FINITE-ELEMENT SIMULATIONS OF STRUCTURE-FLUID COUPLING: A CASE STUDY IN VEIN-TYPE TUNGSTEN DEPOSITS
-
摘要: 热液矿床成矿作用动力学过程涉及多时空高度耦合的物理和化学过程。数值模拟是研究这一复杂动力学过程的重要而有效的工具之一,也可在找矿预测等方面发挥重要作用。以南岭地区石英脉钨矿床为例,利用计算机求解控制构造-流体的物理和化学方程,定量揭示成矿热液聚焦流动与"五层楼"成矿的对应关系,正演高压成矿流体致使围岩发生水力破裂及其成矿效应。模拟结果与石英脉型钨矿床的构造地球化学特征相符。Abstract: The dynamic process of hydrothermal ore-forming involves highly coupled physical and chemical processes at different spatial and temporal scales. Numerical simulation is one of important and effective tools to decipher these complex processes and aids in prospecting. The vein-type tungsten deposits in the Nanling Range are taken examples to show how to solve the physical and chemical equations controlling the coupled structure-fluids using numerical simulation, decipher the relationships between fluid focusing and the tungsten mineralization in the five-floor vertically morphological zonation quantitatively, and reproduce the influences of hydraulic fracturing driven by high-pressure fluids on wolframite precipitation. The numerical results are consistent with the geochemical characteristics constrained by previous studies.
-
岩石圈7类主要造岩矿物(方解石、石英、长石、黑云母、角闪石、辉石和橄榄石)的塑性变形行为是了解地壳到地幔各层次结构、流变学特征及动力学演化的重要途径[1]。作为了解上地幔力学与流变学表现的重要依据之一,橄榄石塑性变形行为研究具有重要意义,它是窥探上地幔动力学过程的窗口。橄榄石显微构造记录了其所经历的变形变质过程、塑性流动等信息,可以用来估算岩石变形过程中的差异应力、应变速率、温度、压力等流变学参数,定性探讨上地幔变形环境,并总结岩石样品形成与发展过程中的变形机制和变形历史[2]。
1. 橄榄石组构类型
前人对天然橄榄岩和实验变形样品的研究揭示,橄榄石在塑性流变过程中形成的结晶学优选方位(Lattice-preferred orientation,LPO)与含水量、差异应力、温度、压力、部分熔融等变形环境有着密切的联系。不同的变形环境下,橄榄石可发育5种组构类型(见图 1),即A型(010)[100]滑移系[3]、B型(010)[001]滑移系[4]、C型(100)[001]滑移系[4]、D型(0kl)[100]滑移系[5~6]和E型(001)[100]滑移系[7]。高压变形实验和天然样品观测结果显示,橄榄石在地幔浅部环境下最易发育A型或E型组构,地幔深部高压环境下主要发育C型组构[8~10],大洋俯冲带发育B型组构[11](见表 1)。因此可以根据橄榄石组构特征来推断岩石形成时大地构造环境,探讨其变形环境条件。
图 1 典型橄榄石组构及其与滑移系和应力、含水量关系(据Karato等[3],略有修改)Figure 1. Typical olivine fabric and the relationship with dominant slip systems, stress and water content表 1 五种LPO类型特征及其形成环境Table 1. Features and formation conditions of five LPO-types本文主要通过电子背散射衍射(Electron backscatter diffraction,简称EBSD)技术对祁连山玉石沟方辉橄榄岩中橄榄石进行显微组构测定,并结合其岩石学特征和位错特征,定性分析和校验玉石沟橄榄岩形成时大地构造环境,探讨其变形机制和变形历史。
2. 地质构造背景
本文样品采自北祁连俯冲-碰撞杂岩带中部的玉石沟。北祁连构造带位于青海省北部和甘肃省西南部,处于中朝—塔里木地台的西南边缘,是秦祁昆褶皱系中段祁连褶皱系的一部分[12]。北部为阿拉善地块(中朝地块的一部分),南部依次为中祁连、南祁连,并以柴北缘边界断裂与柴达木地块相隔,西北部以阿尔金走滑断层与塔里木地块相接(见图 2)。
北祁连造山带可分为东西两段,蛇绿岩主要分布在东段[13]。侯青叶等[14]对北祁连蛇绿岩单元中玄武岩微量元素研究表明,该玄武岩具有印度洋型MORB特征;宋述光等[15]通过流变学和温压条件计算,确定该蛇绿岩底部橄榄岩是大洋岩石圈之下软流圈上涌的产物。蛇绿岩套的层序与大洋岩石圈剖面可以逐层对比,可以把蛇绿岩看作是大洋岩石圈的代表。大洋岩石圈是在洋中脊发展过程中形成的,主要由基性、超基性岩构成,其特点是地壳较薄而致密。地震探测表明,洋壳不是由单一的玄武岩构成,而是可以明显地分为几层:层① 由半固结和固结沉积物组成;层② 由拉斑玄武岩和部分沉积岩组成,其下部可出现辉绿岩岩床和岩墙;层③ 主要由辉长岩等镁铁质火成岩及其变质产物组成,一般认为由辉长岩和角闪岩组成;层③ 之下便是超镁铁质岩石组成的上地幔(见图 3)。
玉石沟橄榄岩主要由南岩体、中岩体、北岩体和小岩体组成,其岩性主要是方辉橄榄岩和纯橄岩以及少量的含辉纯橄岩(见图 4)。其中南岩体、北岩体和小岩体呈不规则细条状,均强烈蛇纹石化;中岩体呈透镜状,主要由方辉橄榄岩(约92%)组成,其边缘为蛇纹石化的纯橄榄岩,中心部位的方辉橄榄岩较新鲜,并被晚期的纯橄榄岩岩脉穿插。
图 4 玉石沟超基性岩体A-B地质剖面示意图(剖面位置见图 1)1—北岩体(方辉橄榄岩);2—中岩体(方辉橄榄岩);3—小岩体(纯橄榄岩);4—南岩体(纯橄榄岩)Figure 4. Schematic cross section of ultrabasic rock from Yushigou3. 样品制备和分析方法
