CAO Dai-yong, MU Xuan-she, 2000. QUANTITATIVE EVALUATION ON GEOLOGICAL STRUCTURE COMPLEXITY OF CUIJIAZHAI MINE,HEBEI PROVINCE. Journal of Geomechanics, 6 (4): 88-94.
Citation: WANG Liang-yu, LIAO Qun-an, XIAO Dian, et al., 2016. PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG. Journal of Geomechanics, 22 (4): 1032-1048.

PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG

More Information
  • The alkali-feldspar granite is located at the area of Nanshankou, western part of the Harlik Mountain. Its LA-ICP-MS zircon U-Pb age is 331.3±1.9 Ma. Therefore, the granite is formed in the late stage of Early Carboniferous. The dark minerals in the rock are mainly biotite, with litte Na amphibolite. This type of granite is riched in alkali elements, poor in calsium, magnesium, and has low content of aluminum and iron oxide. The rock is riched in large ion lithosphile elements, such as Rb, Th and K. It has abundant HFSE elements and depleted in Ba, Sr and Eu. The 10000 Ga/Al value is varied from 2.93~3.80. It indicates that the rock is A-type granite, formed in intraplate tectonic settings, instead of the previous island arc environment. Its εNd(t) values range from 5.66 to 6.12, the Nd model ages are 600~620 Ma. It tells that the magma may originate from the young crust. Based on the results of the 1:50000 regional geological survey, the Bogada rift was extended during Early Carboniferous, and closed at the late stage of Early Carboniferous. The Late Early Carboniferous alkali-feldspar granites should formed in the rift environment, instead of coming from the previous post-collisional or arc tectonic setting.

     

  • 近年来, 随着软土地区工程建设的迅速发展, 饱和土的物理力学特性研究受到了工程地质和岩土工程界的极大关注, 国内一些地区在软土工程特性研究方面取得了不少进展[1]。作者以云南大理洱海东缘的早全新世软粘土为例, 较系统地测试分析了软粘土的工程地质特性, 并对洱海东缘软粘土各基本物理力学性质指标之间的相关关系进行了分析, 结果不仅可用于软土力学性质指标的估算, 而且对于指导软粘土工程问题的处理具有较大的实际意义。

    洱海位于云南省大理市, 是滇西最大的断陷湖泊, 长42km, 宽最大9km, 湖面海拔1974m, 湖水面积约249. 8km2[2], 属澜沧江水系。洱海西邻前寒武纪板岩和大理岩构成点苍山, 东部为晚古生代的石灰岩低山丘陵, 北测为入口, 向南为西洱河, 是一个开放的湖泊水系。

    根据前人研究成果[3], 洱海盆地于始新世开始断陷接受沉积。晚更新世时气候寒冷, 大理冰期来临, 来自西侧点苍山的山岳冰川产生强烈的刨蚀作用, 造成河流堵塞。进入早全新世时, 气候发生变化、温度上升, 洱海水泛滥, 平均水位达海拔2160m, 形成大量河湖相或河湖-沼泽相沉积。全新世中期, 全区持续上升, 湖水大面积干涸或范围缩小, 水位下降到海拔2000m左右[4, 5]。全新世晚近时期, 区内湖泊进一步缩小或干涸, 洱海目前的水位是1974m。随着洱海水位不断下降, 湖泊面积逐渐缩小, 原湖泊近岸水面下的沉积地层出露水面, 即洱海软粘土主要分布在洱海断陷湖的周缘。经孢粉分析和14C年龄测定, 洱海边缘的软粘土主要是近一万年全新世以来的沉积[6]

    图  1  洱海周缘软土分布示意图
    1.软土分布区; 2.点苍山; 3.水系; 4.取样点; 5.断层; 6.滇藏铁路;
    ①点苍山山前断裂, ②海东断裂, ③福寿场-江尾断裂; ④周城-清水断裂带; ⑤西洱河断裂
    Figure  1.  Distribution of soft clay around Erhai Lake

    根据移液管全分散法粒度分析结果(表 1), 洱海东缘软粘土具有高分散性, 砂粒含量极低, 主要由粉粒和粘粒组成, d<5μm的粘粒含量大部分在35 %以上, 最高达60. 32 %。

