LI Tiancheng, FANG Weixuan, WANG Lei, et al., 2022. Application of integrated geophysical method in prospecting: A case study of the magnetite-type IOCG deposits in the Moon Mountain exploration area, Copiapo, Chile. Journal of Geomechanics, 28 (1): 22-35. DOI: 10.12090/j.issn.1006-6616.20222802
Citation: TANG W C,DUAN W,ZOU L,et al.,2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China[J]. Journal of Geomechanics,28(5):765−792 doi: 10.12090/j.issn.1006-6616.20222812

A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China

doi: 10.12090/j.issn.1006-6616.20222812
Funds:  This research is financially supported by the Science and Technology Planning Project of the Sichuan Bureau of Geology and Minerals Resources (Grant SCDKKJXM–2018002) and Sichuan Geology and Mineral Bureau Geochemical Exploration Team Self-funded Scientific Research Special (Grant HT–KY–2022–003)
More Information
  • The Ke'eryin area in Sichuan province is one of the large rare metal ore concentration areas in the Songpan–Garze metallogenic belt. Numerous granite pegmatite dikes spread around the Ke'eryin mass. However, locating rare metal dikes in such a large pegmatite field has always been one of the challenges in this region. This paper summarized the geochemical element distribution in the Ke'eryin pegmatite and put forward geochemical indexes, e.g., characteristic element indexes, indicator indexes and grade indexes, to locate rare metal ore in the Ke'eryin area based on a systematic petrogeochemical analysis of two-mica granite, pegmatite microcline albite granite, different pegmatite types and typical deposits. Characteristic element indexes include Li, B, Sn, Rb, Be, Nb and Ta, etc. Indicator indexes for lateral variation are Cs, Tl, F, Zr, Y and ΣREE elements as well as values, e.g., TiO2/Ta, Zr/Hf, Ta/Zr, Nb/Ta, K/Na, etc., while indicator indexes for vertical variation include B, U, Zr, Be, Sn, Rb, Sr, Ba, Tl and In, etc. The variation in these indexes can be used to locate rare-metal-mineralized pegmatite, indicating ore bodies in a deep basin. Grade indexes are aluminum saturation index(A/CNK, A/NK)and rittmann index(σ), etc. Li ore grade is positively correlated with aluminum saturation but is negatively correlated with alkalinity. Grade index variation is a good indicator of lithium enrichment in ore bodies.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • BEUS A A, GRIGORIAN S V, 1977. Geochemical exploration methods for mineral deposits[M]. TETERUK-SCHNEIDER R, trans. Applied Publishing: l-287.
    BOYNTON W V, 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies[M]//In: Henderson, P., Ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
    ČERNÝ P, ERCIT T S, 2005.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026.
    CLARKE D B, 1992. Granitoid rocks[M]. London: Chapman and Hall: 1-283.
    DESCHAMPSF, DUCHÊNES, SIGOYERJ, et al. , 2017. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221-2256. doi: 10.1093/petrology/egy007
    FAN B C, ZHANG J, MENG G L, et al. , 2022. An assessment of lithium resource potentiality in Pamir syntax: basedon1: 1 million scale of geochemical survey[J]. Northwestern Geology, 55(1): 156-166. (in Chinese with English abstract)
    FEI G C, YUAN T J, TANG W C, et al. , 2014. Classification of ore bearing pegmatites in keeryin pegmatite type rare metal deposit in Western Sichuan[J]. Mineral Deposits, 33(S1): 187-188. (in Chinese)
    FEI G C, LI B H, YANG J Y, et al. , 2018. Geology, fluid inclusion characteristics and H-O-C isotopes of large Lijiagou Pegmatite spodumene deposit in Songpan-garze fold belt, eastern Tibet: implications for ore genesis[J]. Resource Geology, 68(1): 37-50. doi: 10.1111/rge.12145
    FEI G C, MENUGE J F, LI Y Q, et al. , 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555.
