HU C Y,LI C,YANG Z B,et al.,2024. Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage[J]. Journal of Geomechanics,30(3):419−426 doi: 10.12090/j.issn.1006-6616.2023075
Citation: HU C Y,LI C,YANG Z B,et al.,2024. Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage[J]. Journal of Geomechanics,30(3):419−426 doi: 10.12090/j.issn.1006-6616.2023075

Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage

doi: 10.12090/j.issn.1006-6616.2023075
Funds:  This research is financially supported by the Key Science and Technology Research Project of the China National Petroleum Exploration and Production Corporation (Grant No. 2022ZS0903) and the National Natural Science Foundation of China (Grant No. 42174122).
More Information
  •   Objective  The maximum operating pressure for underground gas storage facilities designed for oil and gas reservoirs, both constructed and under construction in China, is currently set at the original formation pressure. There have yet to be successful cases of overpressure operation, which significantly impacts the economic benefits of converting depleted oil and gas reservoirs into underground gas storage facilities. This article aims to evaluate the maximum operating pressure and storage capacity of the Nanpu 1-29 gas storage facility from the perspective of the ultimate bearing capacity of cap layers and faults, with the goal of effectively enhancing the construction benefits of the facility.  Methods  The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility in eastern Hebei is based on the minimum principal stress measured in situ in the mining wells. Different effective porosity calculation methods are employed to quantitatively evaluate the effective storage capacity of gas and oil reservoirs, as well as the incremental capacity after pressure boosting operation, based on their development differences.  Results  The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility indicates that the minimum principal stress of the cap layers determined by the in-situ measurements in the mining wells is 34.00 MPa. Based on the tensile failure criteria determined by the minimum principal stress, the maximum operating pressure for the tensile failure of the cap layer is 27.20 MPa. Combined with the maximum safe injection pressure corresponding to shear failure of the cap layer (30.60 MPa) and the maximum safe injection pressure corresponding to unstable slip of the fault (27.60 MPa), the final maximum operating pressure for the Nanpu 1-29 gas storage facility is determined to be 27.20 MPa. Based on the effective storage capacity calculation model, considering factors such as the water content of the gas reservoir, residual water and edge porosity as well as the coefficient of influence, the efficiency of gas-driven fluid, and the utilization rate of oil-containing space, the maximum operating pressure increased from the original formation pressure of 22.50 MPa to 27.20 MPa. The practical storage capacity of the gas storage facility increased from 15.46×108 m3 to 18.14×108 m3, an increase of approximately 17.3%.  Conclusion  (1) The construction of gas storage facilities can be re-evaluated for the maximum operating pressure based on the minimum principal stress measured in situ in the mining wells, and overpressure design can be conducted under appropriate conditions. (2) Overpressure design can effectively increase storage capacity and improve the economic benefits of reservoir construction.  Significance   The research results have a certain reference value for the quantitative evaluation of the maximum operating pressure and storage capacity of other underground gas storage facilities, and are expected to significantly improve the economic benefits of overpressure-designed reservoir-type gas storage facilities in China.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    ANYADIEGWU C I C, 2012. Estimation of storage capacity of an underground gas storage reservoir[J]. International Journal of Academic Research, 4(4): 11-15. doi: 10.7813/2075-4124.2012/4-4/A.2
    [2]
    BARREE R D, BARREE V L, CRAIG D P, 2009. Holistic fracture diagnostics: consistent interpretation of Prefrac injection tests using multiple analysis methods[J]. SPE Production & Operations, 24(3): 396-406.
    [3]
    BÉREST P, BROUARD B, FAVRET F, et al 2015. Maximum pressure in gas storage caverns[C]//Solution Mining Research Institute spring 2015 technical conference. New Work: Solution Mining Research Institute: 1-17.
    [4]
    BRUNO M S, DEWOLF G, FOH S, 2000. Geomechanical analysis and decision analysis for delta pressure operations in gas storage reservoirs[C]//Paper presented at the American gas association operations conference. Denver.
