Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
KANG Wenjun, XU Xiwei, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method. Journal of Geomechanics, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144
Citation: KANG Wenjun, XU Xiwei, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method. Journal of Geomechanics, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144

Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method

doi: 10.12090/j.issn.1006-6616.2023144
Funds:

the Youth Fund of National Natural Science Foundation of China 42302257

the Fundamental Research Fund for the National Institute of Natural Hazards ZDJ2021-06

the Earthquake Joint Fund of National Natural Science Foundation of China U1839204

More Information
  • Received: 2023-09-04
  • Revised: 2024-03-24
  • Accepted: 2024-03-24
  • Available Online: 2024-04-11
  • Published: 2024-04-28
  •   Objective  On February 6, 2023, double strong earthquakes of MW7.8 and MW7.5 occurred consecutively within 10 hours in the Kahramanmaraş province in central-southern Turkey. After these double-strong earthquakes, domestic and foreign seismologists studied coseismic surface deformation using field measurements, GNSS, and differential InSAR methods. However, owing to the limitations in the techniques employed, the current coseismic surface deformation results suffer from low spatial resolution and missing data near fault surface ruptures. This study aims to address these limitations and comprehensively present the coseismic surface deformation of the double earthquakes in Turkey.  Methods  Using Sentinel-2 optical image data, the east-west and north-south surface coseismic deformation fields of Turkey' s double-strong earthquakes were obtained using the image correlation method, and these surface deformations were converted into sinistral strike-slip displacement along the fault direction.  Results  The deformation field results showed that the surface rupture lengths of the double earthquakes are approximately 280 and 130 km, respectively. The average strike-slip displacement of the first MW7.8 earthquake is 4.2±1.66 m; the maximum strike-slip displacement is 6.9±0.81 m. The average strike-slip displacement of the subsequent MW7.5 earthquake is 4.9±2.45 m, and the maximum strike-slip displacement is 9.6±1.16 m.  Conclusion  Comparison of the horizontal displacement results obtained using the COSI-Corr method and field measurements revealed that the maximum horizontal displacements obtained using the two methods are consistent. In contrast, the average displacement results obtained using the COSI-Corr method are slightly larger than the horizontal displacement results obtained using field measurements, attributed to the inclusion of "off-fault" deformations.  Significance  This study not only provides deformation data and constraints for the fault-slip inversion model but also deepens the understanding of factors controlling the rupture behavior of strike-slip faults.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ANTOINE S L, KLINGER Y, DELORME A, et al., 2022. Off-fault deformation in regions of complex fault geometries: the 2013, Mw7.7, Baluchistan Rupture (Pakistan) [J]. Journal of Geophysical Research: Solid Earth, 127(11): e2022JB024480. doi: 10.1029/2022JB024480
    AYOUB F, LEPRINCE S, AVOUAC J P, 2009. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 551-560, doi: 10.1016/j.isprsjprs.2009.03.005.
    BALKAYA M, OZDEN S, AKYVZ H S, 2021. Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone)[J]. Journal of Advanced Research in Natural and Applied Sciences, 7(3): 375-392, doi: 10.28979/jarnas.939075.
    BARNHART W D, BRIGGS R W, REITMAN N G, et al., 2015. Evidence for slip partitioning and bimodal slip behavior on a single fault: surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake[J]. Earth and Planetary Science Letters, 420: 1-11, doi: 10.1016/j.epsl.2015.03.027.
    BARNHART W D, GOLD R D, HOLLINGSWORTH J, 2020. Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes[J]. Nature Geoscience, 13(10): 699-704, doi: 10.1038/s41561-020-0628-8.
    CHOROWICZ J, LUXEY P, LYBERIS N, et al., 1994. The Maras Triple Junction (southern Turkey) based on digital elevation model and satellite imagery interpretation[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 20225-20242, doi: 10.1029/94JB00321.
    DUMAN T Y, EMRE Ö, 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics[J]. Geological Society, London, Special Publications, 372(1): 495-529, doi: 10.1144/SP372.14.
    Feng S T, Li J, Li G R, et al., 2023. Preliminary horizontal co-seismic displacements caused by the 2023 Mw 7.8 and Mw 7.5 Türkiye earthquakes estimated using high-rate GPS observations[J]. Acta Geophys, doi: 10.1007/s11600-023-01168-4.
    GOLD R D, REITMAN N G, BRIGGS R W, et al., 2015. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: implications for geologic slip rate measurements[J]. Tectonophysics, 660: 65-78, doi: 10.1016/j.tecto.2015.08.019.
    GÜVERCIN S E, KARABULUT H, KONCA A Ö, et al., 2022. Active seismotectonics of the east anatolian fault[J]. Geophysical Journal International, 230(1): 50-69, doi: 10.1093/gji/ggac045.
