LIAO Xin-wu, LIU Qi, LI Chao, et al., 2015. DISTRIBUTION OF THE PRESENT STRESS IN LOW PERMEABILITY OILFIELD OF BOZHONG 25-1 AND ITS EFFECT ON DEVELOPMENT. Journal of Geomechanics, 21 (1): 30-37.
Citation: CHEN Yunfei, ZHANG Peng, HUANG Bolin, et al., 2022. Failure process and long-term stability analysis of typical unstable rock mass in the Three Gorges Reservoir area considering rock mass deterioration. Journal of Geomechanics, 28 (6): 938-947. DOI: 10.12090/j.issn.1006-6616.20222821

Failure process and long-term stability analysis of typical unstable rock mass in the Three Gorges Reservoir area considering rock mass deterioration

doi: 10.12090/j.issn.1006-6616.20222821
Funds:

the National Natural Science Foundation of China 42077234

the Research Project of Chongqing Geological Disaster Prevention Center KJ-2021047

More Information
  • Since the Three Gorges Reservoir went into service, the rock mass in the hydro-fluctuation belt of the bank slope has obviously deteriorated, which accelerates the instability of the bank slope. The potential debris avalanche threatens the safety of the Yangtze River waterway. The Banbiyan unstable rock mass in the Three Gorges Reservoir area was studied using the shear strength reduction method to analyze the failure process and long-term stability of the unstable rock mass under rock deterioration. The results show that the Banbiyan unstable rock mass is stable under natural working conditions. Under reservoir water and rock mass deterioration, the tensile stress is concentrated at the central section. The tensile cracks gradually penetrate up and down, extending to the prominent controlling cracks at the top and the bottom base fracture zone. Slip-shear failure may occur. Under the condition of reservoir water combined with rock mass deterioration and heavy rainfall, the strength of the rock mass decreases by 30% after about 40 hydrological cycles, and the stability coefficient of the Banbiyan unstable rock mass decreased to about 1.14, which is an under-stable state. It is suggested to carry out engineering prevention and control to improve the stability of dangerous rock mass to ensure the safety of the waterway. The research results can provide a scientific and reasonable basis for disaster prevention and mitigation of the Banbiyan and similar unstable rock masses in the Three Gorges Reservoir area.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • 岩石圈7类主要造岩矿物(方解石、石英、长石、黑云母、角闪石、辉石和橄榄石)的塑性变形行为是了解地壳到地幔各层次结构、流变学特征及动力学演化的重要途径[1]。作为了解上地幔力学与流变学表现的重要依据之一,橄榄石塑性变形行为研究具有重要意义,它是窥探上地幔动力学过程的窗口。橄榄石显微构造记录了其所经历的变形变质过程、塑性流动等信息,可以用来估算岩石变形过程中的差异应力、应变速率、温度、压力等流变学参数,定性探讨上地幔变形环境,并总结岩石样品形成与发展过程中的变形机制和变形历史[2]

    前人对天然橄榄岩和实验变形样品的研究揭示,橄榄石在塑性流变过程中形成的结晶学优选方位(Lattice-preferred orientation,LPO)与含水量、差异应力、温度、压力、部分熔融等变形环境有着密切的联系。不同的变形环境下,橄榄石可发育5种组构类型(见图 1),即A型(010)[100]滑移系[3]、B型(010)[001]滑移系[4]、C型(100)[001]滑移系[4]、D型(0kl)[100]滑移系[5~6]和E型(001)[100]滑移系[7]。高压变形实验和天然样品观测结果显示,橄榄石在地幔浅部环境下最易发育A型或E型组构,地幔深部高压环境下主要发育C型组构[8~10],大洋俯冲带发育B型组构[11](见表 1)。因此可以根据橄榄石组构特征来推断岩石形成时大地构造环境,探讨其变形环境条件。

    图  1  典型橄榄石组构及其与滑移系和应力、含水量关系(据Karato等[3],略有修改)
    Figure  1.  Typical olivine fabric and the relationship with dominant slip systems, stress and water content
    表  1  五种LPO类型特征及其形成环境
    Table  1.  Features and formation conditions of five LPO-types
    下载: 导出CSV 
    | 显示表格

    本文主要通过电子背散射衍射(Electron backscatter diffraction,简称EBSD)技术对祁连山玉石沟方辉橄榄岩中橄榄石进行显微组构测定,并结合其岩石学特征和位错特征,定性分析和校验玉石沟橄榄岩形成时大地构造环境,探讨其变形机制和变形历史。

    本文样品采自北祁连俯冲-碰撞杂岩带中部的玉石沟。北祁连构造带位于青海省北部和甘肃省西南部,处于中朝—塔里木地台的西南边缘,是秦祁昆褶皱系中段祁连褶皱系的一部分[12]。北部为阿拉善地块(中朝地块的一部分),南部依次为中祁连、南祁连,并以柴北缘边界断裂与柴达木地块相隔,西北部以阿尔金走滑断层与塔里木地块相接(见图 2)。