    [5]
    CHEN Q C, SUN D S, CUI J J, et al, 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract
    [6]
    CHEN S M, 2016. Energy consumption and natural gas emission reduction potential in the Beijing-Tianjin-Hebei region[J]. Resources Economization & Environmental Protection, 31(4): 1, 3. (in Chinese)
    [7]
    CHEN Z W, YANG X T, WANG G, et al, 2014. Analytical technique of horizontal maximum principal stress for petroleum engineering[J]. Journal of Geomechanics, 20(1): 94-102. (in Chinese with English abstract
    [8]
    COFFIN P, LEBAS G, 2007. Converting the Pecorade oil field into an underground gas storage[C]//International petroleum technology conference. Dubai: OnePetro.
    [9]
    DIETERT J, PURSELL D, 2008. Underground natural gas storage, Simmons and company international. 5000 Bank of America Houston, Texas 77002.
    [10]
    DING G S, LI W Y, 2002. Foreign and domestic underground gas storage tanks: current situation and development trends[J]. International Petroleum Economics, 10(6): 23-26. (in Chinese with English abstract
    [11]
    DING G S, WANG J M, 2011. Key points in the reconstruction of an underground gas storage based on a depleted gas reservoir[J]. Natural Gas Industry, 31(5): 87-89. (in Chinese with English abstract
    [12]
    DOU S J, ZHAO P Q, 2010. Application of fault-sealing in oilfield development[J]. Fault-Block Oil & Gas Field, 17(1): 28-31. (in Chinese with English abstract
    [13]
    HAIMSON B C, CORNET F H. 2003. ISRM suggested methods for rock stress estimation: part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020.
    [14]
    HU X L, LÜ Y F, FU G, et al, 2019. Quantitative evaluation of fault vertical sealing ability of 1st structure in Nanpu Sag[J]. Earth Science, 44(11): 3882-3893. (in Chinese with English abstract
    [15]
    LI J, ZHANG J J, 2013. Design of reservoir capacity for building reservoirs in unconfined gas reservoirs[J]. Broken block oil and gas field, 20(3): 359-361. (in Chinese with English abstract
    [16]
    LIU J Y, WANG L D, MA Z X. 2008. Comparison of two algorithms for the calculation of reserves out of the volumetric method[J]. Marine Geology Dynamics, 24(3): 40-42. (in Chinese with English abstract
    [17]
    LIU W, CHEN M, LV Z H, et al, 2011. Classification and development trend of underground gas storage[J]. Oil-Gas Field Surface Engineering, 30(12): 100-101. (in Chinese)
    [18]
    MA X M, YU B B, MA D B, et al, 2010. Project design and matching technologies for underground gas storage based on a depleted sandstone gas reservoir[J]. Natural Gas Industry, 30(8): 67-71. (in Chinese with English abstract
    [19]
    MALAKOOTI R, AZIN R, 2011. The optimization of underground gas storage in a partially depleted gas reservoir[J]. Petroleum Science and Technology, 29(8): 824-836. doi: 10.1080/10916460903486742
    [20]
    PAN J R, LI L, ZHANG Y Q, et al , 2019. Research on the development of natural gas storage and peak shaving facilities in China[C]//China gas operation and safety seminar (10th) & gas branch of China Civil Engineering Society. Shanghai: Gas Branch of China Civil Engineering Society: 159-162. (in Chinese)
    [21]
    REINHARD R, STAUDTMEISTERK, ZANDER-SCHI-EBENHOFER D, 1998. Rock mechanical determination of the maximum internal pressure for gas storage caverns in rack salt[S]. Hannover: Solution Mining Research Instit-ute: 1-20.
    [22]
    SAWYER W K, ZUBER M D, BUES A D, 1998. Reservoir simulation and analysis of the Sciota aquifer gas storage pool[C]//SPE eastern regional meeting. Pittsburgh: SPE.
