Volume 28 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
TANG W C,DUAN W,ZOU L,et al.,2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China[J]. Journal of Geomechanics,28(5):765−792 doi: 10.12090/j.issn.1006-6616.20222812
Citation: TANG W C,DUAN W,ZOU L,et al.,2022. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China[J]. Journal of Geomechanics,28(5):765−792 doi: 10.12090/j.issn.1006-6616.20222812

A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China

doi: 10.12090/j.issn.1006-6616.20222812
Funds:  This research is financially supported by the Science and Technology Planning Project of the Sichuan Bureau of Geology and Minerals Resources (Grant SCDKKJXM–2018002) and Sichuan Geology and Mineral Bureau Geochemical Exploration Team Self-funded Scientific Research Special (Grant HT–KY–2022–003)
More Information
  • Received: 2022-06-20
  • Revised: 2022-09-15
  • Accepted: 2022-06-15
  • Available Online: 2022-11-02
  • The Ke'eryin area in Sichuan province is one of the large rare metal ore concentration areas in the Songpan–Garze metallogenic belt. Numerous granite pegmatite dikes spread around the Ke'eryin mass. However, locating rare metal dikes in such a large pegmatite field has always been one of the challenges in this region. This paper summarized the geochemical element distribution in the Ke'eryin pegmatite and put forward geochemical indexes, e.g., characteristic element indexes, indicator indexes and grade indexes, to locate rare metal ore in the Ke'eryin area based on a systematic petrogeochemical analysis of two-mica granite, pegmatite microcline albite granite, different pegmatite types and typical deposits. Characteristic element indexes include Li, B, Sn, Rb, Be, Nb and Ta, etc. Indicator indexes for lateral variation are Cs, Tl, F, Zr, Y and ΣREE elements as well as values, e.g., TiO2/Ta, Zr/Hf, Ta/Zr, Nb/Ta, K/Na, etc., while indicator indexes for vertical variation include B, U, Zr, Be, Sn, Rb, Sr, Ba, Tl and In, etc. The variation in these indexes can be used to locate rare-metal-mineralized pegmatite, indicating ore bodies in a deep basin. Grade indexes are aluminum saturation index(A/CNK, A/NK)and rittmann index(σ), etc. Li ore grade is positively correlated with aluminum saturation but is negatively correlated with alkalinity. Grade index variation is a good indicator of lithium enrichment in ore bodies.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BEUS A A, GRIGORIAN S V, 1977. Geochemical exploration methods for mineral deposits[M]. TETERUK-SCHNEIDER R, trans. Applied Publishing: l-287.
    BOYNTON W V, 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies[M]//In: Henderson, P., Ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
    ČERNÝ P, ERCIT T S, 2005.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026.
    CLARKE D B, 1992. Granitoid rocks[M]. London: Chapman and Hall: 1-283.
    DESCHAMPSF, DUCHÊNES, SIGOYERJ, et al. , 2017. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221-2256. doi: 10.1093/petrology/egy007
    FAN B C, ZHANG J, MENG G L, et al. , 2022. An assessment of lithium resource potentiality in Pamir syntax: basedon1: 1 million scale of geochemical survey[J]. Northwestern Geology, 55(1): 156-166. (in Chinese with English abstract)
    FEI G C, YUAN T J, TANG W C, et al. , 2014. Classification of ore bearing pegmatites in keeryin pegmatite type rare metal deposit in Western Sichuan[J]. Mineral Deposits, 33(S1): 187-188. (in Chinese)
    FEI G C, LI B H, YANG J Y, et al. , 2018. Geology, fluid inclusion characteristics and H-O-C isotopes of large Lijiagou Pegmatite spodumene deposit in Songpan-garze fold belt, eastern Tibet: implications for ore genesis[J]. Resource Geology, 68(1): 37-50. doi: 10.1111/rge.12145
    FEI G C, MENUGE J F, LI Y Q, et al. , 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555.