    图  2  祁连山—柴北缘地区地质简图
    1—板岩夹灰岩、灰岩、板岩及中基性火山岩;2—辉长岩;3—滑石菱镁片岩等;4—纯橄榄岩;5—方辉橄榄岩;6—蛇纹岩;7—白云岩、石英片岩;8—UHP terrane;9—北祁连缝合带;10—断裂;11—构造边界;12—取样点
    Figure  2.  Geological sketch map of Qilianshan to northern margin of Qaidam regions

    北祁连造山带可分为东西两段,蛇绿岩主要分布在东段[13]。侯青叶等[14]对北祁连蛇绿岩单元中玄武岩微量元素研究表明,该玄武岩具有印度洋型MORB特征;宋述光等[15]通过流变学和温压条件计算,确定该蛇绿岩底部橄榄岩是大洋岩石圈之下软流圈上涌的产物。蛇绿岩套的层序与大洋岩石圈剖面可以逐层对比,可以把蛇绿岩看作是大洋岩石圈的代表。大洋岩石圈是在洋中脊发展过程中形成的,主要由基性、超基性岩构成,其特点是地壳较薄而致密。地震探测表明,洋壳不是由单一的玄武岩构成,而是可以明显地分为几层:层① 由半固结和固结沉积物组成;层② 由拉斑玄武岩和部分沉积岩组成,其下部可出现辉绿岩岩床和岩墙;层③ 主要由辉长岩等镁铁质火成岩及其变质产物组成,一般认为由辉长岩和角闪岩组成;层③ 之下便是超镁铁质岩石组成的上地幔(见图 3)。

    图  3  洋壳的组合结构[16]
    1—沉积物;2—拉斑玄武岩;3—辉长岩;5—上地幔(橄榄岩)
    Figure  3.  Composition and structure of oceanic crust

    玉石沟橄榄岩主要由南岩体、中岩体、北岩体和小岩体组成,其岩性主要是方辉橄榄岩和纯橄岩以及少量的含辉纯橄岩(见图 4)。其中南岩体、北岩体和小岩体呈不规则细条状,均强烈蛇纹石化;中岩体呈透镜状,主要由方辉橄榄岩(约92%)组成,其边缘为蛇纹石化的纯橄榄岩,中心部位的方辉橄榄岩较新鲜,并被晚期的纯橄榄岩岩脉穿插。

    图  4  玉石沟超基性岩体A-B地质剖面示意图(剖面位置见图 1
    1—北岩体(方辉橄榄岩);2—中岩体(方辉橄榄岩);3—小岩体(纯橄榄岩);4—南岩体(纯橄榄岩)
    Figure  4.  Schematic cross section of ultrabasic rock from Yushigou

    本文选取的实验样品为蛇纹石化程度较低的方辉橄榄岩,手标本上可观察到明显的面理和线理。为了方便进行实验分析,将岩石样品磨制成厚度约为0.03 mm的3组定向薄片(a片垂直于面理且垂直于线理;b片平行于线理且垂直于面理;c片平行于面理且平行于线理),并进行抛光,用于光学显微镜下岩相学观察和岩石组构测定。

    样品中橄榄石的晶格优选方位采用了电子背散射衍射技术,利用中国地质大学(北京)地质过程与矿产资源国家重点实验室S-3400N扫描电子显微镜的EBSD组件完成。工作条件:加速电压为15 kV,工作距离为18.4 mm,样品倾斜70°。测量采用人机交互模式,手动控制分析精度。晶格优选方位极密统计由Channel 5软件完成,数据的表达利用上半球投影的结构平面图,面理平行于XY面,线理平行于X轴。实验中,3个不同方向的橄榄石样品分别收集了159(a片)、175(b片)和213(c片)个颗粒的晶体取向数据。

    位错构造研究是揭示地幔变形环境、变形机制和变形过程的有效途径,本文采用透射电镜观察方法研究橄榄石的位错特征。薄片在显微镜下观察后送至中国地质科学院进行离子减薄至穿孔为止。透射电镜(Transmission electron microscopy,TEM)观察在日立H-8100型电镜上进行,加速电压200 kV;该仪器配备的X-射线能谱仪(X-ray energy dispersive spectrometry,EDS)为PhilipEDAX-4型,其探测器能鉴定从硼(原子序数为5)到铀(原子序数为92)的所有元素,能量分辨率高。

