Volume 30 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
WANG B Z,LI W F,ZHENG Y,et al.,2024. Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen[J]. Journal of Geomechanics,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030
Citation: WANG B Z,LI W F,ZHENG Y,et al.,2024. Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen[J]. Journal of Geomechanics,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030

Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen

doi: 10.12090/j.issn.1006-6616.2024030
Funds:  This research is financially supported by the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0702), Geological and Mineral Exploration Project of the Qinghai Provincial Development Bureau (Grant No. [2021]61),and Qinghai Provincial Geological Exploration Special Funding (Grant No. 2024524015jc015).
More Information
  • Author Bio:

    王秉璋,青海省地质矿产勘查开发局正高级工程师,博士生导师。2023年获得第十八次李四光地质科学奖野外奖。从事青藏高原地质工作30余年,入选国务院政府特殊津贴专家、国土资源高层次创新型科技人才培养工程(科技领军人才),自然资源部高层次科技创新人才,青海省昆仑英才(杰出人才)。发现青藏高原东北部茶卡北山印支期Li-Be矿化伟晶岩带、三江北段草陇−尕朵伟晶岩型Li-Be矿集区;首次在东昆仑发现铌磷矿化碱性岩−碳酸岩杂岩体,铌矿找矿取得重要进展;“358”找矿行动中主持4个整装勘查区找矿勘探和找矿部署研究,新发现矿产地10处、大—中型矿床7处,组织开展中—大比例尺矿产远景调查,圈定找矿靶区500余处,发现了大量后备勘查基地;参加国土资源大调查,填补青藏高原北部地质空白。出版专著5部,发表SCI和EI论文40余篇,获国家科技进步特等奖1项(R21)、省部级一等奖3项(R2、R4、R12)、二等奖4项(R1、R2、R3、R4)等

  • Received: 2024-03-24
  • Revised: 2024-07-30
  • Accepted: 2024-08-01
  • Available Online: 2024-08-02
  • Published: 2024-10-28
  •   Objective  The Indosinian collision process of the East Kunlun Orogenic Belt remains a subject of debate. The newly discovered Triassic adakitic granites in the Xiaonanchuan area of East Kunlun provide new geological evidence that constrains the evolution of collisional orogenesis.   Methods  This study conducted petrological, geochemical, zircon U-Pb, and Lu-Hf isotopic analyses of the Moshigou and Bentoushan granitic intrusions in the Xiaonanchuan area to investigate their petrogenesis and tectonic settings. By integrating previous research on magmatism and sedimentation during the late Indosinian period within the East Kunlun Orogenic Belt, a preliminary discussion was conducted on collisional orogensis process.   Results and Conclusion  The Moshigou intrusion consists of granodiorite and monzogranite with zircon U-Pb ages of 209–208 Ma. The Bentoushan intrusion is composed of granodiorite with zircon U-Pb ages of 201–200 Ma. These granitoids have high SiO2 and Al2O3 contents and are rich in sodium. They also have high Sr contents (398×10−6–613×10−6) and Sr/Y ratios (50–97) and are depleted in heavy rare earth elements without Eu anomalies, exhibiting typical geochemical characteristics of adakitic rocks. The Moshigou granitoids have negative whole-rock εNd(t) (−3.60 to −3.34) and variable zircon εHf(t) (−1.3 to +5.9), indicating their derivation from the partial melting of the thickened lower crust. The Bentoushan granitoids have negative whole-rock εNd(t) (−1.65 to −1.55) and positive zircon εHf(t) (+3.4 to +7.3), suggesting their origin from meta-basic rock-dominated thickened lower crust with eclogite residue. Significance These results suggest that they were formed in a post-collisional extension setting. A comprehensive analysis indicates that the East Kunlun Orogenic Belt was in the collision and post-collision stages during the Late Triassic. The post-collision stage can be further divided into two phases of magmatic activity: early and late phases of the Late Triassic.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
    [2]
    AO C, SUN F Y, LI B L, et al., 2015. U-Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 39(6): 1176-1184, doi: 10.16539/j.ddgzyckx.2015.06.016
    [3]
    CAO L, YI L W, DAI W, et al., 2021. Re-Os isotopic age of molybdenite of the Jingren deposit and its mineralogical significance of magnetite, pyrite and chalcopyrite[J]. Acta Geologica Sinica (English Edition), 95(4): 1236-1248. doi: 10.1111/1755-6724.14718
    [4]
    CASTILLO P R, JANNEY P E, SOLIDUM R U, 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51. doi: 10.1007/s004100050467
    [5]
    CASTILLO P R, 2012. Adakite petrogenesis[J]. Lithos, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013
    [6]
    CHEN D L, LIU L, CHE Z C, et al., 2001. Determination and preliminary study of Indosinian aluminous A-type granites in the Qimantag area, southeastern Xinjiang[J]. Geochimica, 30(6): 540-546. (in Chinese with English abstract
