202005005.htm
    罗羚源, 2011. 卵砾石几何形状对起动的影响研究[D]. 重庆: 重庆交通大学.
    孙兴伟, 刘云鹏, 2018. 大古与街需水电站工程区泥石流基本特征及冲击力试验研究[J]. 水利与建筑工程学报, 16(2): 167-172. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201802032.htm
    田连权, 1994. 沟道粘性泥石流堆积地貌的成因分类[J]. 山地研究, 12(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA401.001.htm
    王友彪, 2019. 泥石流对桥墩冲击力研究[D]. 成都: 西南交通大学.
    杨红娟, 韦方强, 胡凯衡, 等, 2016. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 47(7): 884-890. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201607007.htm
    杨文远, 李宏义, 1988. 大连南关岭地区环境工程地质问题[C]//全国第三次工程地质大会论文选集(下卷). 成都: 成都科技大学出版社.
    于献彬, 陈晓清, 王道正, 等, 2017. 黏性泥石流浆体对拦砂坝冲击规律研究[J]. 人民黄河, 39(3): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201703012.htm
    臧秀玲, 林国友, 2011. 沈阳地区土层定名探讨[J]. 科技信息(5): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXX201105022.htm
    曾超, 苏志满, 雷雨, 等, 2015. 泥石流浆体与大颗粒冲击力特征的试验研究[J]. 岩土力学, 36(7): 1923-1930, 1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507018.htm
    张波, 田勤俭, 王爱国, 等, 2021. 西秦岭临潭-宕昌断裂第四纪最新活动特征[J]. 地震地质, 43(1): 72-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202101005.htm
    张植堂, 姚于丽, 1989. 长江上游河床卵石起动流速表达式的讨论[J]. 长江科学院院报(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB198902000.htm
    郑文俊, 袁道阳, 何文贵, 等, 2013. 甘肃东南地区构造活动与2013年岷县-漳县MS6.6级地震孕震机制[J]. 地球物理学报, 56(12): 4058-4071. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312011.htm
    周洪建, 王曦, 袁艺, 等, 2014. 半干旱区极端强降雨灾害链损失快速评估方法: 以甘肃岷县"5·10"特大山洪泥石流灾害为例[J]. 干旱区研究, 31(3): 440-445. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201403010.htm
  • 加载中

Catalog

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (672) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return