    GU C H, 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59-65. (in Chinese withEnglish abstract)
    LI H, 1993. An ideal pattern of primary superimposed halo of hydrothermal gold deposits[J]. Geology and Exploration, 29(4): 46-51. (in Chinese with English abstract)
    LI H, ZHANG W H, LIU B L, et al. , 1999a. Ideal model and principle of staching structure of axial geochemical parameter of gold deposit[J]. Geology and Exploration, 35(6): 40-43. (in Chinese with English abstract)
    LI H, ZHANG W H, CHANG F C, 1999b. Ideal models of overprint of primary halo for large, mega-size blind au ore deposits[J]. Contributions to Geology and Mineral Resources Research, 14(3): 25-33. (in Chinese with English abstract)
    LI H, ZHANG G Y, WANG Z N, et al. , 2003. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 27(6): 438-440. (in Chinese with English abstract)
    LI H, ZHANG G Y, GAO Y L, et al. , 2008. The structural superimposed halo model for prognosis of No. 2 enrichment zone at the depth of the Xiao Qinling gold ore concentration area [J]. Geophysical and Geochemical Exploration, 32(5): 525-528. (in Chinese with English abstract)
    LI H, YU B, LI D L, et al. , 2010. Research results of a new method of structural superposition halo for deep blind ore prospecting in crisis mines [J]. Mineral Deposits, 29(S1): 709-710. (in Chinese)
    LI H, YU B, LI D L, et al. , 2013. Prediction of blind ore bodies using structural superimposed halo and research methods [J]. Geology and Exploration, 49(1): 154-161. (in Chinese with English abstract)
    LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China [D]. Beijing: China University of Geosciences (Beijing): 49-71. (in Chinese with English abstract)
    LI J K, WANG D H, FU X F, 2006. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit, western Sichuan, and its tectonic significances[J]. Acta GeologicaSinica, 80(6): 843-848. (in Chinese with English abstract)
    LI P, LIU X, LI J K, et al. , 2019. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta GeologicaSinica, 93(6): 1374-1391. (in Chinese with English abstract)
    LI X F, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract)
    LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Geochemical characteristics and evidence of liquid immiscibility in keeryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese with English abstract)
    LIU C, WANG R C, WU F Y, et al. , 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421
    LIU C M. 2006. Progress in studies on primary halos of ore deposit [J]. Acta Geologica Sinica, 80(10): 1528-1538. (in Chinese with English abstract)
    LIU C M, MA S M, 2007. The main achievements of the study on primary halo in the past 50 years in China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 29(S1): 215-221. (in Chinese with English abstract)
    LIU T, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between granite and pegmatite in Kalu'an hard-rock-type lithium deposit in Xinjiang: results from zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Acta GeologicaSinica, 94(11): 3293-3320. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.11.009
    LIU X, ZHAN Q Y, ZHU D C, et al. , 2021. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: evidence from detrital zircon geochronology and Hf isotope[J]. Acta PetrologicaSinica, 37(11): 3513-3526. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.16
    LUO W, LI Y G, LUO K J, et al. , 2018. Anomaly evaluation and prospecting prediction of 1∶50000 stream Sediment survey in Keeryin area, Sichuan Province[J]. Science Technology and Engineering, 18(9): 56-62. (in Chinese with English abstract)
    MA S C, WANG D H, LIU S B, et al. , 2019. Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 38(4): 877-897. (in Chinese with English abstract)
    MCDONOUGH W F, SUN S S, RINGWOOD A E, et al., 1992. K, Rb and Cs in the Earth and Moon and the evolution of the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 56(3): 1001-1012.