    [23]
    SUN J C, XU H C, WANG J M, et al, 2018. Injection-production mechanisms and key evaluation technologies for underground gas storages rebuilt from gas reservoirs[J]. Natural Gas Industry, 38(4): 138-144. (in Chinese with English abstract
    [24]
    SUN L L, ZHANG M G, HU Z H, 2019. The analysis on influencing factors and relation of Beijing-Tianjin-Hebei natural gas market[J]. Urban Gas(7): 24-29. (in Chinese with English abstract
    [25]
    TANG L G, WANG J M, BAI F J, et al, 2014. Inventory forecast in underground gas storage based on modified material balance equation[J]. Petroleum Exploration and Development, 41(4): 480-484. (in Chinese with English abstract
    [26]
    WANG J M, JIANG F G, 2007. A method for calculating underground gas storage capacity reconstructed from sand gas-cap reservoir at the late water-driving stage[J]. Natural Gas Industry, 27(11): 97-99. (in Chinese with English abstract
    [27]
    XU H C, WANG J M, QU P, et al, 2015. A prediction model of storage capacity parameters of a geologically-complicated reservoir-type underground gas storage (UGS)[J]. Natural Gas Industry, 35(1): 103-108. (in Chinese with English abstract
    [28]
    YANG Y H, GAO G L, WANG F, et al, 2022. Layered in-situ stress measurement method for perforated interval of Nanpu gas storage, Jidong oilfield[J]. Oil & Gas Storage and Transportation, 41(9): 1029-1035. (in Chinese with English abstract
    [29]
    ZHAO Q S, YU L Z, 2013. Study on reservoir characteristics of Guantao Formation in No. 1 and No. 2 structures of Nanpu oilfield[J]. Journal of Oil and Gas Technology, 35(7): 38-43. (in Chinese with English abstract
    [30]
    ZHAO Y C, LUO Y, LI L X, et al, 2022. In-situ stress simulation and integrity evaluation of underground gas storage: a case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523-536. (in Chinese with English abstract
    [31]
    ZHENG D W, XU H C, WANG J M, et al, 2017. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 44(5): 794-801. (in Chinese with English abstract
    [32]
    ZHENG Y L, SUN J C, QIU X S, et al, 2020. Connotation and evaluation technique of geological integrity of UGSs in oil-gas fields[J]. Natural Gas Industry, 40(5): 94-103. (in Chinese with English abstract
    [33]
    ZHONG C, QIN Q R, ZHOU J L, et al, 2018. Study on fault sealing of organic-rich shale by present stress: a case study of Longmaxi Formation in Dingshan Area, southeast Sichuan[J]. Journal of Geomechanics, 24(4): 452-464. (in Chinese with English abstract
    [34]
    陈群策,孙东生,崔建军,等,2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报,25(5):853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
    [35]
    陈思敏,2016. 京津冀地区的能源消费和天然气的减排潜力[J]. 资源节约与环保,31(4):1,3.
    [36]
    陈朝伟,杨向同,王刚,等,2014. 石油工程水平最大地应力分析技术[J]. 地质力学学报,20(1):94-102. doi: 10.3969/j.issn.1006-6616.2014.01.009
    [37]
    丁国生,李文阳,2002. 国内外地下储气库现状与发展趋势[J]. 国际石油经济,10(6):23-26. doi: 10.3969/j.issn.1004-7298.2002.06.004
    [38]
    丁国生,王皆明,2011. 枯竭气藏改建储气库需要关注的几个关键问题[J]. 天然气工业,31(5):87-89. doi: 10.3787/j.issn.1000-0976.2011.05.023
    [39]
    窦松江,赵平起,2010. 断层封闭性在油田开发中的应用[J]. 断块油气田,17(1):28-31.
    [40]
    胡欣蕾,吕延防,付广,等,2019. 南堡凹陷1号构造断层垂向封闭能力定量评价[J]. 地球科学,44(11):3882-3893.
    [41]
    李季,张吉军,2013. 不封闭气藏建库库容设计[J]. 断块油气田,20(3):359-361,383.
