ZHANG Lin, LIU Jian-chao, WANG Xing-yun, et al., 2013. A NEW METHOD FOR WATER SOLUBLE GAS RECOGNITION BASED ON COMPREHENSIVE LOGGING: TAKING GUSHI SAG AS AN EXAMPLE. Journal of Geomechanics, 19 (3): 343-350.
Citation: TANG W C,DUAN W,ZOU L,et al.,2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China[J]. Journal of Geomechanics,28(5):765−792 doi: 10.12090/j.issn.1006-6616.20222812

A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China

doi: 10.12090/j.issn.1006-6616.20222812
Funds:  This research is financially supported by the Science and Technology Planning Project of the Sichuan Bureau of Geology and Minerals Resources (Grant SCDKKJXM–2018002) and Sichuan Geology and Mineral Bureau Geochemical Exploration Team Self-funded Scientific Research Special (Grant HT–KY–2022–003)
More Information
  • The Ke'eryin area in Sichuan province is one of the large rare metal ore concentration areas in the Songpan–Garze metallogenic belt. Numerous granite pegmatite dikes spread around the Ke'eryin mass. However, locating rare metal dikes in such a large pegmatite field has always been one of the challenges in this region. This paper summarized the geochemical element distribution in the Ke'eryin pegmatite and put forward geochemical indexes, e.g., characteristic element indexes, indicator indexes and grade indexes, to locate rare metal ore in the Ke'eryin area based on a systematic petrogeochemical analysis of two-mica granite, pegmatite microcline albite granite, different pegmatite types and typical deposits. Characteristic element indexes include Li, B, Sn, Rb, Be, Nb and Ta, etc. Indicator indexes for lateral variation are Cs, Tl, F, Zr, Y and ΣREE elements as well as values, e.g., TiO2/Ta, Zr/Hf, Ta/Zr, Nb/Ta, K/Na, etc., while indicator indexes for vertical variation include B, U, Zr, Be, Sn, Rb, Sr, Ba, Tl and In, etc. The variation in these indexes can be used to locate rare-metal-mineralized pegmatite, indicating ore bodies in a deep basin. Grade indexes are aluminum saturation index(A/CNK, A/NK)and rittmann index(σ), etc. Li ore grade is positively correlated with aluminum saturation but is negatively correlated with alkalinity. Grade index variation is a good indicator of lithium enrichment in ore bodies.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • 水溶天然气(简称水溶气)是指溶解在地层水中的以甲烷气为主的气体,属于非常规油气资源。全球已查明的水溶气资源量非常丰富,盆地中地层水溶性天然气资源量约为33837×1012 m3,为常规天然气资源量的一百多倍。在日本、美国、俄罗斯、乌克兰、哈萨克斯坦、乌兹别克斯坦、阿塞拜疆、土库曼斯坦、匈牙利、意大利、菲律宾、尼泊尔、伊朗等国都发现了水溶天然气,并开展了勘探、开发及地质综合研究。尤其在日本,大约四分之一国土都发现了水溶气,目前,开采量约为10×108 m3/a,并累计了70多年的勘探开发工作经验[1]

    从理论上讲,水溶气资源的分布领域较常规天然气的分布领域更加广泛[1]。但由于水溶气目前还属于一个新型非常规能源,研究程度较低,所以对水溶气层的判断开发还没有一个统一的标准。

    渭河盆地位于陕西省中部(关中平原),是秦岭造山带与鄂尔多斯盆地2个大地构造单元接合部位的新生代断陷盆地,其地层属华北地层区南缘分区。研究区固市凹陷位于渭河盆地东部,属于渭河盆地的一个次级凹陷[2~3]。在固市凹陷地热勘探过程中,钻至第三系张家坡组时发生甲烷天然气井喷,发现了水溶甲烷气藏。对浅层气水层的识别通常是依据单纯的常规测井电阻率曲线变化及补偿声波是否发生周波跳跃来进行快速简单的判断。但由于水溶气属于非常规能源,水气互溶,常规测井解释的气层和水层相互干扰较大,而且补偿声波测井对其常常有误判[4]。从试气结果来看,该方法对本地区的非常规水溶甲烷气藏应用效果不明确,必须配合其他的测井手段进行综合分析,建立一套适合本区储层特征的气水层识别方法和标准。