    PULLEN A, KAPP P, GEHRELS G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1
    QIN C S, PENG X H, XU B, et al. , 2011. Research progress of prospecting by primary halos [J]. Acta MineralogicaSinica, 31(S1): 828-829. (in Chinese with English abstract)
    REN L L, WANG R T, ZHANG C Y, et al. , 2019. Application of structural superimposed halo prospecting method to deep blind ore prediction in Yang Meitian copper mine[J]. Contributions to Geology and Mineral Resources Research, 34(2): 315-320. (in Chinese with English abstract)
    ROGERF, MALAVIEILLEJ, LELOUPPH, et al. , 2004. Timing of granite emplacement and cooling in the Songpan–Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0
    ROGER F, JOLIVET M, MALAVIEILLE J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269. doi: 10.1016/j.jseaes.2010.03.008
    SANG L K, MA C Q, 2012. Petrology[M]. 2rd ed. Beijing: Geology Press: 187-192. (in Chinese with English abstract)
    SHAND S J, 1947. Eruptive rocks[M]. 3rd ed. New York: John Wiley: 1-488.
    SHAO Y, 1997. Rock survey of hydrothermal deposits (primary halo method) prospecting [M]. Beijing: Geology Press: 1-143. (in Chinese)
    SUN W L, MA Y Q, SONG Q W, 2021. Characteristics and research progress of granitic pegmatite type lithium deposits in China [J]. Geology and Exploration, 57(3): 0478-0496. (in Chinese with English abstract)
    WANG B, SONG Y W, SUN B, et al. , 2021. Structural superimposing halo practical modeling and deep prospecting prediction of Zhaishang gold deposit in the Gansu province[J]. Geoscience, 35(6): 1504-1514. (in Chinese withEnglish abstract)
    WANG Z P, LIU S B, MA S C, et al. , 2018. Metallogenic regularity, deep and periphery prospecting of Dangbasuperlarge spodumene deposit in Aba, Sichuan province[J]. Earth Science, 43(6): 2029-2041. (in Chinese with English abstract)
    XU Z Q, HOU L W, WANG Z X, 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China [M]. Beijing: Geology Press: 1-288. (in Chinese)
    XU Z Q, WANG R C, ZHAO Z B, et al. , 2018. On the structural backgrounds of the large-scale“hard-rock type”lithium ore belts in China [J]. Acta GeologicaSinica, 92(6): 1091-1106. (in Chinese with English abstract)
    XU ZQ, FU X F, ZHAO Z B, et al. , 2019. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits [J]. Earth Science, 44(5): 1452-1463.
    XU Z Q, FU X F, WANG R C, et al. , 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, east Tibet [J]. Lithos, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281
    YUE X Y, YANG B, ZHOU X, et al. , 2019. Geochemical characteristics and U-Pb age of Redamen granites in western Sichuan, China: petrogenesis and tectonic significance[J]. Geoscience, 33(5): 1015-1024. (in Chinese with English abstract)
    ZHANG D H, 2020. Geochemistry of hydrothermal ore-forming processes[M]. Beijing: Geology Press: 578-594. (in Chinese)
    ZHAO Z B, DU J X, LIANG F H, et al. , 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20(1): 24-45. doi: 10.1029/2018GC007617
    ZHENG Y L, XU Z Q, GAO W Q, et al. , 2021. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan province[J]. Acta GeologicaSinica, 95(10): 3069-3084. (in Chinese with English abstract)
    ZHOU X M, 2007. Genesis of late mesozoic granites in Nanling area and lithosphere dynamic evolution[M]. Beijing: Science Press: 1-691. (in Chinese)
    范堡程, 张晶, 孟广路, 等, 2022. 帕米尔构造结锂矿资源潜力评价: 基于1: 100万地球化学调查[J]. 西北地质, 55(1): 156-166.
    费光春, 袁天晶, 唐文春, 等, 2014. 川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析[J]. 矿床地质, 33(S1): 187-188. doi: 10.16111/j.0258-7106.2014.s1.096
    古城会, 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007
    李惠, 1993. 热液金矿床原生叠加晕的理想模式[J]. 地质与勘探, 29(4): 46-51.