    HE L J, FENG G C, FENG Z X, et al., 2019. Coseismic displacements of 2016 MW7.8 Kaikoura, New Zealand earthquake, using Sentinel-2 optical images[J]. Acta Geodaetica et Cartographica Sinica, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671. (in Chinese with English abstract)
    JACKSON J, 2010. N. Ambraseys 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press. xx + 947pp. Price £120.00, US $210.00 (hard covers). ISBN 978 0 521 87292 8[J]. Geological Magazine, 147(6): 987-988, doi: 10.1017/S0016756810000452.
    JIA Z, JIN Z Y, MARCHANDON M, et al., 2023. The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw7.8-7.7 earthquake doublet[J]. Science, 381(6661): 985-990. doi: 10.1126/science.adi0685
    KARABACAK V, ÖZKAYMAK Ç, SÖZBILIR H, et al., 2023. The 2023 Pazarcık (Kahramanmaraş, Türkiye) Earthquake (Mw: 7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone[J/OL]. Journal of the Geological Society, 180(3): 1-14. https://doi.org/10.1144/ips2023-020.
    KREEMER C, BLEWITT G, KLEIN E C, 2014. A geodetic plate motion and Global Strain Rate Model[J]. Geochemistry, Geophysics, Geosystems, 15(10): 3849-3889, doi: 10.1002/2014GC005407.
    LI C L, LI T, SHAN X J, et al, 2023. Extremely large off-fault deformation during the 2021 MW 7.4 Maduo, Tibetan Plateau, Earthquake[J]. Seismological Research Letters, 94(1): 39-51. doi: 10.1785/0220220139
    LIU C L, LAY T, WANG R J, et al, 2023. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 14(1): 5564. doi: 10.1038/s41467-023-41404-5
    MAI P M, ASPIOTIS T, AQUIB T A, et al., 2023. The destructive earthquake doublet of 6 February 2023 in South-Central türkiye and Northwestern Syria: initial observations and analyses[J]. The Seismic Record, 3(2): 105-115. doi: 10.1785/0320230007
    MCKENZIE D, 1976. The east anatolian fault: a major structure in eastern turkey[J]. Earth and Planetary Science Letters, 29(1): 189-193, doi: 10.1016/0012-821X(76)90038-8.
    MENG J H, KUSKY T, MOONEY W D, et al, 2024. Surface deformations of the 6 February 2023 earthquake sequence, eastern Türkiye[J]. Science, 383(6680): 298-305. doi: 10.1126/science.adj3770
    MILLINER C, DONNELLAN A, 2020. Using daily observations from planet labs satellite imagery to separate the surface deformation between the 4 July MW6.4 foreshock and 5 July MW7.1 mainshock during the 2019 ridgecrest earthquake sequence[J]. Seismological Research Letters, 91(4): 1986-1997, doi: 10.1785/0220190271.
    MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2015. Quantifying near-field and off-fault deformation patterns of the 1992 MW 7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598, doi: 10.1002/2014GC005693.
    MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2016. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 landers and 1999 Mw7.1 hector mine earthquakes: implications for controls on the distribution of surface strain[J]. Geophysical Research Letters, 43(19): 10115-10124, doi: 10.1002/2016gl069841.
    ÖZKAN A, SOLAK H İ, TIRYAKIOǦLU İ, et al., 2023. Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Turkey) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network[J]. Tectonophysics, 866: 230041. doi: 10.1016/j.tecto.2023.230041
    POUSSE-BELTRAN L, NISSEN E, BERGMAN E A, et al., 2020. The 2020 MW 6.8 Elazğ (Turkey) earthquake reveals rupture behavior of the East Anatolian fault[J]. Geophysical Research Letters, 47(13): e2020GL088136, doi: 10.1029/2020GL088136.
    ŞAROǦLU F, EMRE Ö, KUŞÇU İ, 1992. Türkiye diri fay haritası[M]. Ankara: MTA Genel Müdürlüğü.
    SCHÖN SCHOENJ H, 2015. Physical properties of rocks-fundamentals and principles of petrophysics[M]. 2nd ed. Amsterdam: Elsevier.
    TONG X P, WANG Y Z, CHEN S, 2023. Coseismic deformation of the 2023 türkiye earthquake doublet from sentinel-1 InSAR and implications for earthquake hazard[J]. Seismological Research Letters, 95(2A): 574-583, doi: 10.1785/0220230282.
    VALLAGE A, KLINGER Y, GRANDIN R, et al., 2015. Inelastic surface deformation during the 2013 Mw 7.7 Balochistan, Pakistan, earthquake[J]. Geology, 2015, 43(12): 1079-1082.
    WANG L Y, ZOU A J, XU G Y, 2021. Coseismic deformation of 2019 Ridgecrest earthquake sequence obtained by optical images correlation[J]. Engineering of Surveying and Mapping, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001. (in Chinese with English abstract)
    WANG M C, HE Z Q, CHEN T, 2022. Recent coulomb stress evolution in the east anatolian fault zone and its triggering relationship with the 2020 Elaziĝ MW6.8 earthquake[J]. Journal of Geodesy and Geodynamics, 42(5): 526-532. (in Chinese with English abstract)
    ZINKE R, HOLLINGSWORTH J, DOLAN J F, 2014. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: implications for controls on the distribution of near-surface coseismic slip[J]. Geochemistry, Geophysics, Geosystems, 15(12): 5034-5050. doi: 10.1002/2014GC005538
    贺礼家, 冯光财, 冯志雄, 等, 2019. 哨兵-2号光学影像地表形变监测: 以2016年Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671.
    王乐洋, 邹阿健, 许光煜, 2021. 利用光学影像相关获取2019年Ridgecrest地震序列同震形变[J]. 测绘工程, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001.
    王茗册, 何仲秋, 陈庭, 2022. 东安纳托利亚断裂带近期库仑应力演化及与2020年埃拉泽Mw6.8地震的触发关系[J]. 大地测量与地球动力学, 42(5): 526-532, doi: 10.14075/j.jgg.2022.05.016.
  • 加载中

Catalog

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (527) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return