    研究区地层为第三系,埋藏较浅,一般小于2000 m,属于湖相沉积。固市凹陷在实际工作中划分为3种储层类型,即含水气层、气水同层、含气水层(包含差气层)。储层圈闭类型为岩性圈闭,在横向上对比较整齐,储层段气水互溶性好,为自生自储的非常规气藏,具有统一的气水界面[4~5]。从已有的岩心分析资料看,该区储层孔隙度虽较高,但由于岩石结构和成分成熟度均低,颗粒大小混杂,分选差,杂基含量较高[6~7],所以渗透率中等,仅偶尔出现较高的渗透率,表现出高孔中渗的物性特征。总体上来说储层岩性粒度较细,砂泥互层较发育,岩性界面较模糊且灰质含量较高,储层横向展布对比较稳定。

    由岩心实验数据得知,储层中游离水和束缚水含量不同。研究区可采水溶气一般赋存于游离水中,在高含气储层段,游离水含量高;而差气层束缚水含量高,游离水含量相对较低,因此形成高含气水层和低含气水层。高含气水层和低含气水层含水均较高,从而导致储层和水层在声波时差和电阻率上的差异较小,造成常规测井对气层和水层极难识别[4]

    正常情况下,储层含气易使声波时差明显增大,甚至有可能发生周波跳跃;但当储层岩性较松散或含水较多时可能会引起声波时差变化不大,不易区别储层与含水层。研究区地层属于第三系,埋藏较浅,未经过强压实作用,故岩性疏松;加之水溶气藏气水互溶,使得补偿声波测井在该区的储层时差变化较小,区分气水层效果非常不明显。此外对于水溶气藏,研究区储层与非储层的含水都较高而导致电性特征差异小,因此电测井对水溶甲烷气水层的识别也较困难。

    宏观上渭河盆地构造断层较多,小断层较发育,但本区凹陷被小断层所包围,内部连续稳定。东西向较大规模的断裂造成渭河盆地南北边缘形成一系列东西向展布的断阶,北东向或北西向断层相互切割,形成众多大小不一的次级凹陷,各个凹陷互相独立,形成自生自储式气藏[1]。研究区是位于渭河盆地东部的次一级凹陷,储层横向上连通性接触关系较好,小层对比较稳定,因此气水连通互溶性好,测井曲线对气水互溶层响应差异较小,导致气水层较难判别。

    本文通过自然电位曲线和自然伽马曲线特征(电位负异常、低自然伽马)大致判断出渗透性砂岩储层[8];然后结合三电阻率(八侧向电阻率、中感应电阻率、深感应电阻率)的差异显示,对渗透层判别气水层,高中电阻处应为高含气层,低电阻为水层。应用标准化后的三孔隙度(补偿密度、声波时差、补偿中子)曲线在储层处重叠,并采用相同的视孔隙度横向比例显示,依据水溶气层的特殊响应特征进行判别:补偿声波孔隙度在水溶气层变化不大,处于基值,所以小于补偿中子和补偿密度孔隙度;补偿中子测井在水溶气层处“挖掘效应”不明显,所以补偿中子孔隙度大于补偿密度孔隙度和补偿声波孔隙度,这样在气层处三孔隙度曲线便出现明显的特征差异[9],用这种方法能快速直观地判别储层与非储层(见图 1)。

    图  1  气层测井响应特征曲线
    Figure  1.  Curves of log response characteristics of gas-bearing layers

    本文借鉴云南保山盆地的气水识别方法[4, 10~11],结合研究区实际地层特点,总结出一套以三孔隙度的差值及比值(即孔隙参数)法识别气水层。具体方法是:分别计算标准化后的三孔隙度的比值及差值,放大气层在三孔隙度测井曲线上的响应信息,利用孔隙度比值重叠显示和孔隙度差值对称显示,从而更加清楚地判断储层含气性。在张家坡组储层水溶气水层识别中,运用三孔隙度差值和比值(孔隙参数)法结合其他常规测井信息综合识别气水层效果较好(见图 2)。

    图  2  某单井孔隙参数法判别流体性质图
    Figure  2.  A map showing fluid properties in a well discriminated by porosity parameter method

    由于目的层段属于浅层的水溶气层,压实作用不强烈且受水气互溶因素的影响,具体实例中应用的都是标准化后的数据。由三孔隙度测井资料提取如下6种气层孔隙参数:DCD为视中子孔隙度与视密度孔隙度之差,DCA为视中子孔隙度与视声波孔隙度之差,DDA为视密度孔隙度与视声波孔隙度之差;RCD为视中子孔隙度与视密度孔隙度比值,RCA为视中子孔隙度与视声波孔隙度比值,RDA为视密度孔隙度与视声波孔隙度比值。