    李惠, 张文华, 刘宝林, 等, 1999a. 金矿床轴向地球化学参数叠加结构的理想模式及其应用准则[J]. 地质与勘探, 35(6): 40-43.
    李惠, 张文华, 常凤池, 1999b. 大型、特大型金矿盲矿预测的原生叠加晕理想模型[J]. 地质找矿论丛, 14(3): 25-33.
    李惠, 张国义, 王支农, 等, 2003. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 27(6): 438-440.
    李惠, 张国义, 高延龙, 等, 2008. 小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J]. 物探与化探, 32(5): 525-528.
    李惠, 禹斌, 李德亮, 等, 2010. 危机矿山深部找盲矿的构造叠加晕新方法研究成果[J]. 矿床地质, 29(S1): 709-710. doi: 10.16111/j.0258-7106.2010.s1.355
    李惠, 禹斌, 李德亮, 等, 2013. 构造叠加晕找盲矿法及研究方法[J]. 地质与勘探, 49(1): 154-161.
    李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京): 49-71.
    李建康, 王登红, 付小方, 2006. 川西可尔因伟晶岩型稀有金属矿床的40Ar-39Ar年代及其构造意义[J]. 地质学报, 80(6): 843-848. doi: 10.3321/j.issn:0001-5717.2006.06.006
    李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 93(6): 1374-1391. doi: 10.3969/j.issn.0001-5717.2019.06.016
    李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304.
    廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69.
    刘崇民. 2006. 金属矿床原生晕研究进展[J]. 地质学报, 80(10): 1528-1538.
    刘崇民, 马生明, 2007. 我国原生晕研究50年的主要成果[J]. 物探化探计算技术, 29(S1): 215-221.
    刘涛, 田世洪, 王登红, 等, 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293-3320. doi: 10.3969/j.issn.0001-5717.2020.11.009
    刘祥, 詹琼窑, 朱弟成, 等, 2021. 松潘-甘孜褶皱带南部上三叠统物源及构造抬升: 碎屑锆石年代学和Hf同位素证据[J]. 岩石学报, 37(11): 3513-3526. doi: 10.18654/1000-0569/2021.11.16
    罗伟, 李佑国, 罗开杰, 等, 2018. 川西可尔因地区1∶5万水系沉积物测量异常评价及找矿预测[J]. 科学技术与工程, 18(9): 56-62. doi: 10.3969/j.issn.1671-1815.2018.09.008
    马圣钞, 王登红, 刘善宝, 等, 2019. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 38(4): 877-897. doi: 10.16111/j.0258-7106.2019.04.013
    卿成实, 彭秀红, 徐波, 等, 2011. 原生晕找矿法的研究进展[J]. 矿物学报, 31(S1): 828-829. doi: 10.16461/j.cnki.1000-4734.2011.s1.256
    任良良, 王润涛, 张承玉, 等, 2019. 构造叠加晕找矿法在云南省杨梅田铜矿床深部盲矿预测中的应用[J]. 地质找矿论丛, 34(2): 315-320. doi: 10.6053/j.issn.1001-1412.2019.02.020
    桑隆康, 马昌前, 2012. 岩石学[M]. 2版. 北京: 地质出版社: 187-192.
    邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社: 1-143.
    孙文礼, 马叶情, 宋庆伟, 2021. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 57(03): 478-496.
    王斌, 宋伊圩, 孙彪, 等, 2021. 甘肃寨上金矿南矿带构造叠加晕实用模型及深部找矿预测[J]. 现代地质, 35(6): 1504-1514. doi: 10.19657/j.geoscience.1000-8527.2021.112
    王子平, 刘善宝, 马圣钞, 等, 2018. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 43(6): 2029-2041.
    许志琴, 侯立炜, 王宗秀, 1992. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社: 1-288.