    GU C H, 2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 29(1): 59-65. (in Chinese withEnglish abstract)
    LI H, 1993. An ideal pattern of primary superimposed halo of hydrothermal gold deposits[J]. Geology and Exploration, 29(4): 46-51. (in Chinese with English abstract)
    LI H, ZHANG W H, LIU B L, et al. , 1999a. Ideal model and principle of staching structure of axial geochemical parameter of gold deposit[J]. Geology and Exploration, 35(6): 40-43. (in Chinese with English abstract)
    LI H, ZHANG W H, CHANG F C, 1999b. Ideal models of overprint of primary halo for large, mega-size blind au ore deposits[J]. Contributions to Geology and Mineral Resources Research, 14(3): 25-33. (in Chinese with English abstract)
    LI H, ZHANG G Y, WANG Z N, et al. , 2003. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 27(6): 438-440. (in Chinese with English abstract)
    LI H, ZHANG G Y, GAO Y L, et al. , 2008. The structural superimposed halo model for prognosis of No. 2 enrichment zone at the depth of the Xiao Qinling gold ore concentration area [J]. Geophysical and Geochemical Exploration, 32(5): 525-528. (in Chinese with English abstract)
    LI H, YU B, LI D L, et al. , 2010. Research results of a new method of structural superposition halo for deep blind ore prospecting in crisis mines [J]. Mineral Deposits, 29(S1): 709-710. (in Chinese)
    LI H, YU B, LI D L, et al. , 2013. Prediction of blind ore bodies using structural superimposed halo and research methods [J]. Geology and Exploration, 49(1): 154-161. (in Chinese with English abstract)
    LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China [D]. Beijing: China University of Geosciences (Beijing): 49-71. (in Chinese with English abstract)
    LI J K, WANG D H, FU X F, 2006. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit, western Sichuan, and its tectonic significances[J]. Acta GeologicaSinica, 80(6): 843-848. (in Chinese with English abstract)
    LI P, LIU X, LI J K, et al. , 2019. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic age[J]. Acta GeologicaSinica, 93(6): 1374-1391. (in Chinese with English abstract)
    LI X F, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract)
    LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Geochemical characteristics and evidence of liquid immiscibility in keeryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese with English abstract)
    LIU C, WANG R C, WU F Y, et al. , 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421
    LIU C M. 2006. Progress in studies on primary halos of ore deposit [J]. Acta Geologica Sinica, 80(10): 1528-1538. (in Chinese with English abstract)
    LIU C M, MA S M, 2007. The main achievements of the study on primary halo in the past 50 years in China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 29(S1): 215-221. (in Chinese with English abstract)
    LIU T, TIAN S H, WANG DH, et al. , 2020. Genetic relationship between granite and pegmatite in Kalu'an hard-rock-type lithium deposit in Xinjiang: results from zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Acta GeologicaSinica, 94(11): 3293-3320. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.11.009
    LIU X, ZHAN Q Y, ZHU D C, et al. , 2021. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: evidence from detrital zircon geochronology and Hf isotope[J]. Acta PetrologicaSinica, 37(11): 3513-3526. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.16
    LUO W, LI Y G, LUO K J, et al. , 2018. Anomaly evaluation and prospecting prediction of 1∶50000 stream Sediment survey in Keeryin area, Sichuan Province[J]. Science Technology and Engineering, 18(9): 56-62. (in Chinese with English abstract)
    MA S C, WANG D H, LIU S B, et al. , 2019. Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 38(4): 877-897. (in Chinese with English abstract)
    MCDONOUGH W F, SUN S S, RINGWOOD A E, et al., 1992. K, Rb and Cs in the Earth and Moon and the evolution of the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 56(3): 1001-1012.