    方辉橄榄岩呈灰绿色,颜色均匀,块状构造,整体呈半自形—他形,中—粗粒结构,残斑结构(见图 5a),发育2组显微破裂(见图 5b);橄榄石与辉石颗粒之间呈直线、曲线或波浪状接触,这种结构是地幔岩中常见的原始结构;主要由橄榄石(Ol,80%~85%)、斜方辉石(Opx,15%~20%)及少量铬尖晶石(Sp,<1%)、蛇纹石(Serp,<1%)组成。橄榄石为粒状半自形结构,粒径变化较大,最大可达6 mm,最小粒径小于0.1 mm,主要粒径集中在0.5~2.0 mm之间。橄榄石普遍破碎严重,一些橄榄石以120°汇聚为三联点,边界平直,某些颗粒形成初级核幔结构,发育亚晶粒、带状消光、扭折、波状消光现象(见图 5c),前人计算该地区橄榄石牌号Fo介于89~93,属镁橄榄石[17]。斜方辉石,一级干涉色,晶体呈半自形、他形,可见一组完全解理。与橄榄石相比,斜方辉石显微破裂较轻微,发育有扭折、变形纹、出溶叶理现象(见图 5d—5f),并常见包橄结构。铬尖晶石单偏光下不透光或呈棕红色,等轴或不规则粒状,全消光(见图 5g)。

    图  5  玉石沟橄榄岩的显微图像
    a—方辉橄榄岩中残斑结构;b—橄榄石中剪/张破裂;c—橄榄石中消光带、亚晶粒;d—斜方辉石中扭折带;e—斜方辉石中出溶叶理;f—斜方辉石中出溶现象;g—方辉橄榄岩中铬尖晶石
    Figure  5.  Photomicrograph of peridotites from Yushigou

    在3个不同方向的薄片偏光镜下图像中可以看到,c片和b片中发育近于平行的2组剪切破裂,且均近乎平行于X轴,a片中可见呈一定角度相交的共轭剪切破裂j1和j2,以及一组张破裂(见图 5b)。结合里德尔剪切(Riedel Shear)模式图(见图 6),可得样品中发育的2组羽状剪节理J1和J2,其中J2为透入性剪裂面,J1为非透入性剪裂面。MN为主剪裂面,是由羽状微剪裂面J1组合而成。J1组微剪裂面与主剪切面MN夹角为α,约为9°—13°,J2组微剪裂面与MN夹角为γ,约为68°,两者锐夹角均指示本盘错动方向,由此推断橄榄岩样品受到过垂直于X轴的剪切作用,且表现为脆性变形。

    图  6  橄榄岩共轭剪裂面及其受力模式图(里德尔剪切)
    Figure  6.  The conjugate shear fracture surfaces and their force mode in peridotite (Riedel Shear)

    从3个不同方向的方辉橄榄岩样品所得到3组橄榄石颗粒晶体取向极密图(见图 7)可以看出,橄榄石具有明显的晶格优选定向(Lattice-preferred orientation,LPO)。4个样品中橄榄石[100]和[010]轴显示很强的晶格优选方位,[001]和[111]轴优选方位较弱。其中,[100]轴在平行于X轴方向上形成较强点极密,即[100]轴平行于线理(X轴);[010]轴在垂直于面理面(XY面)方向上的近Z轴处形成点极密,即[010]轴近垂直于面理(XY面)、平行于Z轴,[010]轴也形成一些次极密,近似形成一个垂直于面理(XY面)和线理(X轴)的大环带;[001]轴形成了多个极密,亦近似构成一个垂直于面理(XY面)和线理(X轴)的大环带;[111]轴形成多个极密,极密近乎沿着面理方向分布,且形成位于X轴两端、围绕X轴的2个小环带。

    图  7  方辉橄榄岩中橄榄石晶格优先定向
    Figure  7.  Lattice-preferred orientation of olivine in harzburgite

    在不同的温度、压力、应变速率和含水量条件下,橄榄石分别对应着不同的组构[18]。Carter等[19]研究发现温度和应变速率是控制橄榄石位错滑移系的主要因素,随着温度升高和应变速率降低,橄榄石的主控滑移系从(110)[001](<900 ℃)转变成为(0k1)[100](900~1200 ℃),然后变成(010)[100](>1200 ℃)。因此,在上地幔的变形环境下橄榄石发育(010)[100]滑移系,这与天然橄榄岩中普遍发育(010)[100]滑移系一致。近年来高温高压变形实验已经定义了5种橄榄石组构类型,而橄榄石中最常见的以(010)[100]为滑移系的A型组构形成于低应力和低含水量条件下[20]。样品橄榄岩中橄榄石组构的测量结果显示,[100]轴平行于线理方向(X轴),[010]轴最强极密垂直于面理(XY面),即(010) 面平行于面理,经与前人研究结果对比分析,该样品中橄榄石发育原生A型组构,表明祁连山玉石沟方辉橄榄岩形成于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的地幔浅部环境条件下(见图 1)。

    除[100]、[010]轴表现很强的点极密外,[010]轴另外发育有一些次极密,[001]和[111]轴均发育多个极密,且[010]、[001]和[111]等3个轴均形成接近垂直于[110](X轴)的环带。通过绘制橄榄石晶体在岩石样品中的简易定向图(见图 8)发现,这3个晶轴可能曾沿垂直于[110](X轴)的面发生旋转,因此形成垂直于[110](X轴)的环带,推测是由于岩石样品受到垂直于X轴的剪切而引起的橄榄石晶体绕[100](X轴)旋转或橄榄石发生轻微塑性变形而改造原生A型组构并形成次生组构。根据极密图中[010]、[001]轴形成的环带,对比前人研究结果,揭示样品中橄榄石发育D型次生组构,即(0kl)[100]滑移系,且形成于高温(900~1200 ℃)、高应力(400~500 MPa)、低应变速率、贫水的环境条件下。