    [7]
    CHEN G, PEI X Z, LI Z C, et al., 2016. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China, 35(12): 1990-2005. (in Chinese with English abstract
    [8]
    CHEN G C, PEI X Z, LI R B, et al., 2013a. Late Triassic magma mixing in the East Kunlun orogenic belt: a case study of Helegang Xilikete granodiorites[J]. Geology in China, 40(4): 1044-1065. (in Chinese with English abstract
    [9]
    CHEN G C, PEI X Z, LI R B, et al., 2013b. Zircon U-Pb geochronology, geochemical characteristics and geological significance of cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun[J]. Acta Geologica Sinica, 87(2): 178-196. (in Chinese with English abstract
    [10]
    CHEN G C, PEI X Z, LI R B, et al., 2017. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance[J]. Geotectonica et Metallogenia, 41(6): 1097-1115. (in Chinese with English abstract
    [11]
    CHEN G C, PEI X Z, LI R B, et al., 2018. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: constraint on the middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 34(3): 567-585. (in Chinese with English abstract
    [12]
    CHEN G C, PEI X Z, LI R B, et al., 2019. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 26(4): 191-208. (in Chinese with English abstract
    [13]
    CHEN G C, CHEN X Z, PEI X Z, et al., 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of East Kunlun[J]. Acta Geologica Sinica, 96(3): 971-990. (in Chinese with English abstract
    [14]
    CHERNIAK D J, HANCHAR J M, WATSON E B, 1997a. Diffusion of tetravalent cations in zircon[J]. Contributions to Mineralogy and Petrology, 127(4): 383-390. doi: 10.1007/s004100050287
    [15]
    CHERNIAK D J, HANCHAR J M, WATSON E B, 1997b. Rare-earth diffusion in zircon[J]. Chemical Geology, 134(4): 289-301. doi: 10.1016/S0009-2541(96)00098-8
    [16]
    CHERNIAK D J, WATSON E B, 2001. Pb diffusion in zircon[J]. Chemical Geology, 172(1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3
    [17]
    CHERNIAK D J, WATSON E B, GROVE M, et al., 2004. Pb diffusion in monazite: a combined RBS/SIMS study[J]. Geochimica et Cosmochimica Acta, 68(4): 829-840. doi: 10.1016/j.gca.2003.07.012
    [18]
    China University of Geosciences (Wuhan), 2006. Regional geological survey report of 1∶250 000 Qusaihu (I46C001002) and Budomhquan (I46C001003) in Qinghai Province[R]. 1-400. (in Chinese)
    [19]
    CHU N C, TAYLOR R N, CHAVAGNAC V, et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/b206707b
    [20]
    CHUNG S L, LIU D Y, JI J Q, et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1
    [21]
    DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0
    [22]
    DING Q F, JIANG S Y, SUN F Y, 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: petrogenesis and tectonic implications[J]. Lithos, 205: 266-283. doi: 10.1016/j.lithos.2014.07.015
    [23]
    DING S, HUANG H, NIU Y L, et al., 2011. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrologica Sinica, 27(12): 3603-3614. (in Chinese with English abstract
    [24]
    DONG Y P, HE D F, SUN S S, et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006
    [25]
    DONG Y P, HUI B, SUN S S, et al., 2022. Multiple orogeny and geodynamics from proto-tethys to paleo-tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3426-3448. (in Chinese with English abstract
    [26]
    FANG J, ZHANG L, CHEN H Y, et al., 2018. Genesis of the Weibao banded skarn Pb-Zn deposit, Qimantagh, Xinjiang: insights from skarn mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews, 100: 483-503. doi: 10.1016/j.oregeorev.2017.06.001
    [27]
    FENG C Y, LI D S, QU W J, et al., 2009. Re-Os isotopic dating of molybdenite from the Suolajier skarn-type copper-molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223-227. (in Chinese with English abstract
    [28]
    FENG C Y, WANG X P, SHU X F, et al., 2011. Isotopic chronology of the hutouya skarn lead-zinc polymetallic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806-1817. (in Chinese with English abstract
    [29]
    FENG K, LI R B, PEI X Z, et al., 2020. Zircon U-Pb dating and geochemical characteristics of dagele granite in the eastern margin of East Kunlun Orogenic Belt, China and their tectonic implications[J]. Journal of Earth Sciences and Environment, 42(4): 442-463, doi: 10.19814/j.jese.2020.05009
    [30]