本文选取的实验样品为蛇纹石化程度较低的方辉橄榄岩,手标本上可观察到明显的面理和线理。为了方便进行实验分析,将岩石样品磨制成厚度约为0.03 mm的3组定向薄片(a片垂直于面理且垂直于线理;b片平行于线理且垂直于面理;c片平行于面理且平行于线理),并进行抛光,用于光学显微镜下岩相学观察和岩石组构测定。
样品中橄榄石的晶格优选方位采用了电子背散射衍射技术,利用中国地质大学(北京)地质过程与矿产资源国家重点实验室S-3400N扫描电子显微镜的EBSD组件完成。工作条件:加速电压为15 kV,工作距离为18.4 mm,样品倾斜70°。测量采用人机交互模式,手动控制分析精度。晶格优选方位极密统计由Channel 5软件完成,数据的表达利用上半球投影的结构平面图,面理平行于XY面,线理平行于X轴。实验中,3个不同方向的橄榄石样品分别收集了159(a片)、175(b片)和213(c片)个颗粒的晶体取向数据。
位错构造研究是揭示地幔变形环境、变形机制和变形过程的有效途径,本文采用透射电镜观察方法研究橄榄石的位错特征。薄片在显微镜下观察后送至中国地质科学院进行离子减薄至穿孔为止。透射电镜(Transmission electron microscopy,TEM)观察在日立H-8100型电镜上进行,加速电压200 kV;该仪器配备的X-射线能谱仪(X-ray energy dispersive spectrometry,EDS)为PhilipEDAX-4型,其探测器能鉴定从硼(原子序数为5)到铀(原子序数为92)的所有元素,能量分辨率高。
4. 实验结果
4.1 橄榄岩岩石学特征
方辉橄榄岩呈灰绿色,颜色均匀,块状构造,整体呈半自形—他形,中—粗粒结构,残斑结构(见图 5a),发育2组显微破裂(见图 5b);橄榄石与辉石颗粒之间呈直线、曲线或波浪状接触,这种结构是地幔岩中常见的原始结构;主要由橄榄石(Ol,80%~85%)、斜方辉石(Opx,15%~20%)及少量铬尖晶石(Sp,<1%)、蛇纹石(Serp,<1%)组成。橄榄石为粒状半自形结构,粒径变化较大,最大可达6 mm,最小粒径小于0.1 mm,主要粒径集中在0.5~2.0 mm之间。橄榄石普遍破碎严重,一些橄榄石以120°汇聚为三联点,边界平直,某些颗粒形成初级核幔结构,发育亚晶粒、带状消光、扭折、波状消光现象(见图 5c),前人计算该地区橄榄石牌号Fo介于89~93,属镁橄榄石[17]。斜方辉石,一级干涉色,晶体呈半自形、他形,可见一组完全解理。与橄榄石相比,斜方辉石显微破裂较轻微,发育有扭折、变形纹、出溶叶理现象(见图 5d—5f),并常见包橄结构。铬尖晶石单偏光下不透光或呈棕红色,等轴或不规则粒状,全消光(见图 5g)。
4.2 应变与应力
在3个不同方向的薄片偏光镜下图像中可以看到,c片和b片中发育近于平行的2组剪切破裂,且均近乎平行于X轴,a片中可见呈一定角度相交的共轭剪切破裂j1和j2,以及一组张破裂(见图 5b)。结合里德尔剪切(Riedel Shear)模式图(见图 6),可得样品中发育的2组羽状剪节理J1和J2,其中J2为透入性剪裂面,J1为非透入性剪裂面。MN为主剪裂面,是由羽状微剪裂面J1组合而成。J1组微剪裂面与主剪切面MN夹角为α,约为9°—13°,J2组微剪裂面与MN夹角为γ,约为68°,两者锐夹角均指示本盘错动方向,由此推断橄榄岩样品受到过垂直于X轴的剪切作用,且表现为脆性变形。
4.3 显微组构特征
从3个不同方向的方辉橄榄岩样品所得到3组橄榄石颗粒晶体取向极密图(见图 7)可以看出,橄榄石具有明显的晶格优选定向(Lattice-preferred orientation,LPO)。4个样品中橄榄石[100]和[010]轴显示很强的晶格优选方位,[001]和[111]轴优选方位较弱。其中,[100]轴在平行于X轴方向上形成较强点极密,即[100]轴平行于线理(X轴);[010]轴在垂直于面理面(XY面)方向上的近Z轴处形成点极密,即[010]轴近垂直于面理(XY面)、平行于Z轴,[010]轴也形成一些次极密,近似形成一个垂直于面理(XY面)和线理(X轴)的大环带;[001]轴形成了多个极密,亦近似构成一个垂直于面理(XY面)和线理(X轴)的大环带;[111]轴形成多个极密,极密近乎沿着面理方向分布,且形成位于X轴两端、围绕X轴的2个小环带。
在不同的温度、压力、应变速率和含水量条件下,橄榄石分别对应着不同的组构[18]。Carter等[19]研究发现温度和应变速率是控制橄榄石位错滑移系的主要因素,随着温度升高和应变速率降低,橄榄石的主控滑移系从(110)[001](<900 ℃)转变成为(0k1)[100](900~1200 ℃),然后变成(010)[100](>1200 ℃)。因此,在上地幔的变形环境下橄榄石发育(010)[100]滑移系,这与天然橄榄岩中普遍发育(010)[100]滑移系一致。近年来高温高压变形实验已经定义了5种橄榄石组构类型,而橄榄石中最常见的以(010)[100]为滑移系的A型组构形成于低应力和低含水量条件下[20]。样品橄榄岩中橄榄石组构的测量结果显示,[100]轴平行于线理方向(X轴),[010]轴最强极密垂直于面理(XY面),即(010) 面平行于面理,经与前人研究结果对比分析,该样品中橄榄石发育原生A型组构,表明祁连山玉石沟方辉橄榄岩形成于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的地幔浅部环境条件下(见图 1)。
除[100]、[010]轴表现很强的点极密外,[010]轴另外发育有一些次极密,[001]和[111]轴均发育多个极密,且[010]、[001]和[111]等3个轴均形成接近垂直于[110](X轴)的环带。通过绘制橄榄石晶体在岩石样品中的简易定向图(见图 8)发现,这3个晶轴可能曾沿垂直于[110](X轴)的面发生旋转,因此形成垂直于[110](X轴)的环带,推测是由于岩石样品受到垂直于X轴的剪切而引起的橄榄石晶体绕[100](X轴)旋转或橄榄石发生轻微塑性变形而改造原生A型组构并形成次生组构。根据极密图中[010]、[001]轴形成的环带,对比前人研究结果,揭示样品中橄榄石发育D型次生组构,即(0kl)[100]滑移系,且形成于高温(900~1200 ℃)、高应力(400~500 MPa)、低应变速率、贫水的环境条件下。
4.4 位错显微构造特征
透射电镜下观察到样品大部分区域未出现位错,只有局部可见少量的刃型位错聚集,密度较低。所有位错均为直线型,长度较短,呈定向排列(见图 9)。
亚晶粒的形成有2种情况,一种是刃型位错攀移,滑动重排形成位错壁,在晶体内分割出若干亚晶粒;另一种是以位错扭折条带为边界形成亚晶粒。透射电镜下样品中呈直线型、定向排列的刃型位错构成了亚晶界,使相邻亚晶粒之间在正交偏光下显示出不同消光位,将晶体分割成若干亚晶粒。亚晶粒本身经历晶格回复使内部位错很少,位错集中在亚晶界上[21]。