    图  8  橄榄石晶体在样品中简易定向图
    ①—镁橄榄石矿物晶体形态及光率体主轴与结晶轴关系示意图;②—橄榄石晶体简易图;③—橄榄石晶体在样品中的定向;④—岩石样品定向薄片磨制
    Figure  8.  Simple directed graph of olivine crystals in the sample

    透射电镜下观察到样品大部分区域未出现位错,只有局部可见少量的刃型位错聚集,密度较低。所有位错均为直线型,长度较短,呈定向排列(见图 9)。

    图  9  透射电镜下橄榄岩位错组态及晶体弯曲
    Figure  9.  TEM images of dislocation configuration and crystal bend in olivine

    亚晶粒的形成有2种情况,一种是刃型位错攀移,滑动重排形成位错壁,在晶体内分割出若干亚晶粒;另一种是以位错扭折条带为边界形成亚晶粒。透射电镜下样品中呈直线型、定向排列的刃型位错构成了亚晶界,使相邻亚晶粒之间在正交偏光下显示出不同消光位,将晶体分割成若干亚晶粒。亚晶粒本身经历晶格回复使内部位错很少,位错集中在亚晶界上[21]

    消光带和亚晶粒并没有本质的区别,都是由位错壁分割的不同消光区,只是消光带为拉长状的亚晶粒。亚晶粒构造是高温稳态流动显微构造的重要标志,是动态恢复作用的结果,它指示了高温位错蠕变[22]。亚晶粒、消光带构造在玉石沟橄榄岩样品中比较普遍(见图 5),并且亚晶界、消光带边界平直、连续,并未因橄榄岩显微剪、张裂隙而发生明显错断,表明橄榄岩显微破裂和亚晶界、消光带属同一时期的构造运动中形成。

    当晶体受力发生弹性弯曲时,晶体中的应力感生位错发生攀移、重排形成位错壁,从而使晶粒内相互间具有很小晶体学位向差(2°—3°)的小晶块,即亚晶粒(见图 9),表现塑性变形。因此,亚晶粒可以代表晶体在应力作用下发生了微折曲,并可以通过镜下薄片中亚晶界的排布统计,进行应力初步分析探讨。

    对a片中亚晶界的排布统计得到的应力分析结果与前述显微破裂的应力分析结果相同(见图 10),橄榄石晶体在σ1压应力作用下发生弯曲以及位错重排形成位错壁,这也进一步证明样品中亚晶粒、消光带和显微破裂属同期形成。

    图  10  应力作用下的橄榄石晶体弯曲
    Figure  10.  Olivine crystals bend under compressive stress

    对玉石沟橄榄岩中橄榄石组构进行测定,并结合镜下显微构造观察及TEM位错观察结果,发现样品中橄榄石发育明显的A型原生组构,玉石沟橄榄岩具有明显的残斑结构,综合分析玉石沟橄榄岩来源于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的上地幔环境。

    玉石沟橄榄岩中发育有2组共轭剪节理,橄榄石普遍发育显微破裂,应力应变分析显示样品曾受到剪切作用而发生脆性变形。另外样品中普遍发育亚晶粒、扭折带显微构造,透射电镜观察超微构造发现一些呈直线型定向排列的自由位错,表现为韧性变形。分析认为亚晶粒、扭折带、消光带和显微破裂指示相同的应力场,属同期形成,岩石主要表现为脆-韧性变形,此阶段变形一定程度上影响了橄榄岩中橄榄石原生A型组构,使橄榄石晶体[010]、[001]轴在极密图中形成环带而表现为D型次生组构。这表明在玉石沟橄榄岩发育过程中,该地区发生过强烈的构造运动。

    变形机制分析发现,玉石沟橄榄岩中发育有以显微破裂为主的脆性变形和以位错蠕变为主导的塑性变形,并表现有明显的A型原生组构及D型次生组构,结合前人对祁连山缝合带构造演化的研究,本文将玉石沟橄榄岩变形过程分为上地幔演化和造山运动时脆-韧性变形2个阶段:上地幔演化阶段发育明显的A型原生组构;造山运动时脆-韧性变形阶段橄榄石变形主控因素为动态恢复作用,普遍发育亚晶粒、消光带和扭折显微构造等相关组构,并与透射电镜下所观察到的位错排对应,同时还发育以微破裂为主的一套脆性变形组构,表现出2组共轭剪破裂和另一组张性破裂等现象,此阶段变形叠加和改造了A型原生组构。