    对储层运用孔隙参数法,当孔隙参数DCDDCADDARCDRCARDA均大于1,并当DCDDCARCDRCA越小且越接近1,同时DDARDA越大时,判定气层可能性越大;各个孔隙参数的区间值分别指示了含水气层、气水同层和含气水层(差气层)的区别。通过对试气层孔隙参数与电阻率及各测井曲线综合对比交会,可确定这6个孔隙参数识别气水层的区间标准[12~13]

    研究区气测录井资料为电脱气测,根据录井全烃变化的特点,采用全烃的净增值法、比值法、显示厚度与测井资料厚度比值(饱满系数)法建立了研究区内气测识别气水层的标准。

    本文不仅对常规测井资料进行分析研究,而且结合了TNIS过套管成像测井,进一步对研究区浅层的气水层进行判别。TNIS过套管成像测井原理是:使用高能的中子发生器向地层发射14 MeV的快中子,经过一系列弹性与非弹性碰撞,最后被地层俘获,利用仪器上2个中子探测器得到的中子计数的比值可以计算出储层的含氢指数,进而计算孔隙度,判别气水层。如图 3所示,本区TNIS过套管成像测井结果显示,热中子俘获谱、衰减成像、俘获成像均表现为异常变高,黄色指示,判断为气层,与孔隙参数法及综合测井结论相吻合,确定了该方法在本研究区的适用性。

    图  3  图 2相同钻井层位的TNIS成像测井分析成果图[2]
    Figure  3.  TNIS imaging logging analyzing results for the same well layers as the Fig. 2

    综合测井资料及气测录井、TNIS过套管成像测井资料,建立了该区储层的浅层水溶气水层识别区间标准(见表 1)。

    表  1  气水层综合判别标准
    Table  1.  Comprehensive discriminant standard of gas-and water-bearing layers
    下载: 导出CSV 
    | 显示表格

    图 2所示的单井气层判别情况,从图中可以看出,自然电位和自然伽马曲线表现异常,显示为典型的渗透层,三孔隙度差异明显,显示出明显的高孔隙层位,根据孔隙参数法计算出的孔隙参数:DCA=35,DCD=10,DDA=50,RCD=1.024,RCA=1.162,RDA=1.135,气测全烃从1%上升到6%,净增值5%,比值为6,饱满系数为1.1,以上参数都符合气层的综合判别标准,并且TNIS成像测井成果图也同样解释了该层为明显的含气异常层,故解释为含水气层,与试气结论相吻合。这类储层在以前解释时都比较困难,与水层、含气水层很难区分,但通过该套方法的建立,放大了测井信息,能较准确的识别出含气储层。

    通过建立的标准,对所有试气的储层(28层)进行了综合判断,14个含水气层,10个气水同层,4个含气水层(包含差气层),与现场实际试气成果符合率达到90%。

    结合气测录井资料,建立了一套适用于渭河盆地固市凹陷第三系张家坡组浅层疏松砂岩储层水溶气水层的识别方法,利用孔隙度重叠法、孔隙度差值及比值法(孔隙参数法)和适合于本地区的综合测井的补偿中子曲线与电阻率曲线对比分析法、TNIS成像测井综合识别水溶气水层的方法和标准。