    FENG K, LI R B, PEI X Z, et al., 2022. Zircon U-Pb chronology, geochemistry and geological significance of late triassic intermediate-acid volcanic rocks in Boluositai Area, East Kunlun Orogenic Belt[J]. Earth Science, 47(4): 1194-1216, doi: 10.3799/dqkx.2021.116
    [31]
    GAO H C, SUN F Y, LI B L, et al., 2020. Geochronological and geochemical constraints on the origin of the Hutouya polymetallic skarn deposit in the East Kunlun orogenic belt, NW China[J]. Minerals, 10(12): 1136. doi: 10.3390/min10121136
    [32]
    GAO Y B, Li W Y, Ma X G, et al., 2012. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 48(2): 36-47(in Chinese with English abstract
    [33]
    GAO Y B, LI W Y, QIAN B, et al., 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647-1665. (in Chinese with English abstract
    [34]
    General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese)
    [35]
    General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010b. (in Chinese)
    [36]
    GU X X, ZHANG Y M, HE G F, et al. , 2017. Study on metallogenic regularity and prospecting direction of gold deposit in Kunlun River area, Qinghai Province[R]. 1-332. (in Chinese)
    [37]
    GUAN Q, ZHU D C, ZHAO Z D, et al., 2012. Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 21(1): 88-99. doi: 10.1016/j.gr.2011.07.004
    [38]
    GUO X Z, LI Y Z, JIA Q Z, et al., 2018. Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun: implication for metallogenic tectonic[J]. Acta Petrologica Sinica, 34(8): 2359-2379. (in Chinese with English abstract
    [39]
    GUO X Z, JIA Q Z, LI J C, et al., 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286-300. (in Chinese with English abstract
    [40]
    HE Y S, LI S G, HOEFS J, et al., 2011. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. doi: 10.1016/j.gca.2011.04.011
    [41]
    HOU Z Q, GAO Y F, QU X M, et al., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X
    [42]
    HU Y, NIU Y L, LI J Y, et al., 2016. Petrogenesis and tectonic significance of the late triassic mafic dikes and felsic volcanic rocks in the East Kunlun orogenic belt, northern tibet plateau[J]. Lithos, 245: 205-222. doi: 10.1016/j.lithos.2015.05.004
    [43]
    HUANG H, NIU Y L, NOWELL G, et al., 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 370: 1-18, doi: 10.1016/J.chemgeo.2014.01.010
    [44]
    HUANG X K, 2021. Gold mineralization and comprehensive information prospecting prediction in Balong-Gouli area, East Kunlun Orogen[D]. Wuhan: China University of Geosciences, doi: 10.27492/d.cnki.gzdzu.2021.000251. (in Chinese with English abstract
    [45]
    HUANG X K, WEI J H, LI H, et al., 2021. Zircon U-Pb geochronological, elemental and Sr-Nd-Hf isotopic constraints on petrogenesis of late triassic quartz diorite in balong region, East Kunlun Orogen[J]. Earth Science, 46(6): 2037-2056. (in Chinese with English abstract
    [46]
    JIAN K K, ZHU Y H, WANG L W, et al., 2017. Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the middle triassic granites from the Zhongzaohuo Area, East Kunlun[J]. Geological Review, 63(3): 659-676. (in Chinese with English abstract
    [47]
    KAY R W, KAY S M, 1993. Delamination and delamination magmatism[J]. Tectonophysics, 219(1-3): 177-189. doi: 10.1016/0040-1951(93)90295-U
    [48]
    KONG H L, LI J C, LI Y Z, et al., 2016. LA-MC-ICP-MS zircon U-Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron-polymetallic ore district in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 35(1): 8-16. (in Chinese with English abstract
    [49]
    KONG J J, NIU Y L, HU Y, et al., 2020. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: implications for continental crust growth from syn-collisional to post-collisional setting[J]. Lithos, 364-365: 105513, doi: 10.1016/J.lithos.2020.105513
    [50]
    LI C X, ZENG X H, ZHOU H, et al., 2023. Petrogenesis and geological significance of triassic granites in the central bayanhar[J]. Geotectonica et Metallogenia, 47(6): 1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303
    [51]
    LI J C, 2017. Metallogenic regularity and metallogenic prognosis of Gold Deposit in the East Kunlun Orogen, Qinghai Province[D]. Xi’an: Chang'an University. (in Chinese with English abstract
    [52]
    LI R B, PEI X Z, LI Z C, et al., 2015. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 34(12): 2302-2314 (in Chinese with English abstract
    [53]
    LI R B, PEI X Z, LI Z C, et al., 2018. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 34(11): 3399-3421. (in Chinese with English abstract
