Volume 31 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
YANG G,CHEN Z X,LU X S,et al.,2025. Mechanics and analog modeling of the Huo-Ma-Tu thrust sheet in the southern Junggar Basin fold and thrust belt[J]. Journal of Geomechanics,31(1):8−23 doi: 10.12090/j.issn.1006-6616.2023074
Citation: YANG G,CHEN Z X,LU X S,et al.,2025. Mechanics and analog modeling of the Huo-Ma-Tu thrust sheet in the southern Junggar Basin fold and thrust belt[J]. Journal of Geomechanics,31(1):8−23 doi: 10.12090/j.issn.1006-6616.2023074

Mechanics and analog modeling of the Huo-Ma-Tu thrust sheet in the southern Junggar Basin fold and thrust belt

doi: 10.12090/j.issn.1006-6616.2023074
Funds:  This research is financially supported by PetroChina Science and Technology Project (Grants No. 2023ZZ0202 and 2023YQX10101).
More Information
  • Received: 2023-05-15
  • Revised: 2024-07-26
  • Accepted: 2024-08-15
  • Published: 2025-02-27
  •   Objective  Understanding the mechanical development of thrust sheets is fundamental, yet challenging, to comprehensively understand the deformation processes of thrust belts. Various models explain the mechanics behind thrust sheet development, yet significant controversies persist.   Methods  This study takes a comprehensive approach, focusing on the southern Junggar Thrust Belt. We combine a variety of methods including surface geological surveys, seismic reflection profiles, and drilling data analysis with mechanical and physical modeling to thoroughly investigate this issue.   Results  (1) Based on surface geological surveys, seismic data interpretation, and drilling data, we confirm that thrust faults have developed in the core and southern limb of the Huo-Ma-Tu anticline. These faults extend southward beneath the front of anticlines, forming the extensively distributed Huo-Ma-Tu thrust sheet, which exhibits none to weak internal structural deformation. (2) Drilling data from the Huo-Ma-Tu structural belt clearly show that the frontal thrust faults and detachment faults have developed in layers with abnormally high fluid pressure, indicating that the thrust sheet is a combination of strong deformation sheets and weak detachment faults. Analysis of in-situ formation pressure data suggests that the thrust faults within these overpressure layers can segregate fluid pressure coefficients between the hanging wall and the footwall. (3) Using the geometric deformation characteristics of the Huo-Ma-Tu thrust sheet obtained from seismic profiles and drilling data, a simplified mechanical model is established. This model calculates the mathematical relationship between the horizontal compressive stress-to-gravity ratio at the back of the thrust sheet, the geometric parameters of the thrust sheet, the fault friction coefficient, and the fault dip angle. Separate equations are provided for thrust sheets without fluid overpressure and those with fluid overpressure detachment layers. (4) A physical model of the development characteristics of the Huo-Ma-Tu thrust sheet in the Southern Junggar Thrust Belt confirms that the deformation pattern of such rigid thrust sheets aligns with the structural interpretation from seismic profiles. This supports the validity of the simplified mechanical model in reflecting the actual geological conditions.   Conclusions  The simplified mechanical model demonstrates that the required horizontal tectonic stress-to-gravity ratio at the back of the thrust sheet decreases significantly with increasing fluid pressure coefficient. The physical modeling results also verify that the deformation pattern of strong deformation sheets/weak detachment fault thrust sheets generally conform to the structural interpretations of the seismic profiles. The experiments reveal that the large displacements at the base of the thrust sheet result from the accumulation of small-scale displacements coinciding across multiple segments.   Significance  This study proposes simplified rectangular with triangular geometric models of thrust sheets, which can preliminarily explain the kinematics and dynamics of thrust sheets, especially those with fluid overpressure. The derived mathematical relationships accurately describe the geometric, kinematic, and dynamic relationships of thrust sheets and are robustly validated by physical simulation experiments, reinforcing the reliability of our findings.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ANDERSON E M, 1951. The dynamics of faulting and dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd: 206.
    [2]
    BONINI M, SOKOUTIS D, MULUGETA G, et al., 2000. Modelling hanging wall accommodation above rigid thrust ramps[J]. Journal of Structural Geology, 22(8): 1165-1179. doi: 10.1016/S0191-8141(00)00033-X
    [3]
    BOYER S E, ELLIOTT D, 1982. Thrust systems[J]. AAPG Bulletin, 66(9): 1196-1230.
