Citation: | YANG G,CHEN Z X,LU X S,et al.,2025. Mechanics and analog modeling of the Huo-Ma-Tu thrust sheet in the southern Junggar Basin fold and thrust belt[J]. Journal of Geomechanics,31(1):8−23 doi: 10.12090/j.issn.1006-6616.2023074 |
[1] |
ANDERSON E M, 1951. The dynamics of faulting and dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd: 206.
|
[2] |
BONINI M, SOKOUTIS D, MULUGETA G, et al., 2000. Modelling hanging wall accommodation above rigid thrust ramps[J]. Journal of Structural Geology, 22(8): 1165-1179. doi: 10.1016/S0191-8141(00)00033-X
|
[3] |
BOYER S E, ELLIOTT D, 1982. Thrust systems[J]. AAPG Bulletin, 66(9): 1196-1230.
|
[4] |
BURCHFIEL B C, BROWN E T, DENG Q D, et al., 1999. Crustal shortening on the margins of the Tien Shan, Xinjiang, China[J]. International Geology Review, 41(8): 665-700, doi: 10.1080/00206819909465164
|
[5] |
BUTLER R W H, 1982. The terminology of structures in thrust belts[J]. Journal of Structural Geology, 4(3): 239-245. doi: 10.1016/0191-8141(82)90011-6
|
[6] |
BYERLEE J, 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes[J]. Geology, 21(4): 303-306. doi: 10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2
|
[7] |
CELLO G, NUR A, 1988. Emplacement of foreland thrust systems[J]. Tectonics, 7(2): 261-271. doi: 10.1029/TC007i002p00261
|
[8] |
CHAPPLE W M, 1978. Mechanics of thin-skinned fold-and-thrust belts[J]. GSA Bulletin, 89(8): 1189-1198.
|
[9] |
CHEN Z X, LEI Y L, JIA D, et al. , 2019. Physical analog and structural modeling techniques and applications[M]. Beijing: Science Publish Press: 249. (in Chinese)
|
[10] |
COOPER M A, 1981. The internal geometry of nappes: criteria for models of emplacement[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 225-234.
|
[11] |
CRUSET D, CANTARERO I, BENEDICTO A, et al., 2022. From hydroplastic to brittle deformation: controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees)[J]. Marine and Petroleum Geology, 120: 104517, doi: 10.1016/j.marpetgeo.2020.104517
|
[12] |
DAHLEN F A, SUPPE J, DAVIS D, 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb theory[J]. Journal of Geophysical Research: Solid Earth, 89(B12): 10087-10101. doi: 10.1029/JB089iB12p10087
|
[13] |
DAHLEN F A, SUPPE J, 1988. Mechanics, growth, and erosion of mountain belts[M]//CLARK S P JR, BURCHFIEL B C, SUPPE J. Processes in continental lithospheric deformation. Boulder: Geological Society of America: 161-178.
|
[14] |
DAHLEN F A, 1990. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 18(1): 55-99, doi: 10.1146/annurev.ea.18.050190.000415
|
[15] |
DAHLSTROM C D A, 1970. Structural geology in the eastern margin of the Canadian rocky mountains[J]. Bulletin of Canadian Petroleum Geology, 18(3): 332-406.
|
[16] |
DAVIS D M, SUPPE J, DAHLEN F A, 1983. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153
|
[17] |
DAVIS D M, ENGELDER T, 1985. The role of salt in fold-and-thrust belts[J]. Tectonophysics, 119(1-4): 67-88. doi: 10.1016/0040-1951(85)90033-2
|
[18] |
ELLIOTT D, 1976a. The motion of thrust sheets[J]. Journal of Geophysical Research, 81(5): 949-963. doi: 10.1029/JB081i005p00949
|
[19] |
ELLIOTT D, 1976b. The energy balance and deformation mechanisms of thrust sheets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 283(1312): 289-312.
|
[20] |
GRAULS D J, BALEIX J M, 1994. Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study[J]. Marine and Petroleum Geology, 11(6): 734-742, doi: 10.1016/0264-8172(94)90026-4
|
[21] |
GRETENER P E, 1972. Thoughts on overthrust faulting in a layered sequence[J]. Bulletin of Canadian Petroleum Geology, 20(3): 583-607.
|
[22] |
GRETENER P E, 1981. Pore pressure, discontinuities, isostasy and overthrust[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 33-39.
|
[23] |
HAFNER W, 1951. Stress distributions and faulting[J]. GSA Bulletin, 62(4): 373-398.
|
[24] |
HATCHER R D JR, 2004. Properties of thrusts and upper bounds for the size of thrust sheets[M]//MCCLAY K R. Thrust tectonics and hydrocarbon systems. Tulsa: American Association of Petroleum Geologists, 82: 18-29.