    蛇绿岩套中橄榄岩形成及演化过程复杂,其显/超微构造往往反映了多期构造事件,为能够更详细地研究其变形机制、变形历史,进而深入研究其在大地构造运动过程及应力应变分析中的指示和校验意义,还需要开展以下工作:

    ① 系统制作透射电镜样品,进一步详细研究其位错组态发育及分布等情况,分析其差应力等流变参数。

    ② 在野外系统采集定向的祁连山玉石沟地幔橄榄岩样品,测定其岩组类型,系统地进行应力应变分析,详细厘定其变形期次,结合前人研究进展,总结后期构造运动对原生构造的影响,初步探讨祁连山玉石沟地区大地构造运动情况。

    致谢: 感谢中国地质大学(北京)透射电镜实验室韩勇老师、岩组实验室张若愚硕士以及中国地质科学院地质研究所陈方远老师在样品分析过程中的指导。
  • DENG C J, WANG K W, YUAN Q S, et al., 2015. Stability of reservoir slope under repetitive variation of reservoir water level[J]. Journal of Yangtze River Scientific Research Institute, 32(4): 96-100. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2015.04.019
    DENG H F, FANG J C, LI J L, et al., 2021. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading[J]. Rock and Soil Mechanics, 42(2): 343-351. (in Chinese with English abstract)
    DOCHEZ S, LAOUAFA F, FRANCK C, et al., 2014. Multi-scale analysis of water alteration on the rock slope stability framework[J]. Acta Geophysical, 62(5): 1025-1048. doi: 10.2478/s11600-014-0232-7
    FU Y, 2010. Study on water-rock interaction with the cyclic drying-wetting effect on rock[D]. Chongqing: Chongqing University. (in Chinese with English abstract)
    HU L Y, ZHANG P, HUANG B L, 2022. Long-term deformation and failure mechanism of dangerous rock mass in water-level-fluctuation zone of Three Gorges Reservoir area: a case study of Guanmuling[J/OL]. Journal of Engineering Geology, 1-11. [2022-6-19] https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ20221009000&uniplatform=NZKPT&v=9u6_tlouPxa4lAU2YcVmGRdoK6VK6205M_F5Ctg4vW0dyQCGTaZWAUVleKzwiGou. (in Chinese with English abstract)
    HU M J, ZHANG Z H, YIN Y P, 2021. Study on strength weakening of carbonate rocks with water level fluctuating in Wuxia of three gorges reservoir area[J/OL]. Journal of Engineering Geology, 1-14. [2022-6-19] https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ20210717009. (in Chinese with English abstract)
    HU Q Z, ZHOU H, XIAO B L, et al., 2010. Analysis of stability of rock bedded slope under hydraulic pressure[J]. Rock and Soil Mechanics, 31(11): 3594-3598. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.11.039
    HUANG B L, YIN Y P, ZHANG Z H, et al., 2019. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1786-1796. (in Chinese with English abstract)
    HUANG B L, YIN Y P, LI B, et al., 2020. Rock mass deterioration and its catastrophic effect of karst bank slope in the Three Gorges Project Reservoir area[J]. Hydrogeology and Engineering Geology, 47(4): 51-61. (in Chinese with English abstract)
    LIU C H, XU J, CAO C L, et al., 2005. Analysis of bedding-slip failure mechanism of rock slope due to hydraulic drive[J]. Chinese Journal of Rock Mechanics and Engineering, 24(19): 3529-3533. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.19.021
    LIU K Q, LIU H Y, QI X B, 2020. Numerical study on long-term stability of soil-rock mixture slope using strength reduction technique[J]. Journal of Engineering Geology, 28(2): 327-334. (in Chinese with English abstract)
    LIU X R, FU Y, WANG Y X, et al., 2009. Stability of reservoir bank slope under water-rock interaction[J]. Rock and Soil Mechanics, 30(3): 613-616, 627. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.03.006
    LUO Y F, 2015. The evaluation of long-term stability at right dam abutmet slope of Miaowei hydro power station in Lancang river[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    MENG W C, 2021. Effect of dry-wet cycle on expansive force and shear strength of expansive soil[J]. Railway Investigation and Surveying, 47(6): 55-60. (in Chinese with English abstract)
    REN Y, JIANG X Y, WU C H, et al., 2022. Experimental study on fissure properties and soil-water response of red clay slope under dry-wet cycle[J]. Water Resources and Hydropower Engineering, 53(4): 172-179. (in Chinese with English abstract)
    TANG L S, ZHANG P C, WANG S J, 2002a. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 21(4): 526-531. (in Chinese with English abstract)
    TANG L S, ZHANG P C, WANG S J, 2002b. Testing study on effects of chemical action of aqueous solution on crack propagation in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 21(6): 822-827. (in Chinese with English abstract)
    Three Gorges Reservoir Area Geological Disaster Prevention and Control Work Headquarters, 2014. Technical requirements for the geological exploration in the Three Gorges Reservoir area for geological disaster prevention and control[M]. Wuhan: China University of Geosciences Press: 0-119. (in Chinese)
    WANG R B, XU W Y, MENG Y D, et al., 2014. Numerical analysis of long-term stability of left bank abutment high slope at Jinping I hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1): 3105-3113. (in Chinese with English abstract)
    YAN G Q, HUANG B L, WANG X, et al., 2021. Sliding-bending failure mechanism and evaluation of bedding limestone bank slope based on rock mass deterioration in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 29(3): 668-679. (in Chinese with English abstract)
