Volume 27 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Qiao, JI Fei, 2021. Geophysical characteristics of the Terror Rift, West Antarctica. Journal of Geomechanics, 27 (5): 809-820. DOI: 10.12090/j.issn.1006-6616.2021.27.05.066
Citation: ZHANG Qiao, JI Fei, 2021. Geophysical characteristics of the Terror Rift, West Antarctica. Journal of Geomechanics, 27 (5): 809-820. DOI: 10.12090/j.issn.1006-6616.2021.27.05.066

Geophysical characteristics of the Terror Rift, West Antarctica

doi: 10.12090/j.issn.1006-6616.2021.27.05.066
Funds:

the Basal Research Fund of the Institute of Geomechanics, the Chinese Academy of Geological Sciences DZLXJK201903

the National Science Foundation of China 41706215

the Geological Survey Project of China Geological Survey DD20190579

the Opening Foundation of the Institute of Crustal Dynamics, China Earthquake Adiministration ZDJ2019-30

More Information
  • Received: 2021-06-28
  • Revised: 2021-08-23
  • Available Online: 2021-12-31
  • Published: 2021-10-28
  • In this paper, we investigated the Terror Rift where the last stage of Cenozoic rifting in the West Antarctic Rift System (WARS) took place. The International published and domestic sampled during CHARE seismic reflection profiles are utilized. Combining with drilling data, all the stratigraphic reflections are identified and unified in the entire study area for the subsequent interpretation. The rift fault patterns in the study area can be divided into syn-sedimentary faults, intra-layer faults and negative flower structure. According to faulting, we delineated the east and north boundary of the Terror Rift. Moreover, Cenozoic faulting activities are divided into three stages with strongly inheritance between each one of them. The timing of faulting activities gradually becomes younger from the Adare Basin in the north to the Terror Rift in the south, which is attributable to the transmission of rifting from north to south. In order to further reveal the geophysical characteristics of the study area, we investigated effective elastic thickness (EET) based on the fan wavelet transform technique. The anomalously low EET anomalies observed in the front of the Transantarctic Mountains(TAMs) is related to the rifting and magmatism in the late Cenozoic, probably indicating the extensional area of the western Ross Sea.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BEHRENDT J C, COOPER A K, 1991. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing[J], Geology, 19: 315-319. doi: 10.1130/0091-7613(1991)019<0315:EORCUO>2.3.CO;2
    COOPER A K, BRANCOLINI G, ESCUTIA C, et al., 2008. Cenozoic climate history from seismic reflection and drilling studies on the Antarctic continental margin[M]//FLORINDO F, SIEGERT M. Antarctic climate evolution. Elsevier.
    CANDE S C, STOCK J M, MVLLER R D, et al., 2000. Cenozoic motion between East and West Antarctica[J]. Nature, 404(6774): 145-150. doi: 10.1038/35004501
    CARTWRIGHT J A, DEWHURST D N, 1998. Layer-bound compaction faults in fine-grained sediments[J]. GSA Bulletin, 110(10): 1242-1257. doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2
    COOPER A K, DAVEY F J, BEHRENDT J C, 1987. Seismic stratigraphy and structure of the Victoria Land basin, western Ross Sea, Antarctica[M]//COOPER A K, DAVEY F J. The Antarctic continental margin: geology and geophysics of the western Ross Sea. Houston: Circum-Pacific Council for Energy and Mineral Resources.
    DAMASKE D, LÄUFER A L, GOLDMANN F, et al., 2008. Magnetic anomalies northeast of Cape Adare, northern Victoria Land (Antarctica), and their relation to onshore structures[C]//International symposium on Antarctica earth science proceedings. California: University of California, Santa Barbara.
    DAVEY F J, BRANCOLINI G, 1995. The late Mesozoic and Cenozoic structural setting of the Ross Sea region[M]//COOPER A K, BARKER P F, BRANCOLINI G. Geology and seismic stratigraphy of the Antarctic margin. Washington: American Geophysical Union.