    [54]
    LI R B, PEI X Z, PEI L, et al., 2018. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 62: 212-226. doi: 10.1016/j.gr.2018.03.005
    [55]
    LIANG G Z, YANG K F, SUN W Q, et al., 2021. Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun Orogenic Belt, western China[J]. Journal of Asian Earth Sciences, 220: 104920. doi: 10.1016/j.jseaes.2021.104920
    [56]
    LING X X, HUYSKENS M H, LI Q L, et al., 2017. Monazite RW-1: a homogenous natural reference material for SIMS U–Pb and Th–Pb isotopic analysis[J]. Mineralogy and Petrology, 111(2): 163-172 doi: 10.1007/s00710-016-0478-7
    [57]
    LIU B, MA C Q, HUANG J, et al., 2017. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau[J]. Lithos, 284-285: 766-778. doi: 10.1016/j.lithos.2017.05.016
    [58]
    LIU H T, 2001. Qimantage terrestrial volcanics: Petrologic evidence of active continental margin of Tarim Plate during Late Indo-China Epoch[J]. Acta Petrologica Sinica, 17(3): 337-351 (in Chinese with English abstract
    [59]
    LIU J D, ZHANG K, WANG B Z, et al., 2023. U-Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains[J]. Geological Review, 69(4): 1525-1542. (in Chinese with English abstract
    [60]
    LIU J L, SUN F Y, LI L, et al., 2015. Geochronology, geochemistry and Hf isotopes of gerizhuotuo complex intrusion in west of anyemaqen suture zone[J]. Earth Science, 40(6): 965-981. (in Chinese with English abstract
    [61]
    LIU J N, FENG C Y, HE S Y, et al., 2017. Zircon U-Pb and phlogopite Ar-Ar ages of the monzogranite from Yemaquan iron-zinc deposit in Qinghai province[J]. Geotectonica et Metallogenia, 41(6): 1158-1170, doi: 10.16539/j.ddgzyckx.2017.06.013
    [62]
    LIU S, HU R Z, GAO S, et al., 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China: constraints on petrogenesis and implications[J]. Journal of Asian Earth Sciences, 35(5): 445-458. doi: 10.1016/j.jseaes.2009.02.008
    [63]
    LIU Y H, MO X X, YU X H, et al., 2006. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 22(10): 2457-2463. (in Chinese with English abstract
    [64]
    LUDWIG K R, 2003. User's manual for isoplot 3.00: a geochronological toolkit for microsoft excel[R]. Berkeley: Berkeley Geochronology Center: 39.
    [65]
    LUO M F, MO X X, YU X H, et al., 2014. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride Area, East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3229-3241. (in Chinese with English abstract
    [66]
    LUO Z H, KE S, CAO Y Q, et al., 2002. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6): 292-297. (in Chinese with English abstract
    [67]
    MACPHERSON C G, DREHER S T, THIRLWALL M F, 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth And Planetary Science Letters, 243(3-4): 581-593. doi: 10.1016/j.jpgl.2005.12.034
    [68]
    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224, doi: 10.1016/0012-8252(94)90029-9
    [69]
    MO X X, LUO Z H, DENG J F, et al., 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403-414. (in Chinese with English abstract
    [70]
    PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05
    [71]
    PECCERILLO A, TAYLOR S R, 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81, doi: 10.1007/BF00384745
    [72]
    PEI X Z, LI R B, LI Z C, et al., 2018. Composition feature and Formation process of buqingshan composite accretionary mélange belt in southern margin of East Kunlun Orogen[J]. Earth Science, 43(12): 4498-4520. (in Chinese with English abstract
    [73]
    QIAN B, GAO Y B, LI K, et al., 2015. Zircon U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granitic intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 31(9): 2508-2520. (in Chinese with English abstract
    [74]
    Qinghai Geological Survey Institute, 2023. Regional geology of China. Qinghai province[M]. Beijing: Geological Publishing House: 1-1543. (in Chinese)
    [75]
    QU H Y, FRIEHAUF K, SANTOSH M, et al., 2019. Middle-Late Triassic magmatism in the Hutouya Fe-CU-Pb-Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization[J]. Ore Geology Reviews, 113: 103088. doi: 10.1016/j.oregeorev.2019.103088
    [76]
    REN J S, 2004. Some problems on the Kunlun-Qinling orogenic system[J]. Northwestern Geology, 37(1): 1-5. (in Chinese with English abstract
    [77]
    RUDNICK R L, GAO S, 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.