    [42]
    刘吉余,王立东,马志欣,2008. 容积法储量计算的两种算法比较[J]. 海洋地质动态,24(3):40-42. doi: 10.3969/j.issn.1009-2722.2008.03.009
    [43]
    刘炜,陈敏,吕振华,等,2011. 地下储气库的分类及发展趋势[J]. 油气田地面工程,30(12):100-101. doi: 10.3969/j.issn.1006-6896.2011.12.051
    [44]
    马小明,余贝贝,马东博,等,2010. 砂岩枯竭型气藏改建地下储气库方案设计配套技术[J]. 天然气工业,30(8):67-71. doi: 10.3787/j.issn.1000-0976.2010.08.018
    [45]
    潘季荣,李乐,张永清,等,2019. 我国天然气储气调峰设施发展研究[C]//中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会论文集(上册). 上海:中国土木工程学会燃气分会:159-162.
    [46]
    孙军昌,胥洪成,王皆明,等,2018. 气藏型地下储气库建库注采机理与评价关键技术[J]. 天然气工业,38(4):138-144. doi: 10.3787/j.issn.1000-0976.2018.04.016
    [47]
    孙莉莉,张明光,胡周海,2019. 京津冀天然气市场影响因素及关联度分析[J]. 城市燃气(7):24-29.
    [48]
    唐立根,王皆明,白凤娟,等,2014. 基于修正后的物质平衡方程预测储气库库存量[J]. 石油勘探与开发,41(4):480-484. doi: 10.11698/PED.2014.04.14
    [49]
    王皆明,姜凤光,2007. 砂岩气顶油藏改建储气库库容计算方法[J]. 天然气工业,27(11):97-99. doi: 10.3321/j.issn:1000-0976.2007.11.030
    [50]
    胥洪成,王皆明,屈平,等,2015. 复杂地质条件气藏储气库库容参数的预测方法[J]. 天然气工业,35(1):103-108. doi: 10.3787/j.issn.1000-0976.2015.01.014
    [51]
    杨跃辉,高广亮,王芳,等,2022. 冀东南堡储气库射孔段分层地应力测量方法[J]. 油气储运,41(9):1029-1035.
    [52]
    赵其生,于连忠,2013. 南堡油田南堡1、2号构造馆陶组储层特征研究[J]. 石油天然气学报,35(7):38-43. doi: 10.3969/j.issn.1000-9752.2013.07.009
    [53]
    赵昱超,罗瑜,李隆新,等,2022. 地下储气库地应力模拟研究与地质完整性评估:以相国寺为例[J]. 地质力学学报,28(4):523-536. doi: 10.12090/j.issn.1006-6616.2021138
    [54]
    郑得文,胥洪成,王皆明,等,2017. 气藏型储气库建库评价关键技术[J]. 石油勘探与开发,44(5):794-801. doi: 10.11698/PED.2017.05.15
    [55]
    郑雅丽,孙军昌,邱小松,等,2020. 油气藏型储气库地质体完整性内涵与评价技术[J]. 天然气工业,40(5):94-103. doi: 10.3787/j.issn.1000-0976.2020.05.012
    [56]
    钟城,秦启荣,周吉羚,等,2018. 现今地应力对富有机质页岩断层封闭性的研究:以川东南丁山地区龙马溪组为例[J]. 地质力学学报,24(4):452-464. doi: 10.12090/j.issn.1006-6616.2018.24.04.047
  • Relative Articles

    FENG Chengjun, LI Bin, LI Hui, ZHOU Minghui, ZHANG Peng, ZHU Siyu, REN Yazhe, QI Bangshen, WANG Miaomiao, TAN Chengxuan, CHEN Qunce. 2022: Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability. Journal of Geomechanics, 28(6): 919-937. doi: 10.12090/j.issn.1006-6616.20222820
    ZHAO Yuchao, LUO Yu, LI Longxin, ZHOU Yuan, LI Limin, WANG Xia. 2022: In-situ stress simulation and integrity evaluation of underground gas storage: A case study of the Xiangguosi underground gas storage, Sichuan, SW China. Journal of Geomechanics, 28(4): 523-536. doi: 10.12090/j.issn.1006-6616.2021138
    TIAN He, ZENG Lianbo, SHU Zhiguo, BAO Hanyong, XU Xiang, MAO Zhe, WANG Xiaoyao. 2019: METHOD FOR DETERMINING ELASTIC PARAMETERS FOR THE PREDICTION MODEL OF SHALE TRANSVERSELY ISOTROPIC GEOSTRESS. Journal of Geomechanics, 25(2): 166-176. doi: 10.12090/j.issn.1006-6616.2019.25.02.015
    BAO Linhai, DU Yi, GUO Qiliang, ZHANG Yanshan. 2017: IN-SITU STRESS MEASUREMENT AND RESEARCH ON TECTONIC STRESS FIELD DISTRIBUTION LAW OF CHENGDU-LANZHOU RAILWAY. Journal of Geomechanics, 23(5): 734-742.