    放大了气层在三孔隙度测井曲线上的响应信息;结合气测全烃资料的净增值、比值等参数,对储层的含气性质进行综合判断,在很大程度上解决了解释中存在的气水层识别困难问题。

    参照该方法对本研究区28个层段进行分析研究,与实际生产的试气对比得出,其符合率达90%,应用效果较好。

  • BEUS A A, GRIGORIAN S V, 1977. Geochemical exploration methods for mineral deposits[M]. TETERUK-SCHNEIDER R, trans. Applied Publishing: l-287.
    BOYNTON W V, 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies[M]//In: Henderson, P., Ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
    ČERNÝ P, ERCIT T S, 2005.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026.
    CLARKE D B, 1992. Granitoid rocks[M]. London: Chapman and Hall: 1-283.
    DESCHAMPSF, DUCHÊNES, SIGOYERJ, et al. , 2017. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221-2256. doi: 10.1093/petrology/egy007
    FAN B C, ZHANG J, MENG G L, et al. , 2022. An assessment of lithium resource potentiality in Pamir syntax: basedon1: 1 million scale of geochemical survey[J]. Northwestern Geology, 55(1): 156-166. (in Chinese with English abstract)
    FEI G C, YUAN T J, TANG W C, et al. , 2014. Classification of ore bearing pegmatites in keeryin pegmatite type rare metal deposit in Western Sichuan[J]. Mineral Deposits, 33(S1): 187-188. (in Chinese)
    FEI G C, LI B H, YANG J Y, et al. , 2018. Geology, fluid inclusion characteristics and H-O-C isotopes of large Lijiagou Pegmatite spodumene deposit in Songpan-garze fold belt, eastern Tibet: implications for ore genesis[J]. Resource Geology, 68(1): 37-50. doi: 10.1111/rge.12145
    FEI G C, MENUGE J F, LI Y Q, et al. , 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555.
    GU C H, 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59-65. (in Chinese withEnglish abstract)
    LI H, 1993. An ideal pattern of primary superimposed halo of hydrothermal gold deposits[J]. Geology and Exploration, 29(4): 46-51. (in Chinese with English abstract)
    LI H, ZHANG W H, LIU B L, et al. , 1999a. Ideal model and principle of staching structure of axial geochemical parameter of gold deposit[J]. Geology and Exploration, 35(6): 40-43. (in Chinese with English abstract)
    LI H, ZHANG W H, CHANG F C, 1999b. Ideal models of overprint of primary halo for large, mega-size blind au ore deposits[J]. Contributions to Geology and Mineral Resources Research, 14(3): 25-33. (in Chinese with English abstract)
    LI H, ZHANG G Y, WANG Z N, et al. , 2003. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 27(6): 438-440. (in Chinese with English abstract)
    LI H, ZHANG G Y, GAO Y L, et al. , 2008. The structural superimposed halo model for prognosis of No. 2 enrichment zone at the depth of the Xiao Qinling gold ore concentration area [J]. Geophysical and Geochemical Exploration, 32(5): 525-528. (in Chinese with English abstract)
    LI H, YU B, LI D L, et al. , 2010. Research results of a new method of structural superposition halo for deep blind ore prospecting in crisis mines [J]. Mineral Deposits, 29(S1): 709-710. (in Chinese)
    LI H, YU B, LI D L, et al. , 2013. Prediction of blind ore bodies using structural superimposed halo and research methods [J]. Geology and Exploration, 49(1): 154-161. (in Chinese with English abstract)
    LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China [D]. Beijing: China University of Geosciences (Beijing): 49-71. (in Chinese with English abstract)
    LI J K, WANG D H, FU X F, 2006. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit, western Sichuan, and its tectonic significances[J]. Acta GeologicaSinica, 80(6): 843-848. (in Chinese with English abstract)
    LI P, LIU X, LI J K, et al. , 2019. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta GeologicaSinica, 93(6): 1374-1391. (in Chinese with English abstract)
    LI X F, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract)
    LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Geochemical characteristics and evidence of liquid immiscibility in keeryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese with English abstract)
    LIU C, WANG R C, WU F Y, et al. , 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421