|
[25] |
HUBBERT M K, RUBEY W W, 1959. Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting[J]. Geological Society of America Bulletin, 70(2): 115-166. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
|
[26] |
JINGHWA HSŰ K, 1969. Role of cohesive strength in the mechanics of overthrust faulting and of landsliding[J]. GSA Bulletin, 80(6): 927-952. doi: 10.1130/0016-7606(1969)80[927:ROCSIT]2.0.CO;2
|
[27] |
KELHE R O, 1970. Analysis of gravity sliding and orogenic translation[J]. GSA Bulletin, 81(6): 1641-1664. doi: 10.1130/0016-7606(1970)81[1641:AOGSAO]2.0.CO;2
|
[28] |
KELLY P G, Peacock D C P, SANDERSON D J, et al., 1999. Selective reverse-reactivation of normal faults, and deformation around reverse-reactivated faults in the Mesozoic of the Somerset coast[J]. Journal of Structural Geology, 21(5): 493-509. doi: 10.1016/S0191-8141(99)00041-3
|
[29] |
KNIPE R J, 1995. Footwall geometry and the rheology of thrust sheets[J]. Journal of Structural Geology, 7(1): 1-10.
|
[30] |
KOYI H A, MAILLOT B, 2007. Tectonic thickening of hanging-wall units over a ramp[J]. Journal of Structural Geology, 29(6): 924-932. doi: 10.1016/j.jsg.2007.02.014
|
[31] |
LI M H, LI Z, LIAO J D, 2005. Analysis of ground stress in the southern part of Jungger Basin and discussions of the related issues[J]. Xinjiang Geology, 23(4): 343-346. (in Chinese with English abstract
|
[32] |
LIU J Y, RANALLI G, 1992. Stresses in an overthrust sheet and propagation of thrusting: an airy stress function solution[J]. Tectonics, 11(3): 549-559. doi: 10.1029/92TC00104
|
[33] |
LU X S, ZHUO Q G, ZHAO M J, et al. , 2020. The quantitative evaluation techniques for source-reservoir configuration and fault-caprock combinations in foreland basins (confidentiality of technical Report)[R]. (in Chinese)
|
[34] |
LU X S, ZHAO M J, ZHANG F Q, et al., 2022. Characteristics, origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 49(5): 859-870. (in Chinese with English abstract
|
[35] |
LUO X R, WANG Z M, ZHANG L Q, et al., 2007. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 91(8): 1123-1139, doi: 10.1306/02260706035
|
[36] |
MANDL G, SHIPPAM G K, 1981. Mechanical model of thrust sheet gliding and Imbrication[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 79-98, doi: 10.1144/GSL.SP.1981.009.01.08.
|
[37] |
MANDL G, 1988. Mechanics of tectonic faulting: models and basic concepts[M]. Amsterdam: Elsevier: 407.
|
[38] |
MERLE O, ABIDI N, 1995. Approche experimentale du fonctionnement des rampes emergentes[J]. Bulletin de la Société Géologique de France, 166(5): 439-450.
|
[39] |
MERLE O, 1998. Emplacement mechanisms of nappes and thrust sheets[M]. Dordrecht, Boston: Kluwer Academic Publishers: 159.
|
[40] |
MITRA S, 1986. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential[J]. AAPG Bulletin, 70(9): 1087-1112.
|
[41] |
MULUGETA G, SOKOUTIS D, 2003. Hanging wall accommodation styles in ramp-flat thrust models[M]//NIEUWLAND D A. New insights into structural interpretation and modelling. London: Geological Society, Special Publications, 212(1): 197-207.
|
[42] |
PRICE N J, COSGROVE J W, 1990. Analysis of geological structures[M]. Cambridge: Cambridge University Press: 502.
|
[43] |
PRICE R A, 1988. The mechanical paradox of large overthrusts[J]. GSA Bulletin, 100(12): 1898-1908.
|
[44] |
QIU J H, RAO G, WANG X, et al., 2019. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan[J]. Tectonophysics, 772: 228209, doi: 10.1016/j.tecto.2019.228209
|
[45] |
RICH J L, 1934. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky, and Tennessee[J]. AAPG Bulletin, 18(12): 1584-1596.
|
[46] |
SERRA S, 1977. Styles of deformation in the ramp regions of overthrust faults[C]// WGA, 2005 - Rocky Mountain Thrust Belt Geology and Resources; 29th Annual Field Conference Guidebook, 1977 Proceedings of the twenty-ninth annual field conference Wyoming geological association guidebook: 487-498.
|
[47] |
SMITH A G, 1981. Subduction and coeval thrust belts, with particular reference to North America[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 111-124.
|
[48] |
SMOLUCHOWSKI M S, 1909. II. Some remarks on the mechanics of overthrusts[J]. Geological Magazine, 6(5): 204-205. doi: 10.1017/S0016756800120941
|
[49] |
SUPPE J, HUANG M H, CARENA S, 2009. Mechanics of thrust belts and the weak-fault/strong-crust problem[J]. Trabajos de Geología, 29: 61-65.
