Volume 28 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
CHEN Shuping, WAN Huachuan, YUAN Haowei, et al., 2022. Deformation asymmetry in foreland thrust belts and the kinematic direction of the related thrust faults. Journal of Geomechanics, 28 (2): 182-190. DOI: 10.12090/j.issn.1006-6616.2021080
Citation: CHEN Shuping, WAN Huachuan, YUAN Haowei, et al., 2022. Deformation asymmetry in foreland thrust belts and the kinematic direction of the related thrust faults. Journal of Geomechanics, 28 (2): 182-190. DOI: 10.12090/j.issn.1006-6616.2021080

Deformation asymmetry in foreland thrust belts and the kinematic direction of the related thrust faults

doi: 10.12090/j.issn.1006-6616.2021080
Funds:

the National Natural Science Foundation of China 41172124

the National Natural Science Foundation of China 42172138

the National Key Research and Development Plan of China 2017YFC0603105

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA14010306

More Information
  • Received: 2021-07-14
  • Revised: 2022-02-11
  • The thrust directions in foreland thrust belts have not been explained on theory. Based on Coulomb fracture criterion and deformation asymmetry in foreland thrust belt, the origins of fore-thrust and back-thrust faults are analyzed in this paper. Two potential conjugate fractures would occur in initial deformation stage, and the fracture requiring less applied forces might develop into thrust fault under the quasi-static equilibrium caused by deformation asymmetry in foreland thrust belts. The applied forces needed to create fault movements include the frictions along both the detachment surface and the fault surface. The fore-thrust faults will occur in most deformations in foreland thrust belts. However, where either the principal stress axes tilt toward foreland or the intersections point of the two conjugate fractures are on the detachment surface, the back-thrust faults will be preferable to occur. The applied force, the frictions along the detachment surface and the geometries of the slipping terranes will determine the principal stress axes. The findings will help to explain the selectivity of the fault dips in both contractional and extensional deformation areas.

     