    LIU C M. 2006. Progress in studies on primary halos of ore deposit [J]. Acta Geologica Sinica, 80(10): 1528-1538. (in Chinese with English abstract)
    LIU C M, MA S M, 2007. The main achievements of the study on primary halo in the past 50 years in China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 29(S1): 215-221. (in Chinese with English abstract)
    LIU T, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between granite and pegmatite in Kalu'an hard-rock-type lithium deposit in Xinjiang: results from zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Acta GeologicaSinica, 94(11): 3293-3320. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.11.009
    LIU X, ZHAN Q Y, ZHU D C, et al. , 2021. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: evidence from detrital zircon geochronology and Hf isotope[J]. Acta PetrologicaSinica, 37(11): 3513-3526. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.16
    LUO W, LI Y G, LUO K J, et al. , 2018. Anomaly evaluation and prospecting prediction of 1∶50000 stream Sediment survey in Keeryin area, Sichuan Province[J]. Science Technology and Engineering, 18(9): 56-62. (in Chinese with English abstract)
    MA S C, WANG D H, LIU S B, et al. , 2019. Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 38(4): 877-897. (in Chinese with English abstract)
    MCDONOUGH W F, SUN S S, RINGWOOD A E, et al., 1992. K, Rb and Cs in the Earth and Moon and the evolution of the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 56(3): 1001-1012.
    PULLEN A, KAPP P, GEHRELS G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1
    QIN C S, PENG X H, XU B, et al. , 2011. Research progress of prospecting by primary halos [J]. Acta MineralogicaSinica, 31(S1): 828-829. (in Chinese with English abstract)
    REN L L, WANG R T, ZHANG C Y, et al. , 2019. Application of structural superimposed halo prospecting method to deep blind ore prediction in Yang Meitian copper mine[J]. Contributions to Geology and Mineral Resources Research, 34(2): 315-320. (in Chinese with English abstract)
    ROGERF, MALAVIEILLEJ, LELOUPPH, et al. , 2004. Timing of granite emplacement and cooling in the Songpan–Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0
    ROGER F, JOLIVET M, MALAVIEILLE J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269. doi: 10.1016/j.jseaes.2010.03.008
    SANG L K, MA C Q, 2012. Petrology[M]. 2rd ed. Beijing: Geology Press: 187-192. (in Chinese with English abstract)
    SHAND S J, 1947. Eruptive rocks[M]. 3rd ed. New York: John Wiley: 1-488.
    SHAO Y, 1997. Rock survey of hydrothermal deposits (primary halo method) prospecting [M]. Beijing: Geology Press: 1-143. (in Chinese)
    SUN W L, MA Y Q, SONG Q W, 2021. Characteristics and research progress of granitic pegmatite type lithium deposits in China [J]. Geology and Exploration, 57(3): 0478-0496. (in Chinese with English abstract)
    WANG B, SONG Y W, SUN B, et al. , 2021. Structural superimposing halo practical modeling and deep prospecting prediction of Zhaishang gold deposit in the Gansu province[J]. Geoscience, 35(6): 1504-1514. (in Chinese withEnglish abstract)
    WANG Z P, LIU S B, MA S C, et al. , 2018. Metallogenic regularity, deep and periphery prospecting of Dangbasuperlarge spodumene deposit in Aba, Sichuan province[J]. Earth Science, 43(6): 2029-2041. (in Chinese with English abstract)
    XU Z Q, HOU L W, WANG Z X, 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China [M]. Beijing: Geology Press: 1-288. (in Chinese)
    XU Z Q, WANG R C, ZHAO Z B, et al. , 2018. On the structural backgrounds of the large-scale“hard-rock type”lithium ore belts in China [J]. Acta GeologicaSinica, 92(6): 1091-1106. (in Chinese with English abstract)
    XU ZQ, FU X F, ZHAO Z B, et al. , 2019. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits [J]. Earth Science, 44(5): 1452-1463.
    XU Z Q, FU X F, WANG R C, et al. , 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, east Tibet [J]. Lithos, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281