|
[50] |
TURNER J P, WILLIAMS G A, 2004. Sedimentary basin inversion and intra-plate shortening[J]. Earth-Science Reviews, 65(3-4): 277-304. doi: 10.1016/j.earscirev.2003.10.002
|
[51] |
WASHINGTON P A, PRICE R A, 1990. The mechanical paradox of large overthrusts: alternative interpretation and reply[J]. GSA Bulletin, 102(4): 529-532. doi: 10.1130/0016-7606(1990)102<0529:TMPOLO>2.3.CO;2
|
[52] |
WILLIAMS G, CHAPMAN T, 1983. Strains developed in the hangingwalls of thrusts due to their slip/propagation rate: a dislocation model[J]. Journal of Structural Geology, 5(6): 563-571. doi: 10.1016/0191-8141(83)90068-8
|
[53] |
WILTSCHKO D V, 1979. A mechanical model for thrust sheet deformation at a ramp[J]. Journal of Geophysical Research: Solid Earth, 84(B3): 1091-1104. doi: 10.1029/JB084iB03p01091
|
[54] |
WILTSCHKO D V, 1981. Thrust sheet deformation at a ramp: summary and extensions of an earlier model[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 55-63.
|
[55] |
XINJIANG OILSUBCOMPANY, 2007. Geological reports of well MN1 and Well MN001 completion(confidentiality of technical informations)[R]. (in Chinese)
|
[56] |
XU X W, DENG Q D, ZHANG P Z, et al. , 1996. Deformation of fluvial terraces across the Manas-Huoerguos reverse fault and fold zone and its neotectonic implication in Xinjiang, northwestern China[C]//Editing Committee of the Research of Active Fault. Research of active fault (II). Beijing: Seismology Press: 117-127. (in Chinese with English abstract
|
[57] |
YANG G, LI W, LI B L, et al., 2012a. Activity thrust faults and overpressure in the thrust and fold belt of southern Junggar Basin[J]. Chinese Journal of Geology, 47(3): 669-684. (in Chinese with English abstract
|
[58] |
YANG G, LI W, BAI Z H, et al., 2012b. Calibration of thrust faults with abnormal formation pressure data tested during drilling: an example from the southern fold-thrust belt in Junggar Basin[J]. Oil& Gas Geology, 33(2): 200-207. (in Chinese with English abstract
|
[59] |
YANG G, ZHAO M J, CHEN Z X, et al., 2016. Geometric evidence for several synchronous thrust faulting activities of the thrust belt in the southern margin of Junngar, North Tianshan[J]. Acta Geologica Sinica, 90(4): 639-652. (in Chinese with English abstract
|
[60] |
YIN A, 1989. Origin of regional, rooted low-angle normal faults: a mechanical model and its tectonic implications[J]. Tectonics, 8(3): 469-482. doi: 10.1029/TC008i003p00469
|
[61] |
ZUCCARI C, VIOLA G, CURZI M, et al., 2022. What steers the “folding to faulting” transition in carbonate-dominated seismic fold-and-thrust belts? New insights from the eastern southern Alps (northern Italy)[J]. Journal of Structural Geology, 157: 104560, doi: 10.1016/j.jsg.2022.104560
|
[62] |
陈竹新,雷永良,贾东,等,2019. 构造变形物理模拟与构造建模技术及应用[M]. 北京:科学出版社:249.
|
[63] |
李民河,李震,廖健德,2005. 准噶尔盆地南缘地应力分析及相关问题探讨[J]. 新疆地质,23(4):343-346. doi: 10.3969/j.issn.1000-8845.2005.04.005
|
[64] |
鲁雪松,卓勤功,赵孟军等,2020. 前陆盆地源储配置与断-盖组合定量评价技术[R]
|
[65] |
鲁雪松,赵孟军,张凤奇,等,2022. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发,49(5):859-870. doi: 10.11698/PED.20220103
|
[66] |
新疆油田分公司,2007. MN1井和MN001井完井地质报告[R]
|
[67] |
杨庚,李伟,李本亮,等,2012a. 准南逆冲褶皱带超压与逆冲断层持续活动[J]. 地质科学,47(3):669-684.
|
[68] |
杨庚,李伟,白振华,等,2012b. 用钻井地层异常压力参数标定逆断层的方法:以准噶尔盆地南部逆冲褶皱带为例[J]. 石油与天然气地质,33(2):200-207.
|
[69] |
杨庚,赵孟军,陈竹新,等,2016. 准噶尔南缘逆冲带多个逆冲断层同期活动的几何学证据[J]. 地质学报,90(4):639-652. doi: 10.3969/j.issn.0001-5717.2016.04.004
|