    表  1  洱海东缘软粘土物质组成及物理化学活性测试结果
    Table  1.  Analysis of the composition and phy sicochemical activity of soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    粘土矿物定量测试结果表明, 洱海东缘软粘土的主要粘土矿物成分为单矿物蒙脱石(S)(图 2), 占粘土矿物总量的80 ~ 81 %, 次要粘土矿物为高岭石(K), 占16 %~ 17 %, 伊利石(I)仅占2 %~ 4 % (表 2)。洱海富Mg2+的水体环境和周边大量蒙脱石化蚀变岩的分布是形成大量蒙脱石的原因[7]

    图  2  洱海东缘软粘土<2μm粒组X-射线衍射曲线
    1-天然样品; 2-乙二醇处理样品; 3-550℃加热处理样品
    Figure  2.  Oriented X-ray diffractograms of the <2μm clay fraction of soft clay on the east bank of Erhai Lake
    表  2  洱海东缘软粘土矿物成分定量测试结果
    Table  2.  Quantitative analysis of the mineral composition of soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    比表面积指标可以较好地反映粘性土的物理化学活性。采用乙二醇乙醚吸附法测定结果表明, 洱海软粘土的比表面积为176. 78 ~ 448. 23m2 g, 平均值299. 32m2 g, 说明其物理活性较高。

    洱海东缘软粘土为淡水湖相沉积, 采用土水比1: 5悬浮液测得样品的pH值为6. 23 ~ 7. 9 (表 3), 基本属中性。洱海软粘土的含盐量通常小于100mg 100g, 个别地点因有机质大量聚集, 引起局部含盐量升高(主要为SO42-)。孔隙溶液的主要阳离子及粘土矿物表面可交换性阳离子都是以Ca2+为主, 不存在高浓度Cl--Na+引起的絮凝作用, 因而粘土矿物物理化学活性强、交换量高。交换性Ca2+引起的粘土颗粒絮凝作用和双电层压缩明显, 造成粘土结构强度高、粘聚力增大、压缩性降低。

    表  3  洱海东缘软粘土水提取液化学分析结果
    Table  3.  Chemical analysis of extracting water from soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    根据洱海东缘软粘土的实验结果(表 4), 软粘土的工程地质特性主要表现在以下方面:

    表  4  洱海东缘软粘土的工程特性统计结果
    Table  4.  Statistical results of engineering properties of soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    (1) 含水量较高。含水量一般在40 %~ 65 %之间, 最高可达104 %, 平均值为57. 08 %, 接近于液限, 几乎处于饱和状态。

    (2) 天然孔隙比大。孔隙比一般在0. 64 ~ 2. 63之间, 平均值为1. 49。

    (3) 压缩性大。软粘土压缩系数为0. 23 ~ 2. 21MPa-1, 平均值0. 88MPa-1;压缩模量一般为1. 45 ~ 5. 63MPa, 平均值3. 14MPa。数据统计表明, 其中有14 %的软粘土为中等压缩性, 86 %为高压缩性, 说明洱海软粘土虽以高压缩性为主, 但中压缩性仍占有一定比例, 说明这部分软粘土已经发生了一定程度的固结。

    (4) 高塑性。液限多在45 %以上, 最高达101. 3 %, 平均值为58. 17 %; 塑限多大于25 %, 最高近61 %, 平均值约31. 4 %; 塑性指数的平均值绝大多数大于20 %。总体上, 洱海早全新世软粘土属于高塑性粘土。

    (5) 强度低。天然不排水快剪抗剪强度平均值只有29. 71kPa, 按照25kPa限, 超出软粘土范围; 按照布朗40kPa标准则为中等软粘土。表明土体抵抗剪切变形的能力差。

    (6) 固结系数小。该区软粘土固结系数一般在0. 11 ~ 4. 42cm2/s之间, 平均值为1. 08 cm2/s, 说明该区软土完成固结沉降需要较长时间, 这对施工工期影响很大。

    (7) 透水性弱。低渗透性是软粘土的共同属性, 其渗透性大小随粘粒含量和塑性指数的增高而降低, 洱海软粘土渗透系数最低0. 04 ×10-7 cm/s, 高者达4. 17 ×10-7 cm/s, 一般为0. 30 ~ 0. 60 ×10-7cm/s, 平均值0. 39 ×10-7 cm/s; 表明软土的排水固结不好, 对排水固结不利。

    洱海东缘软粘土沉积年代较短, 固结程度低, 淤泥及淤泥质粘土呈絮状结构, 具有发育的孔隙, 因而压缩性大。鉴别天然粘土沉积是否属于正常固结的方法有很多种, Skempton (1970)建议采用以下两种方法[8] :