    YUE X Y, YANG B, ZHOU X, et al. , 2019. Geochemical characteristics and U-Pb age of Redamen granites in western Sichuan, China: petrogenesis and tectonic significance[J]. Geoscience, 33(5): 1015-1024. (in Chinese with English abstract)
    ZHANG D H, 2020. Geochemistry of hydrothermal ore-forming processes[M]. Beijing: Geology Press: 578-594. (in Chinese)
    ZHAO Z B, DU J X, LIANG F H, et al. , 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20(1): 24-45. doi: 10.1029/2018GC007617
    ZHENG Y L, XU Z Q, GAO W Q, et al. , 2021. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan province[J]. Acta GeologicaSinica, 95(10): 3069-3084. (in Chinese with English abstract)
    ZHOU X M, 2007. Genesis of late mesozoic granites in Nanling area and lithosphere dynamic evolution[M]. Beijing: Science Press: 1-691. (in Chinese)
    范堡程, 张晶, 孟广路, 等, 2022. 帕米尔构造结锂矿资源潜力评价: 基于1: 100万地球化学调查[J]. 西北地质, 55(1): 156-166.
    费光春, 袁天晶, 唐文春, 等, 2014. 川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析[J]. 矿床地质, 33(S1): 187-188. doi: 10.16111/j.0258-7106.2014.s1.096
    古城会, 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007
    李惠, 1993. 热液金矿床原生叠加晕的理想模式[J]. 地质与勘探, 29(4): 46-51.
    李惠, 张文华, 刘宝林, 等, 1999a. 金矿床轴向地球化学参数叠加结构的理想模式及其应用准则[J]. 地质与勘探, 35(6): 40-43.
    李惠, 张文华, 常凤池, 1999b. 大型、特大型金矿盲矿预测的原生叠加晕理想模型[J]. 地质找矿论丛, 14(3): 25-33.
    李惠, 张国义, 王支农, 等, 2003. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 27(6): 438-440.
    李惠, 张国义, 高延龙, 等, 2008. 小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J]. 物探与化探, 32(5): 525-528.
    李惠, 禹斌, 李德亮, 等, 2010. 危机矿山深部找盲矿的构造叠加晕新方法研究成果[J]. 矿床地质, 29(S1): 709-710. doi: 10.16111/j.0258-7106.2010.s1.355
    李惠, 禹斌, 李德亮, 等, 2013. 构造叠加晕找盲矿法及研究方法[J]. 地质与勘探, 49(1): 154-161.
    李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京): 49-71.
    李建康, 王登红, 付小方, 2006. 川西可尔因伟晶岩型稀有金属矿床的40Ar-39Ar年代及其构造意义[J]. 地质学报, 80(6): 843-848. doi: 10.3321/j.issn:0001-5717.2006.06.006
    李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 93(6): 1374-1391. doi: 10.3969/j.issn.0001-5717.2019.06.016
    李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304.
    廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69.
    刘崇民. 2006. 金属矿床原生晕研究进展[J]. 地质学报, 80(10): 1528-1538.
    刘崇民, 马生明, 2007. 我国原生晕研究50年的主要成果[J]. 物探化探计算技术, 29(S1): 215-221.
    刘涛, 田世洪, 王登红, 等, 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293-3320. doi: 10.3969/j.issn.0001-5717.2020.11.009
    刘祥, 詹琼窑, 朱弟成, 等, 2021. 松潘-甘孜褶皱带南部上三叠统物源及构造抬升: 碎屑锆石年代学和Hf同位素证据[J]. 岩石学报, 37(11): 3513-3526. doi: 10.18654/1000-0569/2021.11.16
    罗伟, 李佑国, 罗开杰, 等, 2018. 川西可尔因地区1∶5万水系沉积物测量异常评价及找矿预测[J]. 科学技术与工程, 18(9): 56-62. doi: 10.3969/j.issn.1671-1815.2018.09.008
    马圣钞, 王登红, 刘善宝, 等, 2019. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 38(4): 877-897. doi: 10.16111/j.0258-7106.2019.04.013
    卿成实, 彭秀红, 徐波, 等, 2011. 原生晕找矿法的研究进展[J]. 矿物学报, 31(S1): 828-829. doi: 10.16461/j.cnki.1000-4734.2011.s1.256
    任良良, 王润涛, 张承玉, 等, 2019. 构造叠加晕找矿法在云南省杨梅田铜矿床深部盲矿预测中的应用[J]. 地质找矿论丛, 34(2): 315-320. doi: 10.6053/j.issn.1001-1412.2019.02.020
    桑隆康, 马昌前, 2012. 岩石学[M]. 2版. 北京: 地质出版社: 187-192.
    邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社: 1-143.
    孙文礼, 马叶情, 宋庆伟, 2021. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 57(03): 478-496.
    王斌, 宋伊圩, 孙彪, 等, 2021. 甘肃寨上金矿南矿带构造叠加晕实用模型及深部找矿预测[J]. 现代地质, 35(6): 1504-1514. doi: 10.19657/j.geoscience.1000-8527.2021.112
    王子平, 刘善宝, 马圣钞, 等, 2018. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 43(6): 2029-2041.
    许志琴, 侯立炜, 王宗秀, 1992. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社: 1-288.
    许志琴, 王汝成, 赵中宝, 等 , 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景 [J]. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
    岳相元, 杨波, 周雄, 等, 2019. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 33(5): 1015-1024.
    张德会, 2020. 热液成矿作用地球化学 [M]. 北京: 地质出版社: 578-594.
    郑艺龙, 许志琴, 高文琦, 等 , 2021. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因 [J]. 地质学报, 95(10): 3069-3084. doi: 10.3969/j.issn.0001-5717.2021.10.009
    周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化 [M]. 北京: 科学出版社: 1-691.
  • Relative Articles