消光带和亚晶粒并没有本质的区别,都是由位错壁分割的不同消光区,只是消光带为拉长状的亚晶粒。亚晶粒构造是高温稳态流动显微构造的重要标志,是动态恢复作用的结果,它指示了高温位错蠕变[22]。亚晶粒、消光带构造在玉石沟橄榄岩样品中比较普遍(见图 5),并且亚晶界、消光带边界平直、连续,并未因橄榄岩显微剪、张裂隙而发生明显错断,表明橄榄岩显微破裂和亚晶界、消光带属同一时期的构造运动中形成。
当晶体受力发生弹性弯曲时,晶体中的应力感生位错发生攀移、重排形成位错壁,从而使晶粒内相互间具有很小晶体学位向差(2°—3°)的小晶块,即亚晶粒(见图 9),表现塑性变形。因此,亚晶粒可以代表晶体在应力作用下发生了微折曲,并可以通过镜下薄片中亚晶界的排布统计,进行应力初步分析探讨。
对a片中亚晶界的排布统计得到的应力分析结果与前述显微破裂的应力分析结果相同(见图 10),橄榄石晶体在σ1压应力作用下发生弯曲以及位错重排形成位错壁,这也进一步证明样品中亚晶粒、消光带和显微破裂属同期形成。
5. 实验结果讨论
5.1 大地构造环境分析与校验
对玉石沟橄榄岩中橄榄石组构进行测定,并结合镜下显微构造观察及TEM位错观察结果,发现样品中橄榄石发育明显的A型原生组构,玉石沟橄榄岩具有明显的残斑结构,综合分析玉石沟橄榄岩来源于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的上地幔环境。
玉石沟橄榄岩中发育有2组共轭剪节理,橄榄石普遍发育显微破裂,应力应变分析显示样品曾受到剪切作用而发生脆性变形。另外样品中普遍发育亚晶粒、扭折带显微构造,透射电镜观察超微构造发现一些呈直线型定向排列的自由位错,表现为韧性变形。分析认为亚晶粒、扭折带、消光带和显微破裂指示相同的应力场,属同期形成,岩石主要表现为脆-韧性变形,此阶段变形一定程度上影响了橄榄岩中橄榄石原生A型组构,使橄榄石晶体[010]、[001]轴在极密图中形成环带而表现为D型次生组构。这表明在玉石沟橄榄岩发育过程中,该地区发生过强烈的构造运动。
5.2 变形构造分期与配套
变形机制分析发现,玉石沟橄榄岩中发育有以显微破裂为主的脆性变形和以位错蠕变为主导的塑性变形,并表现有明显的A型原生组构及D型次生组构,结合前人对祁连山缝合带构造演化的研究,本文将玉石沟橄榄岩变形过程分为上地幔演化和造山运动时脆-韧性变形2个阶段:上地幔演化阶段发育明显的A型原生组构;造山运动时脆-韧性变形阶段橄榄石变形主控因素为动态恢复作用,普遍发育亚晶粒、消光带和扭折显微构造等相关组构,并与透射电镜下所观察到的位错排对应,同时还发育以微破裂为主的一套脆性变形组构,表现出2组共轭剪破裂和另一组张性破裂等现象,此阶段变形叠加和改造了A型原生组构。
6. 进一步研究方向
蛇绿岩套中橄榄岩形成及演化过程复杂,其显/超微构造往往反映了多期构造事件,为能够更详细地研究其变形机制、变形历史,进而深入研究其在大地构造运动过程及应力应变分析中的指示和校验意义,还需要开展以下工作:
① 系统制作透射电镜样品,进一步详细研究其位错组态发育及分布等情况,分析其差应力等流变参数。
② 在野外系统采集定向的祁连山玉石沟地幔橄榄岩样品,测定其岩组类型,系统地进行应力应变分析,详细厘定其变形期次,结合前人研究进展,总结后期构造运动对原生构造的影响,初步探讨祁连山玉石沟地区大地构造运动情况。
致谢: 感谢中国地质大学(北京)透射电镜实验室韩勇老师、岩组实验室张若愚硕士以及中国地质科学院地质研究所陈方远老师在样品分析过程中的指导。 -
表 1 数值模拟实验1各个单元的水力学参数
Table 1. Hydraulic parameters of each unit in the experiment 1
参数 岩体 S1 S2 S3, S4 S5, S6, S7 渗透率/m2 1.0×10-18 1.0×10-16 2.0×10-16 7.0×10-14 3.0×10-15 孔隙度 0.0015 0.015 0.02 0.14 0.05 箭头代表流体流动的方向,底部数值是最高流速。 -
[1] 於崇文.热液成矿作用动力学[M].武汉:中国地质大学出版社, 1993:224.YU Chongwen. Dynamics of the hydrothermal ore-forming processes[M]. Wuhan:China University of Geosciences Press, 1993:224. (in Chinese) [2] 於崇文, 岑况, 鲍征宇, 等.成矿作用动力学[M].北京:地质出版社, 1998:310.YU Chongwen, CEN Kuang, BAO Zhengyu, et al. Dynamics of ore-forming processes[M]. Beijing:Geology Publishing House, 1998:310. (in Chinese) [3] 池国祥, 薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘, 2011, 18(5):1-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105002CHI Guoxiang, XUE Chunji. Principles, methods and applications of hydrodynamic studies of mineralization[J]. Earth Science Frontiers, 2011, 18(5):1-18. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201105002 [4] 赵崇斌, HOBBS B E, ORD A.用计算地球科学研究方法探讨地质现象的动力学机制——以断层中等距成矿分布为例[J].中国科学D辑:地球科学, 2008, 38(5):646-652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200805011ZHAO Chongbin, HOBBS B E, ORD A. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences:An example of equal-distant mineralization in a fault[J]. Science in China Series D:Earth Sciences, 2008, 51(7):947-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200805011 [5] WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114):1613-1616. doi: 10.1126/science.1225009 [6] ELDURSI K, BRANQUET Y, GUILLOU-FROTTIER L, et al. Numerical investigation of transient hydrothermal processes around intrusions:Heat-transfer and fluid-circulation controlled mineralization patterns[J]. Earth and Planetary Science Letters, 2009, 288(1-2):70-83. doi: 10.1016/j.epsl.2009.09.009 [7] 王偲瑞, 杨立强, 孔鹏飞.焦家断裂渗透性结构与金矿床群聚机理:构造应力转移模拟[J].岩石学报, 2016, 32(8):2494-2508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608018WANG Sirui, YANG Liqiang, KONG Pengfei. Permeability structure and gold deposits cluster mechanism along the Jiaojia fault, China:Structure stress transfer modeling[J]. Acta Petrologica Sinica, 2016, 32(8):2494-2508. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608018 [8] 刘亮明, 周瑞超, 赵崇斌.构造应力环境对浅成岩体成矿系统的制约:从安庆月山岩体冷却过程动力学计算模拟结果分析[J].岩石学报, 2010, 26(9):2869-2878. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009026LIU Liangming, ZHOU Ruichao, ZHAO Chongbin. Constraints of tectonic stress regime on mineralization system related to the hypabyssal intrusion:Implication from the computational modeling experiments on the geodynamics during cooling process of the Yuenshan intrusion in Anqing district, China[J]. Acta Petrologica Sinica, 2010, 26(9):2869-2878. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009026 [9] LI X H, YUAN F, ZHANG M M, et al. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China[J]. Ore Geology Reviews, 2019, 105:1-17. doi: 10.1016/j.oregeorev.2018.12.003 [10] CUI T, YANG J, SAMSON I M. Tectonic deformation and fluid flow:implications for the formation of unconformity-related uranium deposits[J]. Economic Geology, 2012, 107(1):147-163. http://cn.bing.com/academic/profile?id=ec0a3049b97ab6df3f123dc7cc3a111c&encoded=0&v=paper_preview&mkt=zh-cn [11] LI Z H, CHI G X, BETHUNE K M, et al. Structural controls on fluid flow during compressional reactivation of basement faults:insights from numerical Modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada[J]. Economic Geology, 2017, 112(2):451-466. http://cn.bing.com/academic/profile?id=8f582c22cc0a7c58450096d784163222&encoded=0&v=paper_preview&mkt=zh-cn [12] LIU X C, MA Y, XING H L, et al. Chemical responses to hydraulic fracturing and wolframite precipitation in the vein-type tungsten deposits of southern China[J]. Ore Geology Reviews, 2018, 102:44-58. doi: 10.1016/j.oregeorev.2018.08.027 [13] LIU X C, XING H L, ZHANG D H. The mechanisms and time scale of alteration halos in vein-type tungsten deposits in southern China[J]. Ore Geology Reviews, 2017, 89:1019-1029. doi: 10.1016/j.oregeorev.2017.07.024 [14] XING Huilin. Finite element modelling of biogas process from coal[J]. Chinese Journal of Computational Mechanics, 2016, 33(4):637-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201604033 [15] 古菊云.华南钨矿脉的形态分类[C]//余鸿彰.钨矿地质讨论会论文集.