    (1) 用Casagrande图解法从压缩实验求得先期固结压力σvo; 即延长e-logσv曲线的原始直线部分与通过原位孔隙比e0的水平线相交得出下限σvc(min)。如果σvo夹在σvcσvc(min)之间, 则粘土是正常固结的。

    (2) 根据Su/σvo与深度的关系判断(Su是不排水抗剪强度, 根据粘聚力和内摩擦角由公式τ=c+σtanθ计算而得)。如果各点近似落在一条直线上, 即如果不排水抗剪强度随着有效覆盖压力成比例增加, 则认为粘土是正常固结的。

    对洱海东缘软粘土固结性采用第二种方法进行分析。根据室内实验结果(图 3), 抗剪强度与有效应力之比(Su/σvo)随深度出现两种不同的变化变化规律。从地表到大致10m左右的深度, Su/σvo随深度呈现对数变化规律, 对其进行回归分析, 可以看出有明显的相关性, 相关系数为0. 91。相关关系可以表示如下:

    图  3  洱海东缘早全新世软粘土工程特性
    Figure  3.  Engineering properties of early Holocene soft clay on the east bank of Erhai Lake

    (1)

    根据Skempton建议采用的方法判断, 表明表层软粘土并非正常固结, 而是出现超固结现象。从图 3中含水量、容重、不排水抗剪强度随深度变化情况也可以证明这一点。在表层(约0 ~ 10m)天然含水量随深度而增大, 容重、不排水抗剪强度随深度而减少。

    初步分析认为, 出现这种现象主要是受大气的影响。在特定的气候条件下(主要是干旱气候条件), 蒸发量大于降水量, 同时伴随着地下水位也降低。湖面退缩, 湖相沉积地层出露水面而暴露在空气中, 由于蒸发失水, 致使土层干燥, 同时地下水位下降, 有效应力增加, 产生土体固结, 孔隙比减少, 出现并非仅在自身重力作用下的固结过程, 即超固结过程。这类在历史上曾经受到的最大压力大于目前承受的有效应力的粘土称之为超固结粘土。地表土而后经过雨水的淋滤及不断的物理化学变化, 形成不同于下部, 但与下部土层成渐变的硬壳层, 这个硬壳层表现出液性指数与含水量小、抗剪强度大的工程特性[9]

    实际工程中经常建立土体物理力学性质指标之间的相互关系式, 从而根据容易测定的物理性质指标估算难以准确测定的力学性质指标, 以供工程应用参考。采用线性回归方法, 对洱海东缘早全新世软粘土的主要物理力学性质指标之间的相关关系进行统计分析。

    对洱海东缘软粘土的114组实验数据进行了变异性分析(表 5)。分析结果表明, 物理指标的变异系数一般小于力学指标的变异系数。在物理指标中, 容重的变异系数最小, 力学指标的变异系数一般都比较大。力学指标变异性稍大, 出现较大的波动, 这主要是由于包括取样、进行力学实验时, 由于仪器或人为因素影响而出现较大的差异性。其本身并不反映当地软土力学指标具有明显的地区性差异, 所以分布于洱海东缘湖泊岸过渡带的软土, 在物理和力学指标上基本一致。

    表  5  洱海东缘早全新世软粘土测试数据变异性分析
    Table  5.  Variability analysis of test data of early Holocene soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    对洱海东缘软粘土物理力学指标参数进行了相关性统计(图 4), 回归方程及相关系数见表 6

    图  4  指标参数之间关系散点图
    Figure  4.  Scattergrams of the relation between parameters
    表  6  洱海东缘软粘土指标参数关系回归方程
    Table  6.  Parameter regression equations of soft clay on the east bank of Erhai Lake
    下载: 导出CSV 
    | 显示表格

    从统计结果可以看出, 洱海东缘铁路沿线软粘土含水量W与孔隙比e、塑性指数IP与液限WL、孔隙比e与压缩系数av、含水量W与压缩系数av具有显著正相关性; 液性指数IL与快剪粘聚力C、含水量W与快剪内摩擦角φ、塑性指数IP与压缩系数av之间存在较为明显的负相关性。