    [78]
    SHAO F L, 2017. Petrogenesis of Triassic granitoids and rhyolites in the East Kunlun Orogenic Belt and their tectonic implications[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences: 1-146. (in Chinese with English abstract
    [79]
    SMITH H A, GILETTI B J, 1997. Lead diffusion in monazite[J]. Geochimica et Cosmochimica Acta, 61(5): 1047-1055. doi: 10.1016/S0016-7037(96)00396-1
    [80]
    SONG S G, WANG M J, WANG C, et al., 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective[J]. Science China Earth Sciences, 58(8): 1284-1304, doi: 10.1007/s11430-015-5102-x
    [81]
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [82]
    SUN Y, PEI X Z, DING S P, et al., 2009. Halagatu magma mixing granite in the East Kunlun Mountains: evidence from zircon U-Pb dating[J]. Acta Geologica Sinica, 83(7): 1000-1010. (in Chinese with English abstract
    [83]
    TIAN C S, FENG C Y, LI J H, et al., 2013. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in qimantag mountain of Qinghai province and its geological implications[J]. Mineral Deposits, 32(1): 169-176. (in Chinese with English abstract
    [84]
    TOMASCAK P B, KROGSTAD E J, WALKER R J, 1996. U-Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the northern appalachians[J]. The Journal of Geology, 104(2): 185-195. doi: 10.1086/629813
    [85]
    WANG B Z, CHEN J, LUO Z H, et al., 2014. Spatial and temporal distribution of Late Permian-Early Jurassic intrusion assemblages in eastern Qimantag, East Kunlun, and their tectonic settings[J]. Acta Petrologica Sinica, 30(11): 3213-3228. (in Chinese with English abstract
    [86]
    WANG B Z, PAN T, REN H D, et al., 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 28(1): 318-333 (in Chinese with English abstract
    [87]
    WANG B Z, LI J Q, FU C L, et al., 2022. Research on formation and evolution of Early paleozoic bulhanbuda Arc in East Kunlun Orogen[J]. Earth Science, 47(4): 1253-1270. (in Chinese with English abstract
    [88]
    WANG F C, CHEN J, XIE Z Y, et al., 2013. Geological features and Re-Os isotopic dating of the Lalingzaohuo molybdenum polymetallic deposit in East Kunlun[J]. Geology in China, 40(4): 1209-1217. (in Chinese with English abstract
    [89]
    WANG F L, WEI J H, LI X L, et al., 2022. Late permian magmatism at the eastern segment of the eastern Kunlun Orogenic belt: insights from granites in the Gazhima Area[J]. Geotectonica et Metallogenia, 46(5): 1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009
    [90]
    WANG P, ZHAO G C, LIU Q, et al., 2022. Evolution of the paleo-tethys ocean in eastern Kunlun, north Tibetan Plateau: from continental rift-drift to final closure[J]. Lithos, 422-423: 106717. doi: 10.1016/j.lithos.2022.106717
    [91]
    WANG Q, XU J F, JIAN P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070
    [92]
    WANG Q, WYMAN D A, XU J F, et al., 2007. Early cretaceous adakitic granites in the northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008
    [93]
    WANG Q, XU J F, ZHAO Z H, et al., 2008. Tectonic setting and associated rock suites of adakitic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350. (in Chinese with English abstract
    [94]
    WANG Q, HAO L L, ZHANG X Z, et al., 2020. Adakitic rocks at convergent plate boundaries: compositions and petrogenesis[J]. Science China Earth Sciences, 63(12): 1992-2016. doi: 10.1007/s11430-020-9678-y
    [95]
    WANG W, XIONG F H, MA C Q, et al., 2021. Petrogenesis of triassic suolagou sanukitoid-like diorite in East Kunlun orogen and its implications for paleo-tethyan orogeny[J]. Earth Science, 46(8): 2887-2902. (in Chinese with English abstract
    [96]
    WANG Y L, ZHANG Z W, ZHANG J W, et al., 2017. Early mesozoic mantle-derived magmatic events and their geological significance in the East Kunlun orogenic belt[J]. Geology and Exploration, 53(5): 855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003
    [97]
    WU F Y, YANG Y H, XIE L W, et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003
    [98]
    XIA R, QING M, WANG C M, et al., 2014. The genesis of the ore-bearing porphyry of the tuoketuo porphyry Cu-Au(Mo) deposit in the East Kunlun, Qinghai province: constraints from zircon U-Pb geochronological and geochemistry[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524. (in Chinese with English abstract
    [99]
    XIA R, WANG C M, QING M, et al., 2015. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024
    [100]
    XIAO Y, FENG C Y, LI D X, et al., 2014. Chronology and fluid inclusions of the guoluolongwa gold deposit in Qinghai province[J]. Acta Geologica Sinica, 88(5): 895-902. (in Chinese with English abstract
    [101]
    XIN W, SUN F Y, ZHANG Y T, et al., 2019. Mafic-intermediate igneous rocks in the East Kunlun orogenic belt, northwestern china: petrogenesis and implications for regional geodynamic evolution during the triassic[J]. Lithos, 346-347: 105159. doi: 10.1016/j.lithos.2019.105159
    [102]
    XIONG F H, MA C Q, ZHANG J Y, et al., 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 27(11): 3350-3364. (in Chinese with English abstract
    [103]