    PULLEN A, KAPP P, GEHRELS G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1
    QIN C S, PENG X H, XU B, et al. , 2011. Research progress of prospecting by primary halos [J]. Acta MineralogicaSinica, 31(S1): 828-829. (in Chinese with English abstract)
    REN L L, WANG R T, ZHANG C Y, et al. , 2019. Application of structural superimposed halo prospecting method to deep blind ore prediction in Yang Meitian copper mine[J]. Contributions to Geology and Mineral Resources Research, 34(2): 315-320. (in Chinese with English abstract)
    ROGERF, MALAVIEILLEJ, LELOUPPH, et al. , 2004. Timing of granite emplacement and cooling in the Songpan–Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0
    ROGER F, JOLIVET M, MALAVIEILLE J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269. doi: 10.1016/j.jseaes.2010.03.008
    SANG L K, MA C Q, 2012. Petrology[M]. 2rd ed. Beijing: Geology Press: 187-192. (in Chinese with English abstract)
    SHAND S J, 1947. Eruptive rocks[M]. 3rd ed. New York: John Wiley: 1-488.
    SHAO Y, 1997. Rock survey of hydrothermal deposits (primary halo method) prospecting [M]. Beijing: Geology Press: 1-143. (in Chinese)
    SUN W L, MA Y Q, SONG Q W, 2021. Characteristics and research progress of granitic pegmatite type lithium deposits in China [J]. Geology and Exploration, 57(3): 0478-0496. (in Chinese with English abstract)
    WANG B, SONG Y W, SUN B, et al. , 2021. Structural superimposing halo practical modeling and deep prospecting prediction of Zhaishang gold deposit in the Gansu province[J]. Geoscience, 35(6): 1504-1514. (in Chinese withEnglish abstract)
    WANG Z P, LIU S B, MA S C, et al. , 2018. Metallogenic regularity, deep and periphery prospecting of Dangbasuperlarge spodumene deposit in Aba, Sichuan province[J]. Earth Science, 43(6): 2029-2041. (in Chinese with English abstract)
    XU Z Q, HOU L W, WANG Z X, 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China [M]. Beijing: Geology Press: 1-288. (in Chinese)
    XU Z Q, WANG R C, ZHAO Z B, et al. , 2018. On the structural backgrounds of the large-scale“hard-rock type”lithium ore belts in China [J]. Acta GeologicaSinica, 92(6): 1091-1106. (in Chinese with English abstract)
    XU ZQ, FU X F, ZHAO Z B, et al. , 2019. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits [J]. Earth Science, 44(5): 1452-1463.
    XU Z Q, FU X F, WANG R C, et al. , 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, east Tibet [J]. Lithos, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281
    YUE X Y, YANG B, ZHOU X, et al. , 2019. Geochemical characteristics and U-Pb age of Redamen granites in western Sichuan, China: petrogenesis and tectonic significance[J]. Geoscience, 33(5): 1015-1024. (in Chinese with English abstract)
    ZHANG D H, 2020. Geochemistry of hydrothermal ore-forming processes[M]. Beijing: Geology Press: 578-594. (in Chinese)
    ZHAO Z B, DU J X, LIANG F H, et al. , 2019. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation[J]. Geochemistry, Geophysics, Geosystems, 20(1): 24-45. doi: 10.1029/2018GC007617
    ZHENG Y L, XU Z Q, GAO W Q, et al. , 2021. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan province[J]. Acta GeologicaSinica, 95(10): 3069-3084. (in Chinese with English abstract)
    ZHOU X M, 2007. Genesis of late mesozoic granites in Nanling area and lithosphere dynamic evolution[M]. Beijing: Science Press: 1-691. (in Chinese)
    范堡程, 张晶, 孟广路, 等, 2022. 帕米尔构造结锂矿资源潜力评价: 基于1: 100万地球化学调查[J]. 西北地质, 55(1): 156-166.
    费光春, 袁天晶, 唐文春, 等, 2014. 川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析[J]. 矿床地质, 33(S1): 187-188. doi: 10.16111/j.0258-7106.2014.s1.096
    古城会, 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 29(1): 59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007
    李惠, 1993. 热液金矿床原生叠加晕的理想模式[J]. 地质与勘探, 29(4): 46-51.
    李惠, 张文华, 刘宝林, 等, 1999a. 金矿床轴向地球化学参数叠加结构的理想模式及其应用准则[J]. 地质与勘探, 35(6): 40-43.
    李惠, 张文华, 常凤池, 1999b. 大型、特大型金矿盲矿预测的原生叠加晕理想模型[J]. 地质找矿论丛, 14(3): 25-33.