    FAN Yuhai, WANG Hui, CUI Sheng, ZHANG Shaopeng. 2019: ANALYSIS OF THE TECTONIC STRESS FIELD OF THE LONGTING-HEYANG EXPLORATION AREA. Journal of Geomechanics, 25(S1): 78-83. doi: 10.12090/j.issn.1006-6616.2019.25.S1.014
    Cao Hai-bo, Fan Tao-yuan. 2016: ANALYSIS ON CHARACTERISTICS OF TECTONIC STRESS FIELD AND THE GEODYNAMIC ENVIRONMENT IN THE YANGTZE RIVER ECONOMIC BELT. Journal of Geomechanics, 22(3): 610-619.
    ZHANG Dan-dan, DAI Jun-sheng, FU Xiao-long. 2015: NUMERICAL SIMULATION OF STRUCTURAL STRESS FIELD IN THE LATE SEDIMENTARY PERIOD OF Es4 AND PREDICTION OF THE LOWER-ORDER FAULTS IN LANGGU SAG. Journal of Geomechanics, (1): 38-46.
    WANG Ming-liang, ZHANG Jia-gui, WANG Xin-wen, LUAN Qiu-lei. 2014: CHARACTERISTICS OF PALEOTECTONIC STRESS FILED ON THE AILAOSHAN STRUCTURAL BELT. Journal of Geomechanics, 20(1): 82-93.
    TANG Yong, MEI Lian-fu, CHEN You-zhi, TANG Wen-jun, XIAO An-cheng. 2012: CONTROLLING OF STRUCTURAL STRESS FIELD TO THE FRACTURES IN XUANHAN-DAXIAN REGION, NORTHEASTERN SICHUAN BASIN, CHINA. Journal of Geomechanics, 18(2): 120-139.
    LI Le, HOU Gui-ting, PAN Wen-qing, JU Yan, ZHANG Qing-lian, SHU Wu-lin, XIAO Fang-feng, JU Wei. 2011: STUDY ON STRUCTURAL STRESS FIELDS SINCE PERMIAN, BACHU AREA, TARIM BASIN. Journal of Geomechanics, 17(3): 262-273.
    LI Zhi-yong, ZENG Zuo-xun, HUANG Zheng, LIU Li-lin, WEI Zhong-yuan, ZHANG Kun. 2007: NUMERICAL SIMULATION OF THE TECTONIC STRESS FIELD AND FORECASTING OF FRACTURES BASED ON MSC MARC. Journal of Geomechanics, 13(3): 233-238, 232.
    LI Hong-nan, HUANG Shi-yan, SHOU Hao, LIU Wen-ye. 2006: TECTONIC STRESS FIELD QUANTITATIVE MODEL AND PETROLEUM DISTRIBUTION IN LOW-ORDER COMPLEX FAULT BLOCKS. Journal of Geomechanics, 12(3): 371-377.
    WANG Lian-jie, WU Zhen-han, WANG Wei, SUN Dong-sheng. 2006: NUMERICAL MODELING OF THE PRESENT TECTONIC STRESS FIELD IN THE CENTRAL QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 12(2): 140-149.
    HUANG Ji-jun, LI Ya-lin. 2006: ANALYSIS OF THE STRUCTURAL STRESS FIELD OF THE QIANGTANG BASIN. Journal of Geomechanics, 12(3): 363-370.
    CAO Cheng-jie, ZHOU Xin-gui, SHU Neng-yi, YAN Bin, LUO Guo-shi, XING Zhen-hui. 2004: TECTONIC STRESS FIELD IN THE DA'ANZHAI MEMBER OF THE LANGZHONG AREA,NORTHERN SICHUAN,AND FORECAST OF PETROLEUM ACCUMULATIONS. Journal of Geomechanics, 10(2): 179-187.
    TAN Cheng-xuan, SUN Ye, WANG Lian-jie. 2003: SOME PROBLEMS OF IN-SITU CRUSTAL STRESS MEASUREMENTS. Journal of Geomechanics, 9(3): 275-280,260.
    FANG Shu, JU Wen-xin, ZHANG Ya-dun. 2002: MANY CHANGEMENTS OF REGIONAL TECTONIC STRESS FIELDS OF MESOZOIC ERA IN SOUTH-EAST INNER MONGOLIA. Journal of Geomechanics, 8(1): 26-34.
    MA Ying-sheng, ZENG Qing-li, ZHANG Xing. 2002: PHOTOELASTIC EXPERIMENTAL MODELLING OF EVOLUTION OF CENOZOIC TECTONIC STRESS FIELD AND ANALYSIS OF PETROLEUM GEOLOGICAL CONDITION IN HUANGHUA DEPRESSON. Journal of Geomechanics, 8(3): 219-228.
    LIU Du Juan, GUO Tao, LU Gu-xian. 2001: THE METALLOGENETIC STRESS FIELD AND RECONSTRUCTION OF DYNAMIC MECHANISM IN FUSHAN GOLD FIELD, SHANDONG. Journal of Geomechanics, 7(3): 245-253.
    HUANG Ji-jun. 2001: STRUCTURAL FEATURES, STRESS FIELDS AND STRAIN FIELDS IN FENGHUANGSHAN SILVER MINE AREA, GUANGXI, CHINA. Journal of Geomechanics, 7(1): 9-21.
    SUN Ye, TAN Cheng-xuan. 2001: RESEARCH AND PRACTICE ON TECTONIC STRESS FIELD. Journal of Geomechanics, 7(3): 254-258.
    Chen Zhengle, Yang Nong, Chen Xuanhua. 1996: A STUDY OF THE TECTONIC STRESS FIELD DURING INDOSINIAN EPOCH IN YANSHAN AREA. Journal of Geomechanics, 2(1): 77-82.
    Sun Ye, Tan Chengxuan. 1995: AN ANALYSIS OF PRESENT-DAY REGIONAL TECTONIC STRESS FIELD AND CRUSTAL MOVEMENT TREND IN CHINA. Journal of Geomechanics, 1(3): 1-12.
    Shen Shumin, Feng Xiangyany. 1995: MESOZOIC TECTONIC STRESS FIELD IN THE YANSHAN MOUNTAIN REGION, WEST OF BEIJING. Journal of Geomechanics, 1(3): 13-22.
  • Cited by