  • loading
  • ALSOP G I, MARCO S, WEINBERGER R, et al., 2017. Upslope-verging back thrusts developed during downslope-directed slumping of mass transport deposits[J]. Journal of Structural Geology, 100: 45-61. https://www.sciencedirect.com/science/article/pii/S0191814117300974
    ANDERSON E M, 1951. The dynamics of faulting and dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd.
    BONINI M, 2007. Deformation patterns and structural vergence in brittle-ductile thrust wedges: an additional analogue modelling perspective[J]. Journal of Structural Geology, 29(1): 141-158. doi: 10.1016/j.jsg.2006.06.012
    BUITER S J H, 2012. A review of brittle compressional wedge models[J]. Tectonophysics, 530-531: 1-17. doi: 10.1016/j.tecto.2011.12.018
    BYRNE D E, WANG W H, DAVIS D M, 1993. Mechanical role of backstops in the growth of forearcs[J]. Tectonics, 12(1): 123-144. doi: 10.1029/92TC00618
    CHEN B L, 2020. Development process of fault structure and formation and evolution of ore-controlling structure: a case study of the Zoujiashan uranium deposit[J]. Journal of Geomechanics, 26(3): 285-298. (in Chinese with English abstract)
    CHEN S P, ZHONG J H, SONG Q Y, 1998. A new method to determine the differential stress of dip-slip faults[J]. Journal of Geomechanics, 4(3): 36-40. (in Chinese with English abstract)
    CHEN S P, YUN J B, LIU Z N, et al., 2018. Back-thrust faults and their formation mechanism in Tangxibei structural belt, Tarim basin [J]. Science and Technology Innovation Herald, 15(3): 127-131. (in Chinese)
    COSTA E, VENDEVILLE B C, 2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement[J]. Journal of Structural Geology, 24(11): 1729-1739. doi: 10.1016/S0191-8141(01)00169-9
    DAHLEN F A, 1990. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 18: 55-99. doi: 10.1146/annurev.ea.18.050190.000415
    DAVIS D, SUPPE J, DAHLEN F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153
    DONG Y P, ZHANG G W, 1997. Some ideas and advances in studies of tectonics and dynamics of orogenic belt and foreland basin[J]. Advance in Earth Sciences, 12(1): 1-6. (in Chinese with English abstract)
    DULA W F JR, 1991. Geometric models of Listric normal faults and rollover folds[J]. AAPG Bulletin, 75(10): 1609-1625.
    GRAVELEAU F, MALAVIEILLE J, DOMINGUEZ S, 2012. Experimental modelling of orogenic wedges: a review[J]. Tectonophysics, 538-540: 1-66.
    GUO Y, TANG L J, YU T X, et al., 2016. Fault features and formation mechanism of Madong structural belt in Tanggubasi depression, Tarim basin[J]. Geotectonica et Metallogenia, 40(4): 643-653. (in Chinese with English abstract)
    GUTSCHER M A, KLAESCHEN D, FLUEH E, et al., 2001. Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia[J]. Geology, 29(5): 379-382. doi: 10.1130/0091-7613(2001)029<0379:NCWWWT>2.0.CO;2
    HAFNER W, 1951. Stress distributions and faulting[J]. GSA Bulletin, 62(4): 373-398. doi: 10.1130/0016-7606(1951)62[373:SDAF]2.0.CO;2
    HAN L J, HE Y N, ZHANG H Q, 2016. Study of rock splitting failure based on Griffith strength theory[J]. International Journal of Rock Mechanics and Mining Sciences, 83: 116-121. doi: 10.1016/j.ijrmms.2015.12.011
    HE D F, YIN C, DU S K, et al., 2004. Characteristics of structural segmentation of foreland thrust belts: A case study of the fault belts in the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 11(3): 91-101. (in Chinese with English abstract)
    HE W G, Zhou J X, Yuan K, 2018. Deformation evolution of Eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling[J]. Journal of Structural Geology, 109: 74-85. doi: 10.1016/j.jsg.2018.01.002
    HUANG J C, WAN Y G, SHENG S Z, et al., 2016. Heterogeneity of present-day stress field in the Tonga-Kermadec subduction zone and its geodynamic significance[J]. Chinese Journal of Geophysics, 59(2): 578-592. (in Chinese with English abstract)
    KENT W N, HICKMAN R G, DASGUPTA U, 2002. Application of a ramp/flat-fault model to interpretation of the Naga thrust and possible implications for petroleum exploration along the Naga thrust front[J]. AAPG Bulletin, 86(12): 2023-2045.
    LI W, CHEN S P, YUN J B, et al., 2018. Formation mechanism of steeply inclined reverse fault: take the Serikbuya fault in Tarim basin as an example[J]. Journal of Geomechanics, 24(1): 1-8. (in Chinese with English abstract)
    LI Z W, LIU S G, LUO Y H, et al., 2007. Structural style and deformational mechanism of southern Dabashan foreland fold-thrust belt in central China[J]. Geotectonica et Metallogenia, 30(3): 294-304. (in Chinese with English abstract)
    LIU X, LI S Z, SUO Y H, et al., 2010. Orogenic extrusion tectonics and exhumation of high/ultrahigh-pressure rocks: a case study from the Dabie Orogen[J]. Earth Science Frontiers, 17(4): 185-196. (in Chinese with English abstract)
    MACKAY M E, 1995. Structural variation and landward vergence at the toe of the Oregon accretionary prism[J]. Tectonics, 14(6): 1309-1320. doi: 10.1029/95TC02320
    MAITRA A, ANCZKIEWICZ A A, ANCZKIEWICZ R, et al., 2021. Thrusting sequence in the western Himalayan foreland basin during the late phase of continental collision defined by low-temperature thermochronology[J]. Tectonophysics, 821: 229145. doi: 10.1016/j.tecto.2021.229145