    XIONG F H, MA C Q, ZHANG J Y, et al., 2014. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by triassic I-type granitoids in the East Kunlun Orogen, northern Tibetan Plateau[J]. Journal of the Geological Society, 171(6): 847-863. doi: 10.1144/jgs2013-038
    [104]
    XU B, WANG C Y, LIU J D, et al., 2020. The petrogenesis of the Late Triassic granites in the Heergetou area, East Kunlun: constraints from geochronology, geochemistry and Sr-Nd-Pb isotopes[J]. Acta Geologica Sinica, 94(12): 3643-3656. (in Chinese with English abstract
    [105]
    XU Z Q, JIANG M, YANG J S, 1996. Tectonophysical process at depth for the uplift of the northern part of the qinghai-tibet plateau: illu- strated by the geological and geophysical compreh- ensive profile from golmud to the Tanggula Mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 70(3): 195-206. (in Chinese with English abstract
    [106]
    XU Z Q, YANG J S, LI W C, et al., 2012. Tectonic positioning of important metallogenic belts at southern and southeastern Tibet and ore prospecting[J]. Acta Geologica Sinica, 86(12): 1857-1868. (in Chinese with English abstract
    [107]
    YAN D D, XIONG F H, MA C Q, et al., 2024. Petrogenesis of middle triassic intermediate-mafic igneous rocks in East Kunlun, northern Tibet: implications for the crust growth and Paleo-Tethyan orogeny[J]. Geosystems and Geoenvironment, 3(2): 100096, doi: 10.1016/J.geogeo.2022.100096
    [108]
    YAN Z, BIAN Q T, Korchagin O A, et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: constrains from detrital framework, heavy mineral analysis and geochemistry[J]. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract
    [109]
    YIN H F, ZHANG K X, 1998. Evolution and characteristics of the Central Orogenic Belt[J]. Earth Science—Journal of China University of Geosciences, 23(5): 438-442. (in Chinese with English abstract
    [110]
    YU M, FENG C Y, LIU H C, et al., 2015. 40Ar-39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510-521. (in Chinese with English abstract
    [111]
    YUE W H, ZHOU J X, 2019. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai province[J]. Geological Bulletin of China, 38(2-3): 328-338. (in Chinese with English abstract
    [112]
    YUE Y G, 2022. Accretionary orogenesis of Carboniferous-Triassic in the southern belt of East Kunlun Orogen[D]. Xi’an: Northwest University, doi: 10.27405/d.cnki.gxbdu.2022.001333. (in Chinese with English abstract
    [113]
    ZENG L S, GAO L E, XIE K J, et al., 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303(3-4): 251-266. doi: 10.1016/j.jpgl.2011.01.005
    [114]
    ZHAN Q Y, ZHU D C, WANG Q, et al., 2018. Constructing the eastern margin of the Tibetan Plateau during the late Triassic[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459.
    [115]
    ZHANG J Y, MA C Q, XIONG F H, et al., 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 149(5): 892-908. doi: 10.1017/S0016756811001142
    [116]
    ZHANG J Y, MA C Q, LI J W, et al., 2017. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, Western China[J]. Ore Geology Reviews, 81: 342-357. doi: 10.1016/j.oregeorev.2016.11.003
    [117]
    ZHANG M Y, FENG C Y, WANG H, et al., 2018. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralogica, 37(2): 197-210. (in Chinese with English abstract
    [118]
    ZHANG X M, ZHAO X, FU L B, et al., 2023. Crustal architecture and metallogeny associated with the Paleo-Tethys evolution in the Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau[J]. Geoscience Frontiers, 14: 101654. doi: 10.1016/j.gsf.2023.101654
    [119]
    ZHANG Y L, LI Y Z, JIA Q Z, et al., 2018. Origin of magmatic rocks from Xishan copper polymetallic deposit, Geermu city, Qinghai province: insights from zircon U-Pb dating and geochemical characteristics[J]. Earth Science, 43(12): 4364-4374. (in Chinese with English abstract
    [120]
    ZHANG Y L, NI J Y, HU D G, et al., 2024. Geochronological and geochemical characteristics of volcanic rocks in the permian Gequ Formation in East Kunlun and their tectonic significance[J]. Acta Geoscientica Sinica, 45(2): 152-164. (in Chinese with English abstract
    [121]
    ZHAO X, FU L B, WEI J H, et al., 2018. Geochemical characteristics of An'nage hornblende gabbro from East Kunlun Orogenic belt and its constraints on evolution of paleo-tethys ocean[J]. Earth Science, 43(2): 354-370. (in Chinese with English abstract
    [122]
    ZHU Y X, WANG L X, MA C Q, et al., 2022. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412-413: 106595, doi: 10.1016/J.lithos.2022.106595
    [123]
    奥琮,孙丰月,李碧乐,等,2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义[J]. 大地构造与成矿学,39(6):1176-1184, doi: 10.16539/J.ddgzyckx.2015.06.016.
    [124]
    陈丹玲,刘良,车自成,等,2001. 祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J]. 地球化学,30(6):540-546. doi: 10.3321/j.issn:0379-1726.2001.06.006
    [125]
    陈功,裴先治,李佐臣,等,2016. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报,35(12):1990-2005. doi: 10.3969/j.issn.1671-2552.2016.12.007
    [126]
    陈国超,裴先治,李瑞保,等,2013a. 东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质,40(4):1044-1065.