北京: 地质出版社, 1984: 35-45.GU Jiyun. Morphological zonation of tungsten deposits in South China[C]//YU Hongzhang. Proceedings of Symposium on Tungsten Geology. Beijing: Geological Publishing House, 1984: 35-45. (in Chinese) [16] 陈毓川, 裴荣富, 张宏良, 等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社, 1989:507.CHEN Yuchuan, PEI Rongfu, ZHANG Hongliang, et al. The geology of nonferrous and rare metal deposits related to mesozoic granitoids in Nanling Region, China[M]. Beijing:Geological Publishing Housing, 1989:507. (in Chinese) [17] 李吉明, 李永明, 楼法生, 等.赣北发现"五层楼"式石英脉型黑钨矿矿床——东坪黑钨矿矿床的发现及其地质意义[J].地球学报, 2016, 37(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201603015LI Jiming, LI Yongming, LOU Fasheng, et al. A "five-storey" style quartz vein wolframite deposit in northern Jiangxi province:the discovery of the Dongping wolframite deposit and its geological significance[J]. Acta Geoscientica Sinica, 2016, 37(3):379-384. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201603015 [18] 王登红, 唐菊兴, 应立娟, 等. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义[J].吉林大学学报(地球科学版), 2010, 40(4):733-738. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201004001WANG Denghong, TANG Juxing, YING Lijuan, et al. Application of "Five levels + Basement" model for prospecting deposits into depth[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(4):733-738. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201004001 [19] 赵正, 王登红, 陈毓川, 等. "九龙脑成矿模式"及其深部找矿示范:"五层楼+地下室"勘查模型的拓展[J].地学前缘, 2017, 24(5):8-16. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705002ZHAO Zheng, WANG Denghong, CHEN Yuchuan, et al. "Jiulongnao metallogenic model" and the demonstration of deep prospecting:the extended application of "Five levels+Basement" exploration model[J]. Earth Science Frontiers, 2017, 24(5):8-16. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201705002 [20] 许建祥, 曾载淋, 王登红, 等.赣南钨矿新类型及"五层楼+地下室"找矿模型[J].地质学报, 2008, 82(7):880-887. doi: 10.3321/j.issn:0001-5717.2008.07.003XU Jianxiang, ZENG Zailin, WANG Denghong, et al. A new type of tungsten deposit in southern Jiangxi and the new model of "Five floors+Basement" for prospecting[J]. Acta Geologica Sinica, 2008, 82(7):880-887. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.003 [21] 祝新友, 王京彬, 王艳丽, 等.论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例[J].地质学报, 2014, 88(5):825-835. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405002ZHU Xinyou, WANG Jingbin, WANG Yanli, et al. Relative closed ore-forming system in the Tungsten-Bearing quartz vein:a case study of the Yaogangxian deposit, Hunan Province[J]. Acta Geologica Sinica, 2014, 88(5):825-835. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405002 [22] WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan Deposit, Nanling Range, Southeastern China[J]. Economic Geology, 2017, 112(4):855-887. http://cn.bing.com/academic/profile?id=e7b2a332efa11abd54f5bacbe5dc848d&encoded=0&v=paper_preview&mkt=zh-cn [23] 周利敏.江西省全南县大吉山钨矿构造应力场数值模拟与成矿预测[D].北京: 中国地质大学(北京), 2009: 67. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075726.htmZHOU Limin. Numerical modeling of paleo tectonic stress field and metallogenic prognosis in Dajishan tungsten deposit, Quannan, Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2009: 67. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075726.htm [24] KOIDE H, BHATTACHARJI S. Formation of fractures around magmatic intrusions and their role in ore localization[J]. Economic Geology, 1975, 70(4):781-799. http://cn.bing.com/academic/profile?id=a3de9f9ac1b857e032baedf550558e12&encoded=0&v=paper_preview&mkt=zh-cn [25] NI P, WANG X D, WANG G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65:1062-1077. doi: 10.1016/j.oregeorev.2014.08.007 [26] WEI W F, HU R Z, BI X W, et al. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China[J]. Mineralium Deposita, 2012, 47(6):589-605. doi: 10.1007/s00126-011-0377-0 [27] 曹晓峰, 吕新彪, 何谋春, 等.共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例[J].矿床地质, 2009, 28(5):611-620. doi: 10.3969/j.issn.0258-7106.2009.05.007CAO Xiaofeng, LV Xinbiao, HE Mouchun, et al. An infrared microscope investigation of fluid inclusions in coexisting quartz and wolframite:A case study of Yaogangxian quartz-vein wolframite deposit[J]. Mineral Deposits, 2009, 28(5):611-620. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2009.05.007 [28] 黄惠兰, 常海亮, 付建明, 等.西华山脉钨矿床的形成压力及有关花岗岩的侵位深度[J].矿床地质, 2006, 25(5):562-571. doi: 10.3969/j.issn.0258-7106.2006.05.003HUANG Huilan, CHANG Hailiang, FU Jianming, et al. Formation pressure of wolframite-vein deposits and emplacement depth of related granite in Xihuashan, Jiangxi Province[J]. Mineral Deposits, 2006, 25(5):562-571. (in Chinese with English Abstract) doi: 10.3969/j.issn.0258-7106.2006.05.003 [29] 王巧云, 胡瑞忠, 彭建堂, 等.湖南瑶岗仙钨矿床流体包裹体特征及其意义[J].岩石学报, 2007, 23(9):2263-2273. doi: 10.3969/j.issn.1000-0569.2007.09.024WANG Qiaoyun, HU Ruizhong, PENG Jiantang, et al. Characteristics and significance of the fluid inclusions from Yaogangxian tungsten deposit in south of Hunan[J]. Acta Petrologica Sinica, 2007, 23(9):2263-2273. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2007.09.024 [30] 席斌斌, 张德会, 周利敏, 等.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报, 2008, 82(7):956-966. doi: 10.3321/j.issn:0001-5717.2008.07.014XI Binbin, ZHANG Dehui, ZHOU Limin, et al. Characteristics of ore-forming fluid evolution in Dajishan tungsten deposit, Quannan County, Jiangxi[J]. Acta Geologica Sinica, 2008, 82(7):956-966. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.014 [31] 芮宗瑶, 李荫清, 王龙生, 等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质, 2003, 22(1):13-23. doi: 10.3969/j.issn.0258-7106.2003.01.002RUI Zongyao, LI Yinqing, WANG Longsheng, et al. Approach to ore-forming conditions in light of ore fluid inclusions[J]. Mineral Deposits, 2003, 22(1):13-23. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2003.01.002 [32] BAKER T, POLLARD P J, MUSTARD R, et al. A comparison of granite-related tin, tungsten, and gold-bismuth deposits:implications for exploration[J]. Society of Economic Geologists Newsletter, 2005, 61:5-17. http://cn.bing.com/academic/profile?id=811623ca06db78f716b6b0a4e076d964&encoded=0&v=paper_preview&mkt=zh-cn [33] 刘向冲.