    MORLEY C K, 1988. Out-of-sequence thrusts[J]. Tectonics, 7(3): 539-561. doi: 10.1029/TC007i003p00539
    POBLET J, LISLE R J, 2011. Kinematic evolution and structural styles of fold-and-thrust belts[M]//POBLET J, LISLE R J. Kinematic evolution and structural styles of fold-and-thrust belts. Bath: Geological Society of London: 1-24.
    SAVAGE H M, COOKE M L, 2003. Can flat-ramp-flat fault geometry be inferred from fold shape?: A comparison of kinematic and mechanical folds[J]. Journal of Structural Geology, 25(12): 2023-2034. doi: 10.1016/S0191-8141(03)00080-4
    SCHOLZ C H, DAWERS N H, YU J Z, et al., 1993. Fault growth and fault scaling laws: preliminary results[J]. Journal of Geophysical Research: Solid Earth, 98(B12): 21951-21961. doi: 10.1029/93JB01008
    SHAN J Z, 2004. Three-dimensional physical experiments of symmetrical fold[J]. Petroleum Exploration and Development, 31(5): 8-10. (in Chinese with English abstract)
    SHERKATI S, LETOUZEY J, DE LAMOTTE D F, 2006. Central Zagros fold-thrust belt (Iran): new insights from seismic data, field observation, and sandbox modeling[J]. Tectonics, 25(4): TC4007.
    SIMPSON G, 2011. Mechanics of non-critical fold-thrust belts based on finite element models[J]. Tectonophysics, 499(1-4): 142-155. doi: 10.1016/j.tecto.2011.01.004
    SONG S H, CHEN S P, HE M Y, 2012. The investigation of normal fault under upwelling force and its critical stress state[J]. Journal of Geomechanics, 18(2): 149-157. (in Chinese with English abstract)
    SOULOUMIAC P, MAILLOT B, LEROY Y M, 2012. Bias due to side wall friction in sand box experiments[J]. Journal of Structural Geology, 35: 90-101. doi: 10.1016/j.jsg.2011.11.002
    SUSANNE J H B, 2012. A review of brittle compressional wedge models. Tectonophysics, 530-531: 1-17. doi: 10.1016/j.tecto.2011.12.018
    TIBALDI A, ALANIA V, BONALI F L, et al., 2017. Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia[J]. Journal of Structural Geology, 96: 35-53. doi: 10.1016/j.jsg.2017.01.005
    TWISS R J, MOORES E M, 1992. Structural geology[M]. New York: W. H. Freeman and Company.
    WANG K L, HU Y, 2006. Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06410. doi: 10.1029/2005JB004094
    WANG P, LIU S F, ZHENG H B, et al., 2013. Late-orogenic arcuate fold-thrust belts in northern Yangtze area: structural characteristics and basin evolution[J]. Journal of Palaeogeography, 15(6): 819-838. (in Chinese with English abstract)
    WANG R R, ZHANG Y Q, XIE G A, et al., 2011. Origin of the Dabashan foreland salient: insights from sandbox modeling[J]. Acta Geologica Sinica, 85(9): 1409-1419. (in Chinese with English abstract)
    XU S Q, FUKUYAMA E, BEN-ZION Y, et al., 2015. Dynamic rupture activation of backthrust fault branching[J]. Tectonophysics, 644-645: 161-183. doi: 10.1016/j.tecto.2015.01.011
    YIN Z M, RANALLI G, 1992. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems[J]. Journal of Structural Geology, 14(2): 237-244. doi: 10.1016/0191-8141(92)90060-A
    ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 159-177. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=7104451158
    陈柏林, 2020. 断裂构造发育过程与控矿构造形成演化: 以邹家山铀矿床为例[J]. 地质力学学报, 26(3): 285-298. doi: 10.12090/j.issn.1006-6616.2020.26.03.027
    陈书平, 钟建华, 宋全友, 1998. 一种求解倾斜滑动断层差应力的方法[J]. 地质力学学报, 4(3): 36-40. https://journal.geomech.ac.cn/article/id/74bf0aa7-2cf8-44b2-b6e8-7cf67b37bda5
    陈书平, 云金表, 刘志娜, 等, 2018. 塔里木盆地塘西北反冲断层及其形成机制[J]. 科技创新导报, 15(3): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201803077.htm
    董云鹏, 张国伟, 1997. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 12(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ701.000.htm
    郭颖, 汤良杰, 余腾孝, 等, 2016. 塔里木盆地塘古巴斯坳陷玛东构造带断裂特征及成因探讨[J]. 大地构造与成矿学, 40(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604002.htm
    何登发, 尹成, 杜社宽, 等, 2004. 前陆冲断带构造分段特征: 以准噶尔盆地西北缘断裂构造带为例[J]. 地学前缘, 11(3): 91-101. doi: 10.3321/j.issn:1005-2321.2004.03.011
    黄骥超, 万永革, 盛书中, 等, 2016. 汤加-克马德克俯冲带现今非均匀应力场特征及其动力学意义[J]. 地球物理学报, 59(2): 578-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602017.htm
    李伟, 陈书平, 云金表, 等, 2018. 陡倾逆断层形成机制: 以塔里木盆地色力布亚断层为例[J]. 地质力学学报, 24(1): 1-8. doi: 10.12090/j.issn.1006-6616.2018.24.01.001
    李智武, 刘树根, 罗玉宏, 等, 2006. 南大巴山前陆冲断带构造样式及变形机制分析[J]. 大地构造与成矿学, 30(3): 294-304. doi: 10.3969/j.issn.1001-1552.2006.03.004
    刘鑫, 李三忠, 索艳慧, 等, 2010. 造山带挤出构造与高压-超高压岩石剥露机制: 以大别山为例[J]. 地学前缘, 17(4): 185-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201004022.htm
    单家增, 2004. 对称褶皱形成的三维构造物理模拟实验[J]. 石油勘探与开发, 31(5): 8-10. doi: 10.3321/j.issn:1000-0747.2004.05.002
    宋随宏, 陈书平, 何明宇, 2012. 上拱力背景下正断裂剖面形态及极限应力状态研究[J]. 地质力学学报, 18(2): 149-157. doi: 10.3969/j.issn.1006-6616.2012.02.005
    王平, 刘少峰, 郑洪波, 等, 2013. 扬子北缘晚造山阶段弧形构造特征与盆地演化[J]. 古地理学报, 15(6): 819-838. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201306009.htm
    王瑞瑞, 张岳桥, 解国爱, 等, 2011. 大巴山前陆弧形构造的成因: 来自砂箱实验的认识[J]. 地质学报, 85(9): 1409-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109003.htm
    张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报, 27(2): 159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article views (353) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return