    洱海东缘的软土主要是大理冰期后早全新世气候变暖、点苍山冰川融化、洱海湖水水位上升湖面扩大所形成的湖积粘土。本文在野外地质调查和室内试验结果分析的基础上对洱海东缘软粘土的分布、物质组成、物理性质和力学性质等方面进行了研究, 取得以下主要认识:

    (1) 洱海东缘软粘土的粘粒含量高, 粘土矿物组成以单矿物的蒙脱石为主, 孔隙溶液及粘土矿物表面可交换性阳离子都是以Ca2+为主; 比表面积高, 物理化学活性较强。

    (2) 洱海东缘软粘土具有高孔隙性、高含水量、高塑性、中高压缩性、低强度等特性。在地表约10米以上, 软粘土呈现超固结硬化现象, 天然含水量随深度增加, 容重和抗剪强度随深度减少。

    (3) 洱海东缘软粘土的主要物理力学指标参数之间具有较好的相关性, 回归分析得出的方程可用于力学指标的预测和估算, 对工程应用有较大的实际意义, 但地区性经验公式的建立, 还有待于进一步的分析探讨。

  • [1]
    韩宝福, 何国琦, 王式洸, 等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm

    HAN Bao-fu, HE Guo-qi, WANG Shi-guang, et al. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xin jiang[J]. Geological Review, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm
    [2]
    WU F, SUN D, LI H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143~173.
    [3]
    WU F, JAHN B, WILDE S, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1/2):89~113.
    [4]
    JAHN B, WU F, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4):171~198. doi: 10.1016/S0024-4937(01)00066-4
    [5]
    王宗秀. 博格达山链的造山活动与山体形成演化[D]. 北京: 中国地震局地质研究所, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htm

    WANG Zong-xiu. Orogeny, Formation and evolution in the Bogeda Mountain Chains, Northwestern China[D] Beijing:Institute of Geology, Seismological Bureau of China, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htm
    [6]
    XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370~395. doi: 10.2475/ajs.304.4.370
    [7]
    李锦轶, 何国琦, 徐新, 等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm

    LI Jin-yi, HE Guo-qi, XU Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm
    [8]
    李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm

    LI Jin-yi, ZHANG Jin, YANG Tian-nan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    [9]
    孙桂华. 新疆哈尔里克山古生代以来构造变形及构造演化[D]. 北京: 中国地质科学院, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htm

    SUN Gui-hua. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic[D]. Beijing:Chinese Academy of Geological Sciences, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htm
    [10]
    王京彬, 徐新.新疆北部后碰撞构造演化与成矿[J].地质学报, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm

    WANG Jing-bin, XU Xin, et al. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm
    [11]
    夏林圻, 夏祖春, 徐学义, 等.天山古生代洋陆转化特点的几点思考[J].西北地质, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htm

    XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Some thoughts on the characteristics of Paleozoic ocean-continent transition from Tian shan mountoins[J]. Northwestern Geology, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htm
    [12]
    夏林圻, 夏祖春, 徐学义, 等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J].西北地质, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htm

    XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htm
    [13]
    夏林圻, 李向民, 夏祖春, 等. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm

    XIA Lin-qi, LI Xiang-min, XIA Zu-chun, XU Xue-yi, et al. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tian shan, Northwestern China[J]. Northwestern Geology, 2006, 39(1):1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm
    [14]
    顾连兴, 胡受奚, 于春水, 等.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm

    GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm
    [15]
    王银喜, 顾连兴, 张遵忠, 等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm

    WANG Yin-xi, GU Lian-xing, ZHANG Zun-zhong, et al. Geochronology and Nd-Sr-Pb isotope of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm
    [16]
    顾连兴, 胡受奚, 于春水, 等.东天山博格达造山带石炭纪火山岩及其形成地质环境[J].岩石学报, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm

    GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Carbonif erous volcanites in the Bogda orogenic belt of eastern Tianshan:their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm
    [17]
    李锦轶, 王克卓, 孙桂华, 等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J].岩石学报, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm

    LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoie active margin slices in the southern Turfan-Hami basin:geologlcal records of subduction of the Paleo-Asian Ocean Plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm
    [18]
    XIAO W, HAN C, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4):102~117.
    [19]
    JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1):73~100. doi: 10.1144/GSL.SP.2004.226.01.05
    [20]
    新疆省地质矿产局. 中华人民共和国区域地质调查报告——口门子(K46E005015) 幅(1: 5万). 2016.
    [21]
    Creaser R A, 杨庚. A型花岗岩回顾——对残留源区模式的评价[J].地质科学译丛, 1992, (1):21~26. http://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199201007.htm
    [22]
    LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535~1546. doi: 10.1007/s11434-010-3052-4
    [23]
    LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34~43.
    [24]
    LUDWIG K R. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1):631~656. doi: 10.2113/0520631
    [25]
    ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59~79.
    [26]
    GAO S, RUDNICK R L, YUAN H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019):892~897. doi: 10.1038/nature03162
    [27]
    HOSKIN P W O, BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423~439.
    [28]
    HOSKIN P W O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27~62. doi: 10.2113/0530027
    [29]
    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

    WU Yuan-bao, ZHENG Yong-fei, et al. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Science Bulletin, 2004, 49(15):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
    [30]
    路风香, 桑隆康.岩石学[M].北京:地质出版社, 2007.

    LU Feng-xiang, SANG Long-kang. Petrology[M]. Beijing:Geological Publishing House, 2007.
    [31]
    FROST C D, FROST B R. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology, 2010, 52(1):39~53.
    [32]
    SHAND S J. Eruptive rocks[M]. Murby London, 1927.
    [33]
    De la ROCHE H, LETERRIER J, GRANDCLAUDE P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses:Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29(1/4):183~210.
    [34]
    苏玉平, 唐红峰. A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm

    SU Yu-ping, TANG Hong-feng, et al. Trace Element Geochemistry of A-Type Granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm
    [35]
    WHALEN J B. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95(4):407~419. doi: 10.1007/BF00402202
    [36]
    WU F, SUN D, GE W, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1~30. doi: 10.1016/j.jseaes.2010.11.014
    [37]
    HAN B, WANG S, JAHN B, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135~159.
    [38]
    李献华. Sm-Nd模式年龄和等时线年龄的适用性与局限性[J].地质科学, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm

    LI Xian-hua. Li X H, A discussion on the model and isochron ages of Sm-Nd isotopic systematics:Suitability and limitation[J].Scientia Geologica Sinica, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm
    [39]
    SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19
    [40]
    JAHN B, WU F, HONG D. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1):5~20. doi: 10.1007/BF02719146
    [41]
    WHITE W M, DUPRÉ B, VIDAL P. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 1985, 49(9):1875~1886. doi: 10.1016/0016-7037(85)90082-1
    [42]
    WHITE B W C A. I-and S-type granites in the Lachlan Fold Belt[J]. GSA Special Papers, 1992, 272:1~26. doi: 10.1130/SPE272
    [43]
    LOISELLE M C W D R. Characteristics and origin of anorogenic granites[J]. California:San Diego, 1979:468.
    [44]
    吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm

    WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm
    [45]
    CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3
    [46]
    李小伟, 莫宣学, 赵志丹, 等.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm

    LI Xiao-wei, MO Xuan-xue, ZHAO Zhi-dan, et al. A discussion on how to discriminate A-type granite[J]. Geological Bulletin of China, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm
    [47]
    KING P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371~391. doi: 10.1093/petroj/38.3.371
    [48]
    顾连兴. A型花岗岩的特征、成因及成矿[J].地质科技情报, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm

    GU Lian-xing. Geological features, petrogenesis and metallogeny of A-type granites[J]. Geological Science and Technology Information, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm
    [49]
    EBY N G. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 7(20):641~644.
    [50]
    SYLVESTER P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989, 97(3):261~280. doi: 10.1086/629302
    [51]
    刘红涛, 孙世华, 刘建明, 等.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质[J].岩石学报, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm

    LlU Hong-tao, SUN Shi-hua, LlU Jian-ming, et al. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton geochemistry and source region[J]. Acta Petrologica Sinica, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm
    [52]
    贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm

    JIA Xiao-hui, WANG Qian, TANG Gong-jian, et al. A-type granites:Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm
    [53]
    BONIN B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2):1~29.
    [54]
    童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm

    TONG Ying, WANG Tao, HONG Da-wei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoidsin northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica Et Mineralogica, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm
    [55]
    田健. 东准噶尔卡拉麦里地区早石炭世侵入岩的岩石学特征及其地质意义[D]. 武汉: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htm

    TIAN Jian. The petrologic characteristics and tectonic implications for Early Carboniferous intrusions from the area of Karamaili in eastern Junggar[D]. Wuhan:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htm
    [56]
    黄伟. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因[D]. 北京: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htm