    [127]
    陈国超,裴先治,李瑞保,等,2013b. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报,87(2):178-196.
    [128]
    陈国超,裴先治,李瑞保,等,2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学,41(6):1097-1115.
    [129]
    陈国超,裴先治,李瑞保,等,2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报,34(3):567-585.
    [130]
    陈国超,裴先治,李瑞保,等,2019. 东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据[J]. 地学前缘,26(4):191-208.
    [131]
    陈国超,陈孝珍,裴先治,等,2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束[J]. 地质学报,96(3):971-990. doi: 10.3969/j.issn.0001-5717.2022.03.015
    [132]
    丁烁,黄慧,牛耀龄,等,2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报,27(12):3603-3614.
    [133]
    董云鹏,惠博,孙圣思,等,2022. 中国中央造山系原-古特提斯多阶段复合造山过程[J]. 地质学报,96(10):3426-3448. doi: 10.3969/j.issn.0001-5717.2022.10.010
    [134]
    丰成友,李东生,屈文俊,等,2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试,28(3):223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006
    [135]
    丰成友,王雪萍,舒晓峰,等,2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版),41(6):1806-1817.
    [136]
    封铿,李瑞保,裴先治,等,2020. 东昆仑造山带东段大格勒花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报,42(4):442-463, doi: 10.19814/J.Jese.2020.05009.
    [137]
    封铿,李瑞保,裴先治,等,2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 地球科学,47(4):1194-1216, doi: 10.3799/dqkx.2021.116.
    [138]
    高永宝,李文渊,马晓光,等,2012. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版),48(2):36-47. doi: 10.3969/j.issn.0455-2059.2012.02.007
    [139]
    高永宝,李文渊,钱兵,等,2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报,30(6):1647-1665.
    [140]
    顾雪祥,章永梅,何格冯,等,2017. 青海省昆仑河地区金矿成矿规律与找矿方向研究[R]. 1-332.
    [141]
    国显正,栗亚芝,贾群子,等,2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义[J]. 岩石学报,34(8):2359-2379.
    [142]
    国显正,贾群子,李金超,等,2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报,25(2):286-300. doi: 10.12090/j.issn.1006-6616.2019.25.02.027
    [143]
    黄啸坤,2021. 东昆仑巴隆-沟里地区金成矿作用与综合信息成矿预测[D]. 武汉:中国地质大学,doi: 10.27492/d.cnki.gzdzu.2021.000251.
    [144]
    黄啸坤,魏俊浩,李欢,等,2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因:U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 地球科学,46(6):2037-2056.
    [145]
    菅坤坤,朱云海,王利伟,等,2017. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义[J]. 地质论评,63(3):659-676.
    [146]
    孔会磊,李金超,栗亚芝,等,2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报,35(1):8-16.
    [147]
    李成祥,曾小慧,周虎,等,2023. 巴颜喀拉中部三叠纪花岗岩类的岩石成因及其地质意义[J]. 大地构造与成矿学,47(6):1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303.
    [148]
    李金超,2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安:长安大学.
    [149]
    李瑞保,裴先治,李佐臣,等,2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报,34(12):2302-2314. doi: 10.3969/j.issn.1671-2552.2015.12.016
    [150]
    李瑞保,裴先治,李佐臣,等,2018. 东昆仑东段古特提斯洋俯冲作用:乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报,34(11):3399-3421.
    [151]
    刘红涛,2001. 祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J]. 岩石学报,17(3):337-351. doi: 10.3321/j.issn:1000-0569.2001.03.001
    [152]
    刘建栋,张焜,王秉璋,等,2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及Hf同位素特征[J]. 地质论评,69(4):1525-1542.
    [153]
    刘建楠,丰成友,何书跃,等,2017. 青海野马泉铁锌矿床二长花岗岩锆石U-Pb和金云母Ar-Ar测年及地质意义[J]. 大地构造与成矿学,41(6):1158-1170, doi: 10.16539/J.ddgzyckx.2017.06.013.
    [154]
    刘金龙,孙丰月,李良,等,2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素[J]. 地球科学,40(6):965-981.
    [155]
    刘云华,莫宣学,喻学惠,等,2006. 东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报,22(10):2457-2463. doi: 10.3321/j.issn:1000-0569.2006.10.006
    [156]
    罗明非,莫宣学,喻学惠,等,2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报,30(11):3229-3241.
    [157]
    罗照华,柯珊,曹永清,等,2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报,21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003
    [158]
    莫宣学,罗照华,邓晋福,等,2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报,13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
    [159]
    裴先治,李瑞保,李佐臣,等,2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学,43(12):4498-4520.
    [160]
    钱兵,高永宝,李侃,等,2015. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报,31(9):2508-2520.
    [161]
    青海省地质调查院,2023. 中国区域地质志. 青海志[M]. 北京:地质出版社:1-1543.