    DAVEY F J, DE SANTIS L, 2006. A multi-phase rifting model for the Victoria Land Basin, western Ross Sea[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: contributions to global earth sciences. New York: Springer.
    FERRACCIOLI F, ARMADILLO E, JORDAN T, et al., 2009. Aeromagnetic exploration over the East Antarctic ice sheet: a new view of the Wilkes Subglacial Basin[J]. Tectonophysics, 478(1-2): 62-77. doi: 10.1016/j.tecto.2009.03.013
    FIELDING C R, HENRYS S A, WILSON T J, 2006. Rift history of the western victoria land basin: a new perspective based on integration of cores with seismic reflection data[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: contributions to global earth sciences. Berlin: Springer: 309-318.
    FIELDING C R, WHITTAKER J, HENRYS S A, et al., 2008. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(1-2): 8-29. doi: 10.1016/j.palaeo.2007.08.016
    FITZGERALD P G, 2002. Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an Emphasis on the West Antarctic Rift system and the Transantarctic Mountains[J]. The Royal Society of New Zealand, 35: 453-469. http://www.researchgate.net/publication/285076236_Tectonics_and_landscape_evolution_of_the_Antarctic_plate_since_the_breakup_of_Gondwana_with_an_emphasis_on_the_West_Antarctic_Rift_System_and_the_Transantarctic_Mountains
    FORSYTH D W, 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere[J]. Journal of Geophysical Research, 90(B14): 12623-12632. doi: 10.1029/JB090iB14p12623
    GRANOT R, CANDE S C, STOCK J M, et al., 2010. Postspreading rifting in the Adare Basin, Antarctica: regional tectonic consequences[J]. Geochemistry, Geophysics, Geosystems, 11(8): Q08005. http://www.gps.caltech.edu/~clay/PDF/Granot2010.pdf
    GRAW J H, ADAMS A N, HANSEN S E, et al., 2016. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains[J]. Earth and Planetary Science Letters, 449: 48-60. doi: 10.1016/j.epsl.2016.05.026
    ALL J, WILSON T, HENRYS S, 2007. Structure of the central Terror Rift, western Ross Sea, Antarctica[C]//Proceedings for the 10th international symposium on Antarctic earth sciences. California: University of California, Santa Barbara.
    HENRYS S, WILSON T, WHITTAKER J M, et al., 2008. Tectonic history of mid-Miocene to present southern Victoria Land Basin, inferred from seismic stratigraphy in McMurdo Sound, Antarctica[C]//Proceedings of the 10th international symposium on Antarctica earth science. California: University of California, Santa Barbara.
    HUERTA A D, HARRY D L, 2007. The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system[J]. Earth and Planetary Science Letters, 255(1-2): 133-147. doi: 10.1016/j.epsl.2006.12.011
    JI F, GAO J Y, LI F, et al., 2017. Variations of the effective elastic thickness over the Ross Sea and Transantarctic Mountains and implications for their structure and tectonics[J]. Tectonophysics, 717: 127-138. doi: 10.1016/j.tecto.2017.07.011
    JI F, LI F, ZHANG Q, et al., 2019. Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion[J]. Chinese Journal of Geophysics, 62(3): 849-863. (in Chinese with English abstract)
    KIRBY J F, SWAIN C J, 2011. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J]. Computers & Geosciences, 37(9): 1345-1354. http://www.onacademic.com/detail/journal_1000035033362010_4fe0.html
    KYLE P R, MCINTOSH W C, M Schmidt-Thomé, et al., 1990. A. McMurdo Volcanic Group Western Ross embayment[M]. American Geophysical Union.
    LAWRENCE J F, WIENS D A, NYBLADE A A, 2006. Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation[J]. Geophysical Research Letters, 33(3): L03303. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.832.7838&rep=rep1&type=pdf
    LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905005.htm
    LOWRY A R, SMITH R B, 1995. Strength and rheology of the western U.S. Cordillera[J]. Journal of Geophysical Research, 100(B9): 17947-17963. doi: 10.1029/95JB00747
