Citation: | KANG Wenjun, XU Xiwei, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method. Journal of Geomechanics, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144 |
ANTOINE S L, KLINGER Y, DELORME A, et al., 2022. Off-fault deformation in regions of complex fault geometries: the 2013, Mw7.7, Baluchistan Rupture (Pakistan) [J]. Journal of Geophysical Research: Solid Earth, 127(11): e2022JB024480. doi: 10.1029/2022JB024480
|
AYOUB F, LEPRINCE S, AVOUAC J P, 2009. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 551-560, doi: 10.1016/j.isprsjprs.2009.03.005.
|
BALKAYA M, OZDEN S, AKYVZ H S, 2021. Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone)[J]. Journal of Advanced Research in Natural and Applied Sciences, 7(3): 375-392, doi: 10.28979/jarnas.939075.
|
BARNHART W D, BRIGGS R W, REITMAN N G, et al., 2015. Evidence for slip partitioning and bimodal slip behavior on a single fault: surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake[J]. Earth and Planetary Science Letters, 420: 1-11, doi: 10.1016/j.epsl.2015.03.027.
|
BARNHART W D, GOLD R D, HOLLINGSWORTH J, 2020. Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes[J]. Nature Geoscience, 13(10): 699-704, doi: 10.1038/s41561-020-0628-8.
|
CHOROWICZ J, LUXEY P, LYBERIS N, et al., 1994. The Maras Triple Junction (southern Turkey) based on digital elevation model and satellite imagery interpretation[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 20225-20242, doi: 10.1029/94JB00321.
|
DUMAN T Y, EMRE Ö, 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics[J]. Geological Society, London, Special Publications, 372(1): 495-529, doi: 10.1144/SP372.14.
|
Feng S T, Li J, Li G R, et al., 2023. Preliminary horizontal co-seismic displacements caused by the 2023 Mw 7.8 and Mw 7.5 Türkiye earthquakes estimated using high-rate GPS observations[J]. Acta Geophys, doi: 10.1007/s11600-023-01168-4.
|
GOLD R D, REITMAN N G, BRIGGS R W, et al., 2015. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: implications for geologic slip rate measurements[J]. Tectonophysics, 660: 65-78, doi: 10.1016/j.tecto.2015.08.019.
|
GÜVERCIN S E, KARABULUT H, KONCA A Ö, et al., 2022. Active seismotectonics of the east anatolian fault[J]. Geophysical Journal International, 230(1): 50-69, doi: 10.1093/gji/ggac045.
|
HE L J, FENG G C, FENG Z X, et al., 2019. Coseismic displacements of 2016 MW7.8 Kaikoura, New Zealand earthquake, using Sentinel-2 optical images[J]. Acta Geodaetica et Cartographica Sinica, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671. (in Chinese with English abstract)
|
JACKSON J, 2010. N. Ambraseys 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press. xx + 947pp. Price £120.00, US $210.00 (hard covers). ISBN 978 0 521 87292 8[J]. Geological Magazine, 147(6): 987-988, doi:
|
JIA Z, JIN Z Y, MARCHANDON M, et al., 2023. The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw7.8-7.7 earthquake doublet[J]. Science, 381(6661): 985-990. doi: 10.1126/science.adi0685
|
KARABACAK V, ÖZKAYMAK Ç, SÖZBILIR H, et al., 2023. The 2023 Pazarcık (Kahramanmaraş, Türkiye) Earthquake (Mw: 7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone[J/OL]. Journal of the Geological Society, 180(3): 1-14.
|
KREEMER C, BLEWITT G, KLEIN E C, 2014. A geodetic plate motion and Global Strain Rate Model[J]. Geochemistry, Geophysics, Geosystems, 15(10): 3849-3889, doi: 10.1002/2014GC005407.
|
LI C L, LI T, SHAN X J, et al, 2023. Extremely large off-fault deformation during the 2021 MW 7.4 Maduo, Tibetan Plateau, Earthquake[J]. Seismological Research Letters, 94(1): 39-51. doi: 10.1785/0220220139
|
LIU C L, LAY T, WANG R J, et al, 2023. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 14(1): 5564. doi: 10.1038/s41467-023-41404-5
|
MAI P M, ASPIOTIS T, AQUIB T A, et al., 2023. The destructive earthquake doublet of 6 February 2023 in South-Central türkiye and Northwestern Syria: initial observations and analyses[J]. The Seismic Record, 3(2): 105-115. doi: 10.1785/0320230007
|
MCKENZIE D, 1976. The east anatolian fault: a major structure in eastern turkey[J]. Earth and Planetary Science Letters, 29(1): 189-193, doi: 10.1016/0012-821X(76)90038-8.