    HUANG Wei. Geochoronology, Geochemistry and Origin of Carboniferous-Permian Alkali Granites inEastern Tianshan Hami, NW China[D]. Beijing:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htm
    [57]
    郑建平, 王方正, 成中梅, 等.拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据[J].地球科学. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013

    ZHENG Jian-ping, WANG Fang-zheng, CHENG Zhong-mei, et al. Nature and evolution of amalgamated basement of Junggar Basin, northwestern China:Sr-Nd isotope evidences of basement igneous rock[J]. Earth Science. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013
    [58]
    田黎萍, 王金荣, 汤中立, 等.新疆博格达山东段早石炭世火山岩地球化学特征及其构造意义[J].兰州大学学报:自然科学版, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htm

    TIAN Li-ping, WANG Jin-rong, TANG Zhong-li, et al. Geochemical characteristic and tectonic significance of the early carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University:Natural Science, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htm
    [59]
    易鹏飞. 东天山博格达-巴里坤塔格石炭纪-早二叠世陆内裂谷演化特征[D]. 西安: 长安大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htm

    YI Peng-fei. Evolution characteristics of Bogda-Balkun intracontinental rift in Carboniferous-Early Permian[D]. Xi'an:Chang'an University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htm
    [60]
    王银喜, 顾连兴, 张遵忠, 等.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J].岩石学报, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm

    WANG Yin-xi, GU Lian-xing, ZHANG Zun-zhi, et al. Sr-Nd-Pb isotope geochemistry of Rhyolite of the Late Carboniferous Dashitou group in eastern Tianshan[J]. Acta Petrologica Sinica, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm
    [61]
    张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002

    ZHANG Qi, PAN Guoqiang, Li Chengdong, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002
    [62]
    PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications. 1984, 16(1):77~94. doi: 10.1144/GSL.SP.1984.016.01.06
  • Relative Articles