    许志琴, 王汝成, 赵中宝, 等 , 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景 [J]. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
    岳相元, 杨波, 周雄, 等, 2019. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 33(5): 1015-1024.
    张德会, 2020. 热液成矿作用地球化学 [M]. 北京: 地质出版社: 578-594.
    郑艺龙, 许志琴, 高文琦, 等 , 2021. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因 [J]. 地质学报, 95(10): 3069-3084. doi: 10.3969/j.issn.0001-5717.2021.10.009
    周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化 [M]. 北京: 科学出版社: 1-691.
  • Relative Articles

    TANG Haibing, WU Jianjun, ZHANG Chunshan, YANG Weimin, QU Jingkai, MA Siqi, XU Chuancheng. 2024: Debris flow hazard analysis before and after improvement of Hanjia gully control engineering at the source area of the Fujiang River. Journal of Geomechanics, 30(4): 659-672. doi: 10.12090/j.issn.1006-6616.2023097
    GU Zhenkui, YAO Xin, LI Lingjing, TAO Tao. 2023: Applying stream power gradient in the investigation on spatial susceptibility of debris flow: A case of the Jinsha River Basin, China. Journal of Geomechanics, 29(1): 87-98. doi: 10.12090/j.issn.1006-6616.2022022
    ZHANG Xianzheng, TIE Yongbo, LI Guanghui, YANG Chang, LU Jiayan, LU Tuo. 2022: Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28(6): 1035-1045. doi: 10.12090/j.issn.1006-6616.20222827
    ZHANG Haowei, LIU Fuzhen, WANG Junchao, ZHANG Jiajia. 2022: Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation. Journal of Geomechanics, 28(2): 306-318. doi: 10.12090/j.issn.1006-6616.2021117
    MA Siqi, YANG Weimin, ZHANG Chunshan, QU Jingkai, WAN Feipeng, TANG Haibing. 2022: Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City. Journal of Geomechanics, 28(6): 1059-1070. doi: 10.12090/j.issn.1006-6616.20222829
    LI Yihao, DU Xingxing, LI Tianxiu. 2022: Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Tibetan Plateau, and their formation mechanism. Journal of Geomechanics, 28(3): 353-366. doi: 10.12090/j.issn.1006-6616.2021151
    WANG Zhaobo, WANG Jiangyue, HE Lelong, ZHANG Jian, ZHAO Xiangyang, LI Baojie. 2021: Characteristics and evolution process of the ridge-groove sequence of the Jiulongtan glacial accumulation in Mengshan, Shandong: with the discussion on the difference of accumulation sequence of glacier and debris flow. Journal of Geomechanics, 27(1): 105-116. doi: 10.12090/j.issn.1006-6616.2021.27.01.011
    ZHOU Qing-shuo, ZHANG Xu-jiao, YE Pei-sheng, HE Ze-xin, CAI Mao-tang, LIU Xiao-tong, LI Cheng-lu, WU Ze-qun. 2017: THE DISTRIBUTION AND PERIOD DIVISION OF HOLOCENE PALAEO CHANNELS OF THE YELLOW RIVER IN HETAO AREA. Journal of Geomechanics, 23(3): 339-347.
    LIU Yu-ping, LIANG Hong, CHENG Fi-fi. 2016: APPLICATION OF HIGH RESOLUTION AIRBORNE LIDAR IN XIAOJIANG ACTIVE TECTONICS AND GEOLOGICAL DISASTER STUDY. Journal of Geomechanics, 22(3): 747-759.
    ZHANG Rui-duan, GUO Chang-bao, ZHANG Yong-shuang, FU Xiao-xiao. 2014: DEVELOPMENT CHARACTERISTICS AND PREVENTION SUGGESTIONS OF THE LEPA DEBRIS FLOW IN THE ANNING RIVER FAULT ZONE. Journal of Geomechanics, 20(2): 132-139.