    LIAO Xin-wu, LIU Qi, LI Chao, ZU Ke-wei, ZHOU Jun-liang, HUANG Kai. 2015: DISTRIBUTION OF THE PRESENT STRESS IN LOW PERMEABILITY OILFIELD OF BOZHONG 25-1 AND ITS EFFECT ON DEVELOPMENT. Journal of Geomechanics, 21(1): 30-37.
    ZU Ke-wei, ZENG Lian-bo, LIU Xi-zhong, ZHANG Jun-hui, ZHAO Xiang-yuan, LIU Guo-ping. 2014: ANALYSIS OF INFLUENCING FACTORS FOR GROUND STRESS IN CHANNEL SANDSTONE. Journal of Geomechanics, 20(2): 149-158.
    CHEN Zhao-wei, YANG Xiang-tong, WANG Gang, YUAN Xue-fang, LIU Jun-yan, ZHOU Peng-yao, BA Dan. 2014: ANALYTICAL TECHNIQUE OF HORIZONTAL MAXIMUM PRINCIPAL STRESS FOR PETROLEUM ENGINEERING. Journal of Geomechanics, 20(1): 94-102.
    SONG Jie. 2014: THE CORRELATIONS BETWEEN GEOLOGICAL STRESS AND CASING DAMAGE AND BETWEEN ROCK MECHANICS PARAMETERS AND CASING DAMAGE IN SANDSTONE RESERVOIR. Journal of Geomechanics, 20(3): 324-330.
    WANG Lian-jie, SUN Bao-shan, WANG Wei, QIAO Zi-jiang, WANG Hong-cai, SUN Dong-sheng. 2011: DRIVING EFFECT OF THE CRUSTAL STRESS ON PETROLEUM MIGRATION. Journal of Geomechanics, 17(2): 132-143.
    WANG Lian-jie, SUN Dong-sheng, ZHOU Chun-jing, Wang Wei, ZHAO Wei-hua, WANG Hong-cai. 2008: APPLICATION OF THE ANSYS SOFTWARE TO SOLVING COUPLING OF IN-SITU STRESS AND FLUID. Journal of Geomechanics, 14(2): 141-148.
    ZHANG Chun-shan, NAN Qing-min, LIAO Chun-ting, TAN Cheng-xuan, WU Man-lu, MA Yin-sheng. 2007: RELATION BETWEEN THE GROUND STRESS STATE AND GEOLOGICAL HAZARDS IN THE UPPER REACHES OF THE YELLOW RIVER. Journal of Geomechanics, 13(3): 270-277, 269.
    PENG Hua, CUI Wei, MA Xiu-min, LI Jin-suo. 2006: HYDROFRACTURING IN-SITU STRESS MEASUREMENTS OF THE WATER DIVERSION AREA IN THE FIRST STAGE OF THE SOUTH-NORTH WATER DIVERSION PROJECT (WESTERN LINE). Journal of Geomechanics, 12(2): 182-190.
    ZHAO Jun, PU Wan-li, WANG Gui-wen, LI Jun. 2005: APPLICATION OF LOGGING INFORMATION IN THE ANALYSIS OF THE GROUND STRESS IN THE FORELAND COMPRESSIVE AREA. Journal of Geomechanics, 11(1): 53-59.
    MA Xiu-min, PENG Hua, LI Jin-suo. 2005: APPLICATION OF HYDRAULIC FRACTURING IN-SITU STRESS MEASUREMENTS IN TUNNELLING IN WESTERN XINJIANG. Journal of Geomechanics, 11(4): 386-393.