江西大吉山石英脉型黑钨矿床"五层楼"垂直形态分带动力学机制[D].北京: 中国地质大学(北京), 2014: 114. http://cdmd.cnki.com.cn/article/cdmd-11415-1015518056.htmLIU Xiangchong. The mechanisms of the five-floor vertical morphological zonation at the Dajishan vein-type tungsten deposit, Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2014: 114. (in Chinese with English abstract) http://cdmd.cnki.com.cn/article/cdmd-11415-1015518056.htm [34] LIU X C, XING H L, ZHANG D H. Fluid focusing and its link to vertical morphological zonation at the Dajishan vein-type tungsten deposit, South China[J]. Ore Geology Reviews, 2014, 62:245-258. doi: 10.1016/j.oregeorev.2014.04.005 [35] 刘向冲, 张德会, 赵波, 等.漂塘钨矿床"五层楼"垂直形态分带定量分析[J].高校地质学报, 2017, 23(3):408-416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201703004LIU Xiangchong, ZHANG Dehui, ZHAO Bo, et al. Quantitative Analysis of the "five-floor" vertical morphological zonation in the Piaotang tungsten deposits, south China[J]. Geological Journal of China Universities, 2017, 23(3):408-416. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201703004 [36] 汪劲草, 韦龙明, 朱文凤, 等.南岭钨矿"五层楼模式"的结构与构式——以粤北始兴县梅子窝钨矿为例[J].地质学报, 2008, 82(7):894-899. doi: 10.3321/j.issn:0001-5717.2008.07.005WANG Jincao, WEI Longming, ZHU Wenfeng, et al. Texture and tectonic style of "five-storeyed type" for the tungsten deposits in the Nanling Mountains, Southern China——An example from the Meiziwo tungsten deposit[J]. Acta Geologica Sinica, 2008, 82(7):894-899. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.005 [37] 韦安伟, 汪劲草, 莫志明, 等.介于岩浆岩型与剪切带型之间的脉状钨锡矿床——广西珊瑚钨锡矿床新认识[J].桂林理工大学学报, 2015, 35(1):8-14. doi: 10.3969/j.issn.1674-9057.2015.01.002WEI Anwei, WANG Jincao, MO Zhiming, et al. A kind of tungsten-tin vein deposit between magmatic rock type and shear zone type-New acknowledge on Shanhu tungsten-tin deposit in Guangxi[J]. Journal of Guilin University of Technology, 2015, 35(1):8-14. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-9057.2015.01.002 [38] SANDERSON D J, ROBERTS S, GUMIEL P, et al. Quantitative analysis of tin-and tungsten-bearing sheeted vein systems[J]. Economic Geology, 2008, 103(5):1043-1056. doi: 10.2113/gsecongeo.103.5.1043 [39] NAUMOV V B, GIRNIS A V, DOROFEEVA V A, et al. Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals[J]. Geology of Ore Deposits, 2016, 58(4):327-343. doi: 10.1134/S1075701516040048 [40] WOOD S A, SAMSON I M. The hydrothermal geochemistry of Tungsten in Granitoid environments:Ⅰ. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Economic Geology, 2000, 95(1):143-182. [41] CHEN L L, NI P, LI W S, et al. The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, Southern Jiangxi, China:Fluid inclusion and stable isotope evidence[J]. Journal of Geochemical Exploration, 2018, 192:18-32. https://www.sciencedirect.com/science/article/pii/S0375674217304648 [42] LI W S, NI P, PAN J Y, et al. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China[J]. Journal of Geochemical Exploration, 2018, 192:1-17. https://www.sciencedirect.com/science/article/pii/S0375674217304624 [43] 周龙全, 李光来, 苏晔, 等.赣南茅坪钨矿床黄玉单晶流体包裹体研究[J].矿床地质, 2017, 36(4):921-934. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704009.htmZHOU Longquan, LI Guanglai, SU Ye, et al. A preliminary study of fluid inclusions of topaz crystal from Maoping tungsten deposit, southern Jiangxi Province[J]. Mineral Deposits, 2017, 36(4):921-934. (In Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704009.htm [44] 刘向冲, 张德会.黑钨矿有效沉淀机制:CO2逃逸[J].地质力学学报, 2019, 25(1):19-26. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=dzlxxbLIU Xiangchong, ZHANG Dehui. The efficient mechanisms for precipitating wolframite:CO2 escaping[J]. Journal of Geomechanics, 2019, 25(1):19-26. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=dzlxxb [45] 陈柏林.从成矿构造动力学探讨脉状金矿床成矿深度[J].地质科学, 2001, 36(3):380-384. http://www.cnki.com.cn/Article/CJFDTotal-DZKX200103014.htmCHEN Bolin. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics[J]. Chinese Journal of Geology, 2001, 36(3):380-384. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZKX200103014.htm [46] SIBSON R H. Conditions for fault-valve behaviour[J]. Geological Society, London, Special Publications, 1990, 54(1):15-28. https://www.researchgate.net/publication/249548873_Conditions_for_fault-valve_behavior [47] COX S F. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones[J]. Geofluids, 2010, 10(1-2):217-233. [48] 徐兴旺, 牛磊, 洪涛, 等.流体构造动力学与成矿作用[J].地质力学学报, 2019, 25(1):1-8. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxbXU Xingwang, NIU Lei, HONG Tao, et al. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 2019, 25(1):1-8. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb [49] 於崇文.多重水力断裂的分形扩张[J].地学前缘, 2004, 11(1):11-44. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200401001.htmYU Chongwen. Fractal dilatation of multiple hydraulic fracturing[J]. Earth Science Frontiers, 2004, 11(3):11-44. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY200401001.htm [50] LIU X C, XING H L, ZHANG D H. Influences of hydraulic fracturing on fluid flow and mineralization at the vein-type tungsten deposits in southern China[J]. Geofluids, 2017, 2017:4673421. https://www.hindawi.com/journals/geofluids/2017/4673421/ [51] LIU X C, XING H L, ZHANG D H. Hydraulic fracturing leads to wolframite deposition at magmatic-hydrothermal transition[J]. Acta Geologica Sinica, 2018, 92(2):862-863. [52] MAO S D, ZHANG D H, LI Y Q, et al. An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2-H2O-NaCl fluid inclusions[J]. Chemical Geology, 2013, 347:43-58. 期刊类型引用(2)
1. 沈小庆,杨炳南,何帅,张德实. 音频大地电磁法在深部隐伏锰矿找矿中的应用——以贵州松桃普觉锰矿为例. 地质力学学报. 2021(06): 987-997 . 本站查看
2. 陈刚,马玲,龚红胜. 基于立方定律的断层流—热耦合数值计算方法. 黄金科学技术. 2020(06): 846-858 . 百度学术
其他类型引用(1)
-