    YAN J K, HUANG J B, LI H L, et al., 2020. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics, 26(4): 481-491. (in Chinese with English abstract)
    YANG H, TANG M G, XU Q, et al., 2020. Deterioration characteristic test and quality evaluation of bank slope rock mass in hydro-fluctuation belt of Three Gorges Reservoir Area[J]. Journal of Hydraulic Engineering, 51(11): 1360-1371. (in Chinese with English abstract)
    YIN Y P, HUANG B L, WANG W P, et al., 2016. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 577-595. doi: 10.1016/j.jrmge.2016.08.001
    ZHANG W G, GAO X CH, GU D M, et al., 2021. Influence of cyclic wetting-drying on the shear strength of limestone with a soft interlayer[J]. Rock Mechanics and Rock Engineering, 54(8): 4369-4378. doi: 10.1007/s00603-021-02502-2
    ZHANG J Y, WAN L P, PAN H Y, et al., 2017. Long-term stability of bank slope considering characteristics of water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 39(10): 1851-1858. (in Chinese with English abstract) doi: 10.11779/CJGE201710013
    ZHANG Z H, DU C L, YU S, et al., 2018. Stability analysis and design of control works on Jianchuandong dangerous rock mass in Wuxia Gorge, the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 29(2): 48-54. (in Chinese with English abstract)
    ZHOU J F, 2021. Study on prediction model for rock immersion time scale and deterioration under effect of acidic solution[J] Water Resources and Hydropower Engineering, 52(8): 162-171. (in Chinese with English abstract)
    邓成进, 王孔伟, 袁秋霜, 等, 2015. 库水长期升降作用下库岸边坡稳定性研究[J]. 长江科学院院报, 32(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201504022.htm
    邓华锋, 方景成, 李建林, 等, 2021. 水-岩和循环加卸载次序作用下砂岩动力特性损伤演化规律[J]. 岩土力学, 42(2): 343-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102006.htm
    傅晏, 2010. 干湿循环水岩相互作用下岩石劣化机理研究[D]. 重庆: 重庆大学.
    胡刘洋, 张鹏, 黄波林, 2022. 三峡库区消落带岩体劣化下危岩体长期变形破坏机理: 以冠木岭为例[J/OL]. 工程地质学报, 1-11. [2022-06-14]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ20221009000&uniplatform=NZKPT&v=9u6_tlouPxa4lAU2YcVmGRdoK6VK6205M_F5Ctg4vW0dyQCGTaZWAUVleKzwiGou.
    胡明军, 张枝华, 殷跃平, 等, 2021. 三峡库区巫峡段消落带碳酸盐岩强度弱化研究[J/OL]. 工程地质学报, [2022-06-14]. 1-14. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GCDZ20210717009.
    胡其志, 周辉, 肖本林, 等, 2010. 水力作用下顺层岩质边坡稳定性分析[J]. 岩土力学, 31(11): 3594-3598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201011040.htm
    黄波林, 殷跃平, 张枝华, 等, 2019. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 38(9): 1786-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm
    黄波林, 殷跃平, 李滨, 等, 2020. 三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J]. 水文地质工程地质, 47(4): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004007.htm
    刘才华, 徐健, 曹传林, 等, 2005. 岩质边坡水力驱动型顺层滑移破坏机制分析[J]. 岩石力学与工程学报, 24(19): 3529-3533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519020.htm
    刘康琦, 刘红岩, 祁小博, 2020. 基于强度折减法的土石混合体边坡长期稳定性研究[J]. 工程地质学报, 28(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002013.htm
    刘新荣, 傅晏, 王永新, 等, 2009. 水-岩相互作用对库岸边坡稳定的影响研究[J]. 岩土力学, 30(3): 613-616, 627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903008.htm
    罗雲丰, 2015. 澜沧江苗尾水电站右岸坝肩边坡长期稳定性评价[D]. 成都: 成都理工大学.
    孟伟超, 2021. 膨胀土干湿循环对膨胀力和抗剪强度的影响[J]. 铁道勘察, 47(6): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202106011.htm
    任意, 江兴元, 吴长虹, 等, 2022. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究[J]. 水利水电技术(中英文), 53(4): 172-179. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202204016.htm
    三峡库区地质灾害防治工作指挥部, 2014. 三峡库区地质灾害防治工程地质勘查技术要求[M]. 武汉: 中国地质大学出版社: 0-119.
    汤连生, 张鹏程, 王思敬, 2002a. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 21(4): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200204014.htm
    汤连生, 张鹏程, 王思敬, 2002b. 水-岩化学作用之岩石断裂力学效应的试验研究[J]. 岩石力学与工程学报, 21(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206014.htm
    王如宾, 徐卫亚, 孟永东, 等, 2014. 锦屏一级水电站左岸坝肩高边坡长期稳定性数值分析[J]. 岩石力学与工程学报, 33(S1): 3105-3113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1072.htm
    闫国强, 黄波林, 王勋, 等, 2021. 基于岩体劣化顺层灰岩岸坡滑移-弯曲失稳机理和评价[J]. 工程地质学报, 29(3): 668-679. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103010.htm
    闫金凯, 黄俊宝, 李海龙, 等, 2020. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报, 26(4): 481-491. doi: 10.12090/j.issn.1006-6616.2020.26.04.041
    杨何, 汤明高, 许强, 等, 2020. 三峡库区消落带岸坡岩体劣化特性测试及质量评价[J]. 水利学报, 51(11): 1360-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202011006.htm
    张景昱, 宛良朋, 潘洪月, 等, 2017. 考虑水-岩作用特点的典型岸坡长期稳定性分析[J]. 岩土工程学报, 39(10): 1851-1858. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710019.htm
    张枝华, 杜春兰, 余姝, 等, 2018. 三峡库区巫峡箭穿洞危岩体稳定性分析及防治工程设计[J]. 中国地质灾害与防治学报, 29(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201802008.htm
    周济芳, 2021. 酸性溶液作用下岩石浸泡时间尺度及劣化预测模型研究[J]. 水利水电技术(中英文), 52(8): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202108016.htm
  • Relative Articles