    SHI Ling, WANG Tao, XIN Peng. 2013: DEVELOPMENT CHARACTERISTICS OF THE GEO-HARZARDS IN BAOJI CITY, SHAANXI PROVINCE. Journal of Geomechanics, 19(4): 351-363.
    ZHAO Zhi-li, WANG Yong, CHI Zhen-qing, GUAN You-yi, YAO Pei-yi. 2011: ENVIROMENTAL CHANGES RECORDED BY POLLEN SINCE MID TO LATE HOLOCENE IN HUITENGXILE LAKE, LNNER MONGOLIA. Journal of Geomechanics, 17(1): 103-110.
    XIONG Tan-yu, YAO Xin, ZHANG Yong-shuang. 2010: A REVIEW ON STUDY OF ACTIVITY OF XIANSHUIHE FAULT ZONE SINCE THE HOLOCENE. Journal of Geomechanics, 16(2): 176-188.
    WANG Xian-li, QU Yong-xin, JIANG Liang-wen, ZHANG Yong-shuang. 2007: ENGINEERING PROPERTIES OF EARLY HOLOCENE SOFT CLAY ON THE EAST BANK OF ERHAI LAKE. Journal of Geomechanics, 13(3): 261-269.
    DING Ji-xin, YANG Zhi-fa, SHANG Yan-jun. 2006: CAUSE ANALYSIS AND QUANTITATIVE ZONATION OF MUDFLOW HAZARDS ALONG THE RAWU-LUNANG SECTION, SICHUAN-TIBET HIGHWAY. Journal of Geomechanics, 12(2): 203-210,226.
    WANG Yan, YE Qing-pei, QIAO Yan-song. 2006: PALYNOLOGICAL RECORDS OF THE HOLOCENE ENVIRONMENTAL CHANGES IN ZHENGLAN QI, INNER MONGOLIA. Journal of Geomechanics, 12(3): 324-328.
    ZHANG Chun-shan, ZHANG Ye-cheng, ZHANG Li-hai. 2004: DANGER ASSESSMENT OF COLLAPSES,LANDSLIDES AND DEBRIS FLOWS OF GEOLOGICAL HAZARDS IN CHINA. Journal of Geomechanics, 10(1): 27-32.
    CUI Zhi-jiu, TANG Yuan-xin, LI Jian-jiang, LIU Hong-yan, LIU Geng-nian. 2003: INFORMATION OF HOLOCENE ENVIRONMENTAL CHANGE FROM LACUSTRIAN DEPOSITS OF THE FOYECHI LAKE SECTION,TAIBAI MOUNTAIN. Journal of Geomechanics, 9(4): 330-336.
    LIU Xi-lin. 2000: DEBRIS FLOW RISK ZONATION IN ZHAOTONG COUNTY OF YUNNAN PROVINCE,CHINA. Journal of Geomechanics, 6(4): 37-42.
    Lao Xiong. 1995: ON THE FORMATION OF YARLUNG ZANGBO RIVER FAULT ZONE. Journal of Geomechanics, 1(1): 53-59.
  • Cited by

    Periodical cited type(2)

    1. 赵聪,梁京涛,铁永波,马晓波,张肃,龚凌枫. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究. 中国地质灾害与防治学报. 2024(04): 45-55 .