    [4]
    BURCHFIEL B C, BROWN E T, DENG Q D, et al., 1999. Crustal shortening on the margins of the Tien Shan, Xinjiang, China[J]. International Geology Review, 41(8): 665-700, doi: 10.1080/00206819909465164
    [5]
    BUTLER R W H, 1982. The terminology of structures in thrust belts[J]. Journal of Structural Geology, 4(3): 239-245. doi: 10.1016/0191-8141(82)90011-6
    [6]
    BYERLEE J, 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes[J]. Geology, 21(4): 303-306. doi: 10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2
    [7]
    CELLO G, NUR A, 1988. Emplacement of foreland thrust systems[J]. Tectonics, 7(2): 261-271. doi: 10.1029/TC007i002p00261
    [8]
    CHAPPLE W M, 1978. Mechanics of thin-skinned fold-and-thrust belts[J]. GSA Bulletin, 89(8): 1189-1198.
    [9]
    CHEN Z X, LEI Y L, JIA D, et al. , 2019. Physical analog and structural modeling techniques and applications[M]. Beijing: Science Publish Press: 249. (in Chinese)
    [10]
    COOPER M A, 1981. The internal geometry of nappes: criteria for models of emplacement[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 225-234.
    [11]
    CRUSET D, CANTARERO I, BENEDICTO A, et al., 2022. From hydroplastic to brittle deformation: controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees)[J]. Marine and Petroleum Geology, 120: 104517, doi: 10.1016/j.marpetgeo.2020.104517
    [12]
    DAHLEN F A, SUPPE J, DAVIS D, 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb theory[J]. Journal of Geophysical Research: Solid Earth, 89(B12): 10087-10101. doi: 10.1029/JB089iB12p10087
    [13]
    DAHLEN F A, SUPPE J, 1988. Mechanics, growth, and erosion of mountain belts[M]//CLARK S P JR, BURCHFIEL B C, SUPPE J. Processes in continental lithospheric deformation. Boulder: Geological Society of America: 161-178.
    [14]
    DAHLEN F A, 1990. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 18(1): 55-99, doi: 10.1146/annurev.ea.18.050190.000415
    [15]
    DAHLSTROM C D A, 1970. Structural geology in the eastern margin of the Canadian rocky mountains[J]. Bulletin of Canadian Petroleum Geology, 18(3): 332-406.
    [16]
    DAVIS D M, SUPPE J, DAHLEN F A, 1983. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153
    [17]
    DAVIS D M, ENGELDER T, 1985. The role of salt in fold-and-thrust belts[J]. Tectonophysics, 119(1-4): 67-88. doi: 10.1016/0040-1951(85)90033-2
    [18]
    ELLIOTT D, 1976a. The motion of thrust sheets[J]. Journal of Geophysical Research, 81(5): 949-963. doi: 10.1029/JB081i005p00949
    [19]
    ELLIOTT D, 1976b. The energy balance and deformation mechanisms of thrust sheets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 283(1312): 289-312.
    [20]
    GRAULS D J, BALEIX J M, 1994. Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study[J]. Marine and Petroleum Geology, 11(6): 734-742, doi: 10.1016/0264-8172(94)90026-4
    [21]
    GRETENER P E, 1972. Thoughts on overthrust faulting in a layered sequence[J]. Bulletin of Canadian Petroleum Geology, 20(3): 583-607.
    [22]
    GRETENER P E, 1981. Pore pressure, discontinuities, isostasy and overthrust[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 33-39.
    [23]
    HAFNER W, 1951. Stress distributions and faulting[J]. GSA Bulletin, 62(4): 373-398.
    [24]
    HATCHER R D JR, 2004. Properties of thrusts and upper bounds for the size of thrust sheets[M]//MCCLAY K R. Thrust tectonics and hydrocarbon systems. Tulsa: American Association of Petroleum Geologists, 82: 18-29.
    [25]
    HUBBERT M K, RUBEY W W, 1959. Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting[J]. Geological Society of America Bulletin, 70(2): 115-166. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
    [26]
    JINGHWA HSŰ K, 1969. Role of cohesive strength in the mechanics of overthrust faulting and of landsliding[J]. GSA Bulletin, 80(6): 927-952. doi: 10.1130/0016-7606(1969)80[927:ROCSIT]2.0.CO;2
    [27]
    KELHE R O, 1970. Analysis of gravity sliding and orogenic translation[J]. GSA Bulletin, 81(6): 1641-1664. doi: 10.1130/0016-7606(1970)81[1641:AOGSAO]2.0.CO;2
    [28]
    KELLY P G, Peacock D C P, SANDERSON D J, et al., 1999. Selective reverse-reactivation of normal faults, and deformation around reverse-reactivated faults in the Mesozoic of the Somerset coast[J]. Journal of Structural Geology, 21(5): 493-509. doi: 10.1016/S0191-8141(99)00041-3
    [29]
    KNIPE R J, 1995. Footwall geometry and the rheology of thrust sheets[J]. Journal of Structural Geology, 7(1): 1-10.