    SHI Xuelei, HAN Xudong, YANG Xiuyuan, SUN Xiujuan, LI Yanyan. 2023: Factors inducing the Xigouwan landslide in the Three Gorges Reservoir area and the influence of antecedent precipitation. Journal of Geomechanics, 29(2): 253-263. doi: 10.12090/j.issn.1006-6616.2022049
    2022: Inside Cover. Journal of Geomechanics, 28(3): 316-316.
    CUI Yingchun, MA Lijie, LIU Chenguang, WANG Qingchao, LÄUFER Andreas. 2021: Petrogenesis of the Hughes Bluff granitic pluton in the Transantarctic Mountains, Antarctica. Journal of Geomechanics, 27(5): 783-795. doi: 10.12090/j.issn.1006-6616.2021.27.05.064
    ZHAO Hailin, HUANG Bolin, ZHANG Quan, ZHENG Jiahao, FENG Wanli, CHEN Xiaoting. 2020: Physical experiment and numerical model analysis of surge caused by collapse of columnar dangerous rock mass. Journal of Geomechanics, 26(4): 500-509. doi: 10.12090/j.issn.1006-6616.2020.26.04.043
    ZHENG Jiahao, HUANG Bolin, ZHANG Quan, ZHAO Hailin, FENG Wanli, WANG Jian, CHEN Xiaoting. 2020: Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges reservoir area. Journal of Geomechanics, 26(4): 533-543. doi: 10.12090/j.issn.1006-6616.2020.26.04.046
    TAN Weijia, DAI Zhenwei, CHEN Yunxia, . 2017: STUDY ON CONTROL MEASURES OF COUNTER-TILT ROCK LANDSLIDE IN THREE GORGES RESERVOIR REGION. Journal of Geomechanics, 23(1): 78-87.
    FENG Zhen, LI Bin, ZHAO Chao-ying, WANG Li, WANG Lei. 2016: GEOLOGICAL HAZARDS MONITORING AND APPLICATION IN MOUNTAINOUS TOWN OF THREE GORGES RESERVOIR. Journal of Geomechanics, 22(3): 685-694.
    HE Kai, CHEN Chun-li, FENG Zhen, LI Bin, Pan Li-bin. 2016: A REVIEW ON THE COLLAPSE HAZARDS OF TOWER-SHAPED ROCK. Journal of Geomechanics, 22(3): 714-724.
    WANG Wen-pei, LI Bin, HUANG Bo-lin, ZHANG Nan, HAN Xiao. 2016: STABILITY ANALYSIS OF SUB-HORIZONTAL THICK-BEDDED SLOPE IN THREE GORGES RESERVIOR AREA: A CASE STUDY OF JIANCHUANDONG DANGEROUS ROCKMASS IN WUSHAN, CHONGQING. Journal of Geomechanics, 22(3): 725-732.
    XU Ke, DAI Jun-sheng, FU Xiao-long, REN Qi-qiang, LIU Cong-ning, ZHAO Yun. 2015: DISCUSSION ON THE FRACTURE OF LAYERED ROCK MASS BASED ON THE FINITE ELEMENT METHOD. Journal of Geomechanics, 21(3): 330-340.
    YANG Dy-yuan, LI Xu-sheng, FENG Li-mei, JIANG Hong-tao. 2002: PILOT STUDY ON THE COLLAPSES AND LANDSLIDES OF THE THREE GROGE RESERVIOR OF THE CHANGJIANG RIVER. Journal of Geomechanics, 8(2): 173-178.
    WANG Xue-bin, PAN Yi-shan, DING Xiu-li, SHENG Qian. 2001: STUDY ON EFFECT OF PORE PRESSURE ON STRAIN LOCALIZATION OF ROCK AND DIGITAL SIMULATION. Journal of Geomechanics, 7(2): 139-143.