    2. 张国忠,李德华,廖俊雄,周沁铃. 得荣县泥石流的诱发降雨阈值分析. 农业灾害研究. 2024(10): 224-226+323 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.9 %FULLTEXT: 17.9 %META: 72.1 %META: 72.1 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %Central District: 0.1 %Central District: 0.1 %上海: 1.0 %上海: 1.0 %东莞: 0.2 %东莞: 0.2 %中卫: 2.2 %中卫: 2.2 %临汾: 0.1 %临汾: 0.1 %乐山: 0.2 %乐山: 0.2 %九江: 0.2 %九江: 0.2 %云浮: 0.7 %云浮: 0.7 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %佛山: 0.3 %佛山: 0.3 %佳木斯: 0.1 %佳木斯: 0.1 %六盘水: 0.1 %六盘水: 0.1 %兰州: 0.8 %兰州: 0.8 %内江: 0.1 %内江: 0.1 %北京: 18.9 %北京: 18.9 %南京: 0.3 %南京: 0.3 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %厦门: 0.1 %厦门: 0.1 %台北: 0.2 %台北: 0.2 %呼和浩特: 0.9 %呼和浩特: 0.9 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.2 %商丘: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %固原: 0.1 %固原: 0.1 %塔城: 0.1 %塔城: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.0 %天津: 1.0 %太原: 0.3 %太原: 0.3 %宁波: 0.4 %宁波: 0.4 %安康: 0.3 %安康: 0.3 %宜春: 0.1 %宜春: 0.1 %宣城: 0.8 %宣城: 0.8 %岳阳: 0.1 %岳阳: 0.1 %巴中: 0.2 %巴中: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 0.2 %廊坊: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 4.0 %张家口: 4.0 %徐州: 0.2 %徐州: 0.2 %德阳: 0.3 %德阳: 0.3 %恩施: 0.2 %恩施: 0.2 %成都: 5.8 %成都: 5.8 %扬州: 0.5 %扬州: 0.5 %拉萨: 0.7 %拉萨: 0.7 %攀枝花: 0.1 %攀枝花: 0.1 %新乡: 0.1 %新乡: 0.1 %日喀则: 0.2 %日喀则: 0.2 %昆明: 1.0 %昆明: 1.0 %昌都: 0.1 %昌都: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.1 %杭州: 0.1 %林芝: 0.1 %林芝: 0.1 %格兰特县: 0.6 %格兰特县: 0.6 %梧州: 0.1 %梧州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 1.7 %武汉: 1.7 %汉中: 0.1 %汉中: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湘西: 0.1 %湘西: 0.1 %滁州: 0.2 %滁州: 0.2 %漯河: 2.2 %漯河: 2.2 %潍坊: 0.1 %潍坊: 0.1 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %珠海: 0.2 %珠海: 0.2 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 6.4 %芒廷维尤: 6.4 %芝加哥: 1.2 %芝加哥: 1.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.1 %衡阳: 0.1 %西宁: 24.5 %西宁: 24.5 %西安: 0.6 %西安: 0.6 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.2 %赣州: 0.2 %赤峰: 0.1 %赤峰: 0.1 %达州: 0.3 %达州: 0.3 %运城: 0.7 %运城: 0.7 %连云港: 0.7 %连云港: 0.7 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.4 %郑州: 0.4 %郴州: 0.1 %郴州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %酒泉: 0.2 %酒泉: 0.2 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %长沙: 1.6 %长沙: 1.6 %阳泉: 0.1 %阳泉: 0.1 %雅加达: 0.1 %雅加达: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %黔南: 0.1 %黔南: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他Central District上海东莞中卫临汾乐山九江云浮伊斯坦布尔佛山佳木斯六盘水兰州内江北京南京南宁南昌厦门台北呼和浩特哈尔滨商丘嘉兴固原塔城大连天津太原宁波安康宜春宣城岳阳巴中常州平顶山广州库比蒂诺廊坊开封张家口徐州德阳恩施成都扬州拉萨攀枝花新乡日喀则昆明昌都朝阳杭州林芝格兰特县梧州武威武汉汉中江门沈阳泸州洛阳济南淮南深圳温州湖州湘西滁州漯河潍坊濮阳烟台珠海石嘴山石家庄福州秦皇岛纽约绵阳芒廷维尤芝加哥萍乡衡阳西宁西安西雅图诺沃克贵阳赣州赤峰达州运城连云港遵义邯郸郑州郴州鄂州酒泉重庆银川长沙阳泉雅加达青岛鞍山黔南龙岩

Catalog

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (1148) PDF downloads(150) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return