    [30]
    KOYI H A, MAILLOT B, 2007. Tectonic thickening of hanging-wall units over a ramp[J]. Journal of Structural Geology, 29(6): 924-932. doi: 10.1016/j.jsg.2007.02.014
    [31]
    LI M H, LI Z, LIAO J D, 2005. Analysis of ground stress in the southern part of Jungger Basin and discussions of the related issues[J]. Xinjiang Geology, 23(4): 343-346. (in Chinese with English abstract
    [32]
    LIU J Y, RANALLI G, 1992. Stresses in an overthrust sheet and propagation of thrusting: an airy stress function solution[J]. Tectonics, 11(3): 549-559. doi: 10.1029/92TC00104
    [33]
    LU X S, ZHUO Q G, ZHAO M J, et al. , 2020. The quantitative evaluation techniques for source-reservoir configuration and fault-caprock combinations in foreland basins (confidentiality of technical Report)[R]. (in Chinese)
    [34]
    LU X S, ZHAO M J, ZHANG F Q, et al., 2022. Characteristics, origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 49(5): 859-870. (in Chinese with English abstract
    [35]
    LUO X R, WANG Z M, ZHANG L Q, et al., 2007. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 91(8): 1123-1139, doi: 10.1306/02260706035
    [36]
    MANDL G, SHIPPAM G K, 1981. Mechanical model of thrust sheet gliding and Imbrication[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 79-98, doi: 10.1144/GSL.SP.1981.009.01.08.
    [37]
    MANDL G, 1988. Mechanics of tectonic faulting: models and basic concepts[M]. Amsterdam: Elsevier: 407.
    [38]
    MERLE O, ABIDI N, 1995. Approche experimentale du fonctionnement des rampes emergentes[J]. Bulletin de la Société Géologique de France, 166(5): 439-450.
    [39]
    MERLE O, 1998. Emplacement mechanisms of nappes and thrust sheets[M]. Dordrecht, Boston: Kluwer Academic Publishers: 159.
    [40]
    MITRA S, 1986. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential[J]. AAPG Bulletin, 70(9): 1087-1112.
    [41]
    MULUGETA G, SOKOUTIS D, 2003. Hanging wall accommodation styles in ramp-flat thrust models[M]//NIEUWLAND D A. New insights into structural interpretation and modelling. London: Geological Society, Special Publications, 212(1): 197-207.
    [42]
    PRICE N J, COSGROVE J W, 1990. Analysis of geological structures[M]. Cambridge: Cambridge University Press: 502.
    [43]
    PRICE R A, 1988. The mechanical paradox of large overthrusts[J]. GSA Bulletin, 100(12): 1898-1908.
    [44]
    QIU J H, RAO G, WANG X, et al., 2019. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan[J]. Tectonophysics, 772: 228209, doi: 10.1016/j.tecto.2019.228209
    [45]
    RICH J L, 1934. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky, and Tennessee[J]. AAPG Bulletin, 18(12): 1584-1596.
    [46]
    SERRA S, 1977. Styles of deformation in the ramp regions of overthrust faults[C]// WGA, 2005 - Rocky Mountain Thrust Belt Geology and Resources; 29th Annual Field Conference Guidebook, 1977 Proceedings of the twenty-ninth annual field conference Wyoming geological association guidebook: 487-498.
    [47]
    SMITH A G, 1981. Subduction and coeval thrust belts, with particular reference to North America[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 111-124.
    [48]
    SMOLUCHOWSKI M S, 1909. II. Some remarks on the mechanics of overthrusts[J]. Geological Magazine, 6(5): 204-205. doi: 10.1017/S0016756800120941
    [49]
    SUPPE J, HUANG M H, CARENA S, 2009. Mechanics of thrust belts and the weak-fault/strong-crust problem[J]. Trabajos de Geología, 29: 61-65.