    [162]
    任纪舜,2004. 昆仑-秦岭造山系的几个问题[J]. 西北地质,37(1):1-5. doi: 10.3969/j.issn.1009-6248.2004.01.001
    [163]
    邵凤丽,2017. 东昆仑造山带三叠纪花岗岩类和流纹岩类的成因:洋壳到陆壳的转化[D]. 青岛:中国科学院大学(中国科学院海洋研究所):1-146.
    [164]
    孙雨,裴先治,丁仨平,等,2009. 东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J]. 地质学报,83(7):1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008
    [165]
    田承盛,丰成友,李军红,等,2013. 青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J]. 矿床地质,32(1):169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012
    [166]
    王秉璋,陈静,罗照华,等,2014. 东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J]. 岩石学报,30(11):3213-3228.
    [167]
    王秉璋,潘彤,任海东,等,2021. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘,28(1):318-333.
    [168]
    王秉璋,李积清,付长垒,等,2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学,47(4):1253-1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007
    [169]
    王凤林,魏俊浩,李小亮,等,2022. 东昆仑造山带东段晚二叠世岩浆作用:来自尕之麻地区花岗岩的制约[J]. 大地构造与成矿学,46(5):1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009.
    [170]
    王富春,陈静,谢志勇,等,2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年[J]. 中国地质,40(4):1209-1217. doi: 10.3969/j.issn.1000-3657.2013.04.019
    [171]
    王强,许继峰,赵振华,等,2008. 埃达克质岩的构造背景与岩石组合[J]. 矿物岩石地球化学通报,27(4):344-350. doi: 10.3969/j.issn.1007-2802.2008.04.003
    [172]
    王巍,熊富浩,马昌前,等,2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示[J]. 地球科学,46(8):2887-2902.
    [173]
    王亚磊,张照伟,张江伟,等,2017. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探,53(5):855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003.
    [174]
    夏锐,卿敏,王长明,等,2014. 青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版),44(5):1502-1524.
    [175]
    肖晔,丰成友,李大新,等,2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报,88(5):895-902.
    [176]
    熊富浩,马昌前,张金阳,等,2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报,27(11):3350-3364.
    [177]
    徐博,王成勇,刘建栋,等,2020. 东昆仑河尔格头地区晚三叠世花岗岩成因:年代学、地球化学及Sr-Nd-Pb同位素约束[J]. 地质学报,94(12):3643-3656. doi: 10.3969/j.issn.0001-5717.2020.12.009
    [178]
    许志琴,姜枚,杨经绥,1996. 青藏高原北部隆升的深部构造物理作用:以“格尔木-唐古拉山”地质及地球物理综合剖面为例[J]. 地质学报,70(3):195-206.
    [179]
    许志琴,杨经绥,李文昌,等,2012. 青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景[J]. 地质学报,86(12):1857-1868. doi: 10.3969/j.issn.0001-5717.2012.12.001
    [180]
    闫臻,边千韬,Korchagin OA,等,2008. 东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据[J]. 岩石学报,24(5):1068-1078.
    [181]
    殷鸿福,张克信,1998. 中央造山带的演化及其特点[J]. 地球科学−中国地质大学学报,23(5):438-442.
    [182]
    于淼,丰成友,刘洪川,等,2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报,89(3):510-521.
    [183]
    岳维好,周家喜,2019. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J]. 地质通报,38(2-3):328-338.
    [184]
    岳远刚,2022. 东昆仑南部构造带石炭-三叠纪增生造山作用[D]. 西安:西北大学,doi: 10.27405/d.cnki.gxbdu.2022.001333.
    [185]
    张明玉,丰成友,王辉,等,2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志,37(2):197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002
    [186]
    张耀玲,倪晋宇,胡道功,等,2024. 东昆仑二叠系格曲组火山岩年代学、地球化学特征及其构造意义[J]. 地球学报,45(2):152-164. doi: 10.3975/cagsb.2023.110902
    [187]
    张雨莲,栗亚芝,贾群子,等,2018. 青海省格尔木市西山铜多金属矿成矿岩体锆石U-Pb定年及地球化学特征[J]. 地球科学,43(12):4364-4374.
    [188]
    赵旭,付乐兵,魏俊浩,等,2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学,43(2):354-370.
    [189]
    中国地质大学(武汉),2006. 青海省1∶25万库赛湖幅(I46C001002)、不冻泉幅(I46C001003)区域地质调查报告[R]. 1-400.
    [190]
    中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010a. 硅酸盐岩石化学分析方法:第28部分 16个主次成分量测定:GB/T 14506.28—2010[S]. 北京:中国标准出版社.
    [191]
    中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010b. 硅酸盐岩石化学分析方法:第30部分 44个元素量测定:GB/T14506.30-2010[S]. 北京:中国标准出版社.
  • 加载中

Catalog

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (208) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return