    李惠, 张国义, 王支农, 等, 2003. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 27(6): 438-440.
    李惠, 张国义, 高延龙, 等, 2008. 小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J]. 物探与化探, 32(5): 525-528.
    李惠, 禹斌, 李德亮, 等, 2010. 危机矿山深部找盲矿的构造叠加晕新方法研究成果[J]. 矿床地质, 29(S1): 709-710. doi: 10.16111/j.0258-7106.2010.s1.355
    李惠, 禹斌, 李德亮, 等, 2013. 构造叠加晕找盲矿法及研究方法[J]. 地质与勘探, 49(1): 154-161.
    李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京): 49-71.
    李建康, 王登红, 付小方, 2006. 川西可尔因伟晶岩型稀有金属矿床的40Ar-39Ar年代及其构造意义[J]. 地质学报, 80(6): 843-848. doi: 10.3321/j.issn:0001-5717.2006.06.006
    李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 93(6): 1374-1391. doi: 10.3969/j.issn.0001-5717.2019.06.016
    李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304.
    廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69.
    刘崇民. 2006. 金属矿床原生晕研究进展[J]. 地质学报, 80(10): 1528-1538.
    刘崇民, 马生明, 2007. 我国原生晕研究50年的主要成果[J]. 物探化探计算技术, 29(S1): 215-221.
    刘涛, 田世洪, 王登红, 等, 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293-3320. doi: 10.3969/j.issn.0001-5717.2020.11.009
    刘祥, 詹琼窑, 朱弟成, 等, 2021. 松潘-甘孜褶皱带南部上三叠统物源及构造抬升: 碎屑锆石年代学和Hf同位素证据[J]. 岩石学报, 37(11): 3513-3526. doi: 10.18654/1000-0569/2021.11.16
    罗伟, 李佑国, 罗开杰, 等, 2018. 川西可尔因地区1∶5万水系沉积物测量异常评价及找矿预测[J]. 科学技术与工程, 18(9): 56-62. doi: 10.3969/j.issn.1671-1815.2018.09.008
    马圣钞, 王登红, 刘善宝, 等, 2019. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 38(4): 877-897. doi: 10.16111/j.0258-7106.2019.04.013
    卿成实, 彭秀红, 徐波, 等, 2011. 原生晕找矿法的研究进展[J]. 矿物学报, 31(S1): 828-829. doi: 10.16461/j.cnki.1000-4734.2011.s1.256
    任良良, 王润涛, 张承玉, 等, 2019. 构造叠加晕找矿法在云南省杨梅田铜矿床深部盲矿预测中的应用[J]. 地质找矿论丛, 34(2): 315-320. doi: 10.6053/j.issn.1001-1412.2019.02.020
    桑隆康, 马昌前, 2012. 岩石学[M]. 2版. 北京: 地质出版社: 187-192.
    邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社: 1-143.
    孙文礼, 马叶情, 宋庆伟, 2021. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 57(03): 478-496.
    王斌, 宋伊圩, 孙彪, 等, 2021. 甘肃寨上金矿南矿带构造叠加晕实用模型及深部找矿预测[J]. 现代地质, 35(6): 1504-1514. doi: 10.19657/j.geoscience.1000-8527.2021.112
    王子平, 刘善宝, 马圣钞, 等, 2018. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 43(6): 2029-2041.
    许志琴, 侯立炜, 王宗秀, 1992. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社: 1-288.
    许志琴, 王汝成, 赵中宝, 等 , 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景 [J]. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
    岳相元, 杨波, 周雄, 等, 2019. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 33(5): 1015-1024.
    张德会, 2020. 热液成矿作用地球化学 [M]. 北京: 地质出版社: 578-594.
    郑艺龙, 许志琴, 高文琦, 等 , 2021. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因 [J]. 地质学报, 95(10): 3069-3084. doi: 10.3969/j.issn.0001-5717.2021.10.009
    周新民, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化 [M]. 北京: 科学出版社: 1-691.
  • 加载中

Catalog

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (984) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return