    NARDINI I, ARMIENTI P, ROCCHI S, et al., 2009. Sr-Nd-Pb-He-O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic rift[J]. Journal of Petrology, 50(7): 1359-1375. doi: 10.1093/petrology/egn082
    PÉREZ-GUSSINYÉ M, LOWRY A R, WATTS A B, 2007. Effective elastic thickness of South America and its implications for intracontinental deformation[J]. Geochemistry, Geophysics, Geosystems, 8(5): Q05009. http://www.researchgate.net/profile/A_Watts/publication/241356480_Effective_elastic_thickness_of_South_America_and_its_implications_for_Intracontinental_deformation/links/0deec5259a6a59e8b6000000
    QIAN W H, 1997. On the formation and splitting of Gondwanaland[J]. Journal of Geomechanics, 3(1): 21-29. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX701.002.htm
    REN J S, NIU B G, ZHAO L, et al., 2019. Basic ideas of the multisphere tectonics of Earth system[J]. Journal of Geomechanics, 25(5): 607-612. (in Chinese with English abstract)
    SALVINI F, BRANCOLINI G, BUSETTI M, et al., 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance[J]. Journal of Geophysical Research, 102(B11): 24669-24696. doi: 10.1029/97JB01643
    SIDDOWAY C S, BALDWIN S L, FITZGERALD P G, et al., 2004. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system[J]. Geology, 32(1): 57-60. doi: 10.1130/G20005.1
    TESSENSOHN F, WÖRNER G, 1991. The Ross Sea rift system, Antarctica: structure, evolution and analogues[M]. Cambridge: Cambridge University Press.
    WANG X S, FANG J, XU Z H, et al., 2012. Density structure of the lithosphere beneath North China craton[J]. Chinese Journal of Geophysics, 55(4): 1154-1160. (in Chinese with English abstract)
    WATSON T, NYBLADE A, WIENS D A, et al., 2006. P and S velocity structure of the upper mantle beneath the Transantarctic Mountains, East Antarctic craton, and Ross Sea from travel time tomography[J]. Geochemistry, Geophysics, Geosystems, 7(7): Q07005. doi: 10.1029/2005GC001238/full
    WÖRNER G, 1999. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift System[J]. Global and Planetary Change, 23(1-4): 61-77. doi: 10.1016/S0921-8181(99)00051-X
    WU Z H, 1995. New evidence for correlation between global tectonic movement and Earth's rotation[J]. Journal of Geomechanics, 1(3): 46-54. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX503.006.htm
    XU Z, GAO J Y, YANG C G, et al., 2018. A new high-resolution digital bathymetric model of the Ross Sea, Antarctica[J]. Chinese Journal of Polar Research, 30(4): 360-369. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JDYZ201804002.htm
    YANG W C, HOU Z Z, YU C Q, 2015. Three-dimensional density structure of the Tibetan plateau and crustal mass movement[J]. Chinese Journal of Geophysics, 58(11): 4223-4234. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201511029.htm
    ZHANG H, ZHAO D P, JU C H, et al., 2020. Upper mantle deformation of the Terror Rift and northern Transantarctic Mountains in Antarctica: Insight from P wave anisotropic tomography[J]. Geophysical Research Letters, 47(9): e2019GL086511. doi: 10.1029/2019GL086511
    纪飞, 李斐, 张峤, 等, 2019. 基于约束三维重力反演的南极大陆地壳密度结构研究[J]. 地球物理学报, 62(3): 849-863. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903004.htm
    李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190504&journal_id=dzlxxb
    钱维宏, 1997. 试论冈瓦纳古陆的形成和裂解[J]. 地质力学学报, 3(1): 21-29. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19970103&journal_id=dzlxxb
    任纪舜, 牛宝贵, 赵磊, 等, 2019. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 25(5): 607-612. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190502&journal_id=dzlxxb
    吴珍汉, 1995. 全球构造运动与地球自转相关性的新证据[J]. 地质力学学报, 1(3): 46-54. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19950332&journal_id=dzlxxb
    徐泽, 高金耀, 杨春国, 等, 2018. 南极罗斯海高分辨率数字水深模型[J]. 极地研究, 30(4): 360-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201804002.htm
  • 加载中

Catalog

    Figures(10)

    Article Metrics

    Article views (401) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return