|
MENG J H, KUSKY T, MOONEY W D, et al, 2024. Surface deformations of the 6 February 2023 earthquake sequence, eastern Türkiye[J]. Science, 383(6680): 298-305. doi: 10.1126/science.adj3770
|
MILLINER C, DONNELLAN A, 2020. Using daily observations from planet labs satellite imagery to separate the surface deformation between the 4 July MW6.4 foreshock and 5 July MW7.1 mainshock during the 2019 ridgecrest earthquake sequence[J]. Seismological Research Letters, 91(4): 1986-1997, doi: 10.1785/0220190271.
|
MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2015. Quantifying near-field and off-fault deformation patterns of the 1992 MW 7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598, doi: 10.1002/2014GC005693.
|
MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2016. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 landers and 1999 Mw7.1 hector mine earthquakes: implications for controls on the distribution of surface strain[J]. Geophysical Research Letters, 43(19): 10115-10124, doi: 10.1002/2016gl069841.
|
ÖZKAN A, SOLAK H İ, TIRYAKIOǦLU İ, et al., 2023. Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Turkey) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network[J]. Tectonophysics, 866: 230041. doi: 10.1016/j.tecto.2023.230041
|
POUSSE-BELTRAN L, NISSEN E, BERGMAN E A, et al., 2020. The 2020 MW 6.8 Elazğ (Turkey) earthquake reveals rupture behavior of the East Anatolian fault[J]. Geophysical Research Letters, 47(13): e2020GL088136, doi: 10.1029/2020GL088136.
|
ŞAROǦLU F, EMRE Ö, KUŞÇU İ, 1992. Türkiye diri fay haritası[M]. Ankara: MTA Genel Müdürlüğü.
|
SCHÖN SCHOENJ H, 2015. Physical properties of rocks-fundamentals and principles of petrophysics[M]. 2nd ed. Amsterdam: Elsevier.
|
TONG X P, WANG Y Z, CHEN S, 2023. Coseismic deformation of the 2023 türkiye earthquake doublet from sentinel-1 InSAR and implications for earthquake hazard[J]. Seismological Research Letters, 95(2A): 574-583, doi: 10.1785/0220230282.
|
VALLAGE A, KLINGER Y, GRANDIN R, et al., 2015. Inelastic surface deformation during the 2013 Mw 7.7 Balochistan, Pakistan, earthquake[J]. Geology, 2015, 43(12): 1079-1082.
|
WANG L Y, ZOU A J, XU G Y, 2021. Coseismic deformation of 2019 Ridgecrest earthquake sequence obtained by optical images correlation[J]. Engineering of Surveying and Mapping, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001. (in Chinese with English abstract)
|
WANG M C, HE Z Q, CHEN T, 2022. Recent coulomb stress evolution in the east anatolian fault zone and its triggering relationship with the 2020 Elaziĝ MW6.8 earthquake[J]. Journal of Geodesy and Geodynamics, 42(5): 526-532. (in Chinese with English abstract)
|
ZINKE R, HOLLINGSWORTH J, DOLAN J F, 2014. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: implications for controls on the distribution of near-surface coseismic slip[J]. Geochemistry, Geophysics, Geosystems, 15(12): 5034-5050. doi: 10.1002/2014GC005538
|
贺礼家, 冯光财, 冯志雄, 等, 2019. 哨兵-2号光学影像地表形变监测: 以2016年Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671.
|
王乐洋, 邹阿健, 许光煜, 2021. 利用光学影像相关获取2019年Ridgecrest地震序列同震形变[J]. 测绘工程, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001.
|
王茗册, 何仲秋, 陈庭, 2022. 东安纳托利亚断裂带近期库仑应力演化及与2020年埃拉泽Mw6.8地震的触发关系[J]. 大地测量与地球动力学, 42(5): 526-532, doi: 10.14075/j.jgg.2022.05.016.
|