    TAN Cheng-xuan, SUN Ye, WANG Lian-jie. 2003: SOME PROBLEMS OF IN-SITU CRUSTAL STRESS MEASUREMENTS. Journal of Geomechanics, 9(3): 275-280,260.
    WANG Xue-chao, GUO Qi-liang, ZHANG Hui, LIU Zhen-hong. 2000: CRUSTAL STRESS MEASUREMENT IN NORTHEASTERN QINGZANG PLATEAU BY HYDROFRACTURING. Journal of Geomechanics, 6(2): 64-70.
    YONG Xiao-cong, WANG Lian-jie. 2000: ERROR PROCESSING AND PRECISION ESTIMATION FOR ROCK STRESS MEASUREMENT. Journal of Geomechanics, 6(2): 53-63.
    LI Hong, CHEN Jingsong, JIANG Nansheng, WANG Fujiang, ZHANG Bochong. 1999: INSITU STRESS MEASUREMENT BY A METHOD USING ORIENTED CORE. Journal of Geomechanics, 5(1): 87-91.
    Ma Yinsheng. 1997: THE ROLE AND SIGNIFICANCE OF CRUSTAL STRESS IN PETROLEUM GEOLOGY AND ITS PRESENT SITUATION. Journal of Geomechanics, 3(2): 41-46.
    Ding Yuanchen, Shao Zhaogang. 1996: A COMPARISON OF THE RESULTS OF STRESS MEASUREMENTS OBTAINED BY AE WITH THAT BY HYDROFRACTURING AT TAIYUAN,SHANXI. Journal of Geomechanics, 2(1): 70-76.
  • Cited by

    Periodical cited type(1)

    1. 魏恒飞,方杰,时俊杰,李秋媛,余贝贝,陈晶. 深部地下储存空间利用理论、技术及前景. 煤田地质与勘探. 2025(02): 67-83 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.6 %FULLTEXT: 16.6 %META: 74.5 %META: 74.5 %PDF: 8.9 %PDF: 8.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %China: 0.8 %China: 0.8 %上海: 1.2 %上海: 1.2 %东莞: 0.3 %东莞: 0.3 %中卫: 0.9 %中卫: 0.9 %乌鲁木齐: 0.7 %乌鲁木齐: 0.7 %伯班克: 0.1 %伯班克: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %内江: 0.9 %内江: 0.9 %北京: 11.9 %北京: 11.9 %南京: 0.5 %南京: 0.5 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 3.5 %唐山: 3.5 %大同: 24.9 %大同: 24.9 %天津: 0.3 %天津: 0.3 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常德: 0.1 %常德: 0.1 %广州: 0.8 %广州: 0.8 %张家口: 4.6 %张家口: 4.6 %成都: 1.6 %成都: 1.6 %扬州: 1.1 %扬州: 1.1 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.4 %杭州: 0.4 %武汉: 0.8 %武汉: 0.8 %洛阳: 0.1 %洛阳: 0.1 %漯河: 0.7 %漯河: 0.7 %石家庄: 1.2 %石家庄: 1.2 %纽约: 0.3 %纽约: 0.3 %芒廷维尤: 15.3 %芒廷维尤: 15.3 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 10.0 %西宁: 10.0 %西安: 0.5 %西安: 0.5 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 5.5 %诺沃克: 5.5 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.1 %运城: 1.1 %连云港: 0.3 %连云港: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.4 %阳泉: 0.4 %青岛: 0.5 %青岛: 0.5 %其他China上海东莞中卫乌鲁木齐伯班克克拉玛依内江北京南京哈尔滨哥伦布唐山大同天津巴音郭楞常德广州张家口成都扬州昆明朝阳杭州武汉洛阳漯河石家庄纽约芒廷维尤芝加哥西宁西安西雅图诺沃克贵阳运城连云港邯郸郑州重庆银川长沙阳泉青岛

Catalog

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (550) PDF downloads(66) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return