    HU Caiyun, LI Cong, YANG Zhibin, JIA Qian, SUN Yanchun, LI Chaofeng, SUN Junchang, YANG Yuehui, SUN Dongsheng. 2024: Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage. Journal of Geomechanics, 30(3): 419-426. doi: 10.12090/j.issn.1006-6616.2023075
    ZHAO Dongliang, LANCUO Zhuoma, HOU Guangliang, XU Changjun, LI Wanzhi. 2021: Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province. Journal of Geomechanics, 27(1): 83-95. doi: 10.12090/j.issn.1006-6616.2021.27.01.009
    DENG Jun, ZHAN Mingguo, ZHOU Weijin, WU Songle, HUANG Ning, ZHANG Runqiu, XIE Shuyun. 2021: Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method. Journal of Geomechanics, 27(3): 374-390. doi: 10.12090/j.issn.1006-6616.2021.27.03.034
    WAN Jiawei, FENG Chengjun, QI Bangshen, SUN Mingqian, YANG Xiaoxiao, WANG Huiqing, FAN Yulu, ZHANG Peng, MENG Jing, TAN Chengxuan. 2020: Characteristics and susceptibility evaluation of geohazard development in Shunping county, Hebei province. Journal of Geomechanics, 26(4): 604-614. doi: 10.12090/j.issn.1006-6616.2020.26.04.053
    ZHOU Jingjing, ZHANG Xiaomin, ZHAO Fasuo, LI Hui, LIU Hainan. 2019: RESEARCH ON RISK ASSESSMENT OF GEOLOGICAL HAZARDS IN QINLING-DABA MOUNTAIN AREA, SOUTH SHAANXI PROVINCE. Journal of Geomechanics, 25(4): 544-553. doi: 10.12090/j.issn.1006-6616.2019.25.04.053
    CAO Xiaohong, GONG Xiaoping, HAN Qiong, MENG He. 2019: APPLICATION OF EVIDENCE WEIGHT METHOD IN QUANTITATIVE EVALUATION OF FAULTS AND GOLD MINERALIZATION IN KALAMAILI GOLD BELT, XINJIANG. Journal of Geomechanics, 25(S1): 157-162. doi: 10.12090/j.issn.1006-6616.2019.25.S1.027
    ZHU Sui-zhou, ZHANG Long, MIN Xiang-ji, CHU Zhao-bo, LI Xin-nian, JIN Gang, CUI Qiu-bo, LIU Ren-song, WANG Chun, JIA Xiu. 2015: GEOLOGICAL CHARACTERISTICS AND ITS MINING EVALUATION OF XINCHENG GOLD DEPOSIT IN JIAODONG. Journal of Geomechanics, 21(2): 272-277.
    GUO Chang-bao, ZHANG Yong-shuang, QU Ke, XIONG Tan-yu, FU Xiao-xiao, DU Yu-ben. 2014: QUANTITATIVE EVALUATION OF CRUSTAL STABILITY ALONG THE BAOSHAN-RUILI SECTION OF DALI-RUILI RAILWAY AND ITS ADJACENT REGION. Journal of Geomechanics, 20(1): 70-81.
    WANG Lei, ZHANG Chun-shan, YANG Wei-min, SUN Wei-feng, QIU Zhan-lin, WANG Tao. 2011: RISK ASSESSMENT OF GEOHAZARDS BY USING GIS IN GANGU COUNTY, GANSU PROVINCE. Journal of Geomechanics, 17(4): 388-401.
    LIU Guo-lin, PAN Mao, XIE Hong, SU Jian-guo. 2009: GEOLOGICAL CHARACTERISTICS OF GAS ON SOUTH LIMB OF GEQUAN COAL MINE. Journal of Geomechanics, 15(3): 315-320.
    ZHANG Chun-shan, LI Guo-jun, ZHANG Ye-cheng, MA Yin-sheng. 2006: RISK EVALUATION OF AVALANCHE, LANDSLIDE AND MUDFLOW HAZARDS IN THE UPPER REACHES OF THE YELLOW RIVER. Journal of Geomechanics, 12(2): 211-218.
    LIU Feng-min, ZHANG Li-hai, LIU Hai-qing, ZHANG Ye-cheng. 2006: DANGER ASSESSMENT OF EARTHQUAKE-INDUCED GEOLOGICAL DISASTERS IN CHINA. Journal of Geomechanics, 12(2): 127-131.
    CHEN Qi, LI Zhi-yi, SHI Huai-lun. 2004: THOUGHTS AND BASIC METHODS OF REGIONAL GEOLOGICAL HAZARD RISK ASSESSMENT. Journal of Geomechanics, 10(1): 71-80.
    FU Xiao-lin, HUANG Xue-bin, GUO Xi-zhe, XU Kai-xiang, CHENG Wen-ming. 2004: INTEGRATION OF RS,GIS AND GPS TECHNIQUES FOR GEOLOGICAL HAZARD SURVEY AND EVALUATION. Journal of Geomechanics, 10(1): 81-87.
    MA Yin-sheng, ZHANG Ye-cheng, ZHANG Chun-shan, WANG Jin-shan. 2004: THEORY AND APPROACHES TO THE RISK EVALUATION OF GEOLOGICAL HAZARDS. Journal of Geomechanics, 10(1): 7-18.
    YANG Jian-jun, XIE Zhen-qian, ZHENG Ning-ping. 2004: APPLICATION OF THE FUZZY CLUSTERING ANALYSIS IN THE EVALUATIO NOF REGIONAL CRUSTAL STABILITY IN XI'AN CITY. Journal of Geomechanics, 10(1): 57-64.
    WU Yun-sheng, YI Ming-chu. 2002: ACTIVE TECTONICS AND GEOLOGICAL HAZARDS OF THE XIDATAN-LAHSA SECTION ALONG QINGHAI-TIBET RAILWAY AND THE ASSESSMENT ON ITS ENGINEERING GEOLOGY. Journal of Geomechanics, 8(2): 97-135.
    DAI Jun-sheng, MENG Zhao-ping. 2000: FINITE STRAIN STUDY ON PALEOZOIC STRUCTURES IN CHENGDAO REGION. Journal of Geomechanics, 6(1): 77-83.
    Shi Lei, Huang Weiping, Meng Xiangang. 1998: DETERMINATION OF ROCK DEFORMATION BASED ON ANALYSIS OF IMAGES OF MICROSTRUCTURES. Journal of Geomechanics, 4(3): 91-96.
    Sun Ye, Tan Chengxuan, Yang Guisheng, Wang Ruijiang. 1997: QUANTITATIVE ASSESSMENT AND ZONATION OF REGIONAL CRUSTAL STABILITY IN CHINA. Journal of Geomechanics, 3(3): 41-52.
  • 加载中

Catalog

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (597) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return