    [50]
    TURNER J P, WILLIAMS G A, 2004. Sedimentary basin inversion and intra-plate shortening[J]. Earth-Science Reviews, 65(3-4): 277-304. doi: 10.1016/j.earscirev.2003.10.002
    [51]
    WASHINGTON P A, PRICE R A, 1990. The mechanical paradox of large overthrusts: alternative interpretation and reply[J]. GSA Bulletin, 102(4): 529-532. doi: 10.1130/0016-7606(1990)102<0529:TMPOLO>2.3.CO;2
    [52]
    WILLIAMS G, CHAPMAN T, 1983. Strains developed in the hangingwalls of thrusts due to their slip/propagation rate: a dislocation model[J]. Journal of Structural Geology, 5(6): 563-571. doi: 10.1016/0191-8141(83)90068-8
    [53]
    WILTSCHKO D V, 1979. A mechanical model for thrust sheet deformation at a ramp[J]. Journal of Geophysical Research: Solid Earth, 84(B3): 1091-1104. doi: 10.1029/JB084iB03p01091
    [54]
    WILTSCHKO D V, 1981. Thrust sheet deformation at a ramp: summary and extensions of an earlier model[M]//MCCLAY K R, PRICE N J. Thrust and nappe tectonics. London: Geological Society, Special Publications, 9(1): 55-63.
    [55]
    XINJIANG OILSUBCOMPANY, 2007. Geological reports of well MN1 and Well MN001 completion(confidentiality of technical informations)[R]. (in Chinese)
    [56]
    XU X W, DENG Q D, ZHANG P Z, et al. , 1996. Deformation of fluvial terraces across the Manas-Huoerguos reverse fault and fold zone and its neotectonic implication in Xinjiang, northwestern China[C]//Editing Committee of the Research of Active Fault. Research of active fault (II). Beijing: Seismology Press: 117-127. (in Chinese with English abstract
    [57]
    YANG G, LI W, LI B L, et al., 2012a. Activity thrust faults and overpressure in the thrust and fold belt of southern Junggar Basin[J]. Chinese Journal of Geology, 47(3): 669-684. (in Chinese with English abstract
    [58]
    YANG G, LI W, BAI Z H, et al., 2012b. Calibration of thrust faults with abnormal formation pressure data tested during drilling: an example from the southern fold-thrust belt in Junggar Basin[J]. Oil& Gas Geology, 33(2): 200-207. (in Chinese with English abstract
    [59]
    YANG G, ZHAO M J, CHEN Z X, et al., 2016. Geometric evidence for several synchronous thrust faulting activities of the thrust belt in the southern margin of Junngar, North Tianshan[J]. Acta Geologica Sinica, 90(4): 639-652. (in Chinese with English abstract
    [60]
    YIN A, 1989. Origin of regional, rooted low-angle normal faults: a mechanical model and its tectonic implications[J]. Tectonics, 8(3): 469-482. doi: 10.1029/TC008i003p00469
    [61]
    ZUCCARI C, VIOLA G, CURZI M, et al., 2022. What steers the “folding to faulting” transition in carbonate-dominated seismic fold-and-thrust belts? New insights from the eastern southern Alps (northern Italy)[J]. Journal of Structural Geology, 157: 104560, doi: 10.1016/j.jsg.2022.104560
    [62]
    陈竹新,雷永良,贾东,等,2019. 构造变形物理模拟与构造建模技术及应用[M]. 北京:科学出版社:249.
    [63]
    李民河,李震,廖健德,2005. 准噶尔盆地南缘地应力分析及相关问题探讨[J]. 新疆地质,23(4):343-346. doi: 10.3969/j.issn.1000-8845.2005.04.005
    [64]
    鲁雪松,卓勤功,赵孟军等,2020. 前陆盆地源储配置与断-盖组合定量评价技术[R]
    [65]
    鲁雪松,赵孟军,张凤奇,等,2022. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发,49(5):859-870. doi: 10.11698/PED.20220103
    [66]
    新疆油田分公司,2007. MN1井和MN001井完井地质报告[R]
    [67]
    杨庚,李伟,李本亮,等,2012a. 准南逆冲褶皱带超压与逆冲断层持续活动[J]. 地质科学,47(3):669-684.
    [68]
    杨庚,李伟,白振华,等,2012b. 用钻井地层异常压力参数标定逆断层的方法:以准噶尔盆地南部逆冲褶皱带为例[J]. 石油与天然气地质,33(2):200-207.
    [69]
    杨庚,赵孟军,陈竹新,等,2016. 准噶尔南缘逆冲带多个逆冲断层同期活动的几何学证据[J]. 地质学报,90(4):639-652. doi: 10.3969/j.issn.0001-5717.2016.04.004
  • 加载中

Catalog

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (124) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return