    Periodical cited type(3)

    1. 周永刚,戴黎明,田振环,于春楠,张振飞,刘伟,裴伦培. 鲁北平原南部QK4钻孔岩心特征及第四纪地层划分. 物探与化探. 2023(01): 55-64 .
    2. 刘宪光,杨晋炜,胡利,夏斌,孙丰瑞,王钜,董军林. 长江三角洲北翼ZKA02孔第四纪多重地层划分研究. 地层学杂志. 2023(01): 49-58 .
    3. 申家宁,晏井春,高卫国,钱林波,韩璐,陈梦舫. 多相抽提技术在化工污染地块修复中的应用潜力. 环境工程学报. 2021(10): 3286-3296 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 3.3 %FULLTEXT: 3.3 %META: 80.0 %META: 80.0 %PDF: 16.7 %PDF: 16.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %United States: 0.2 %United States: 0.2 %上海: 0.9 %上海: 0.9 %中卫: 2.0 %中卫: 2.0 %丹东: 0.2 %丹东: 0.2 %丽水: 0.2 %丽水: 0.2 %佳木斯: 0.2 %佳木斯: 0.2 %包头: 0.2 %包头: 0.2 %北京: 5.9 %北京: 5.9 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.9 %呼和浩特: 0.9 %哥伦布: 1.3 %哥伦布: 1.3 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %宁德: 0.2 %宁德: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宝鸡: 0.2 %宝鸡: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 3.1 %张家口: 3.1 %徐州: 0.2 %徐州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 0.2 %成都: 0.2 %无锡: 0.7 %无锡: 0.7 %杭州: 0.2 %杭州: 0.2 %武汉: 1.1 %武汉: 1.1 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 27.4 %芒廷维尤: 27.4 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %西宁: 45.0 %西宁: 45.0 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.2 %赣州: 0.2 %运城: 0.2 %运城: 0.2 %重庆: 0.2 %重庆: 0.2 %长春: 0.2 %长春: 0.2 %阳泉: 0.2 %阳泉: 0.2 %黄冈: 0.2 %黄冈: 0.2 %其他United States上海中卫丹东丽水佳木斯包头北京台州合肥呼和浩特哥伦布大连天津太原宁德宜宾宝鸡宣城广州张家口徐州德阳成都无锡杭州武汉沈阳济南石家庄秦皇岛芒廷维尤芝加哥苏州西宁贵阳赣州运城重庆长春阳泉黄冈

Catalog

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (1155) PDF downloads(151) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return