    WU Man-lu, LIAO Chun-ting. 2000: STRESS MEASUREMENTS AND STUDY OF STABILITY OF THE DAMAO TUNNEL. Journal of Geomechanics, 6(2): 71-76.
    QIAO He, TANG Chun'an, LI Xiao, CHEN Rongde. 1999: NEW NUMERICAL SIMULATION METHOD OF ROCK FAILURE PROCESS UNDER ROCKBURST AND EXCAVATING. Journal of Geomechanics, 5(1): 62-66.
    XU Ruichun, XU Tongha. 1999: STUDY OF STABILITY OF YANGJIACAO SLIDE MASS IN THE GEHEYAN RESERVOIR ON QINGJIANG RIVER. Journal of Geomechanics, 5(2): 2-10.
    ZHANG Jiagui. 1999: RESEARCH ON WANGJIAWUCHANG LANDSLIDE IN THE NEWLY BUILT WUSHAN COUNTY,THE THREE-GORGES RESERVOIR REGION. Journal of Geomechanics, 5(2): 22-29.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 67.7 %META: 67.7 %PDF: 8.9 %PDF: 8.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %China: 0.1 %China: 0.1 %三门峡: 0.4 %三门峡: 0.4 %上海: 0.5 %上海: 0.5 %东莞: 0.5 %东莞: 0.5 %中卫: 0.5 %中卫: 0.5 %临汾: 0.1 %临汾: 0.1 %伊瓦格: 0.4 %伊瓦格: 0.4 %佛山: 0.3 %佛山: 0.3 %克拉玛依: 0.1 %克拉玛依: 0.1 %兰州: 0.3 %兰州: 0.3 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 13.2 %北京: 13.2 %南京: 0.3 %南京: 0.3 %南昌: 0.4 %南昌: 0.4 %厦门: 0.4 %厦门: 0.4 %合肥: 0.1 %合肥: 0.1 %呼伦贝尔: 0.1 %呼伦贝尔: 0.1 %呼和浩特: 0.6 %呼和浩特: 0.6 %哈里亚纳: 0.3 %哈里亚纳: 0.3 %哥伦布: 0.9 %哥伦布: 0.9 %商丘: 0.1 %商丘: 0.1 %天津: 0.6 %天津: 0.6 %安康: 0.4 %安康: 0.4 %安顺: 0.1 %安顺: 0.1 %宜昌: 1.4 %宜昌: 1.4 %宝鸡: 0.1 %宝鸡: 0.1 %常州: 0.4 %常州: 0.4 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 4.4 %张家口: 4.4 %徐州: 0.1 %徐州: 0.1 %成都: 2.5 %成都: 2.5 %扬州: 1.1 %扬州: 1.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %日照: 0.1 %日照: 0.1 %昆明: 0.8 %昆明: 0.8 %杭州: 0.9 %杭州: 0.9 %桂林: 0.1 %桂林: 0.1 %榆林: 0.3 %榆林: 0.3 %武汉: 2.0 %武汉: 2.0 %汕头: 0.1 %汕头: 0.1 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.5 %济南: 0.5 %温州: 0.1 %温州: 0.1 %湘潭: 0.4 %湘潭: 0.4 %漯河: 1.1 %漯河: 1.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 14.8 %芒廷维尤: 14.8 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.3 %芝加哥: 0.3 %荆门: 0.1 %荆门: 0.1 %衡水: 0.3 %衡水: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 28.5 %西宁: 28.5 %西安: 0.9 %西安: 0.9 %许昌: 0.1 %许昌: 0.1 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.4 %运城: 1.4 %邯郸: 1.1 %邯郸: 1.1 %郑州: 0.6 %郑州: 0.6 %酒泉: 0.4 %酒泉: 0.4 %重庆: 2.2 %重庆: 2.2 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.4 %长沙: 1.4 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %黄石: 0.4 %黄石: 0.4 %其他China三门峡上海东莞中卫临汾伊瓦格佛山克拉玛依兰州加利福尼亚州北京南京南昌厦门合肥呼伦贝尔呼和浩特哈里亚纳哥伦布商丘天津安康安顺宜昌宝鸡常州广州库比蒂诺廊坊开封张家口徐州成都扬州拉贾斯坦邦日照昆明杭州桂林榆林武汉汕头泰州洛阳济南温州湘潭漯河石家庄福州秦皇岛芒廷维尤芜湖芝加哥荆门衡水衢州西宁西安许昌诺沃克贵阳运城邯郸郑州酒泉重庆银川长春长沙青岛鞍山黄石

Catalog

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (534) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return