Processing math: 100%
NIU W Z,HE F B,LIU Z H,et al.,2023. Determination of the northeast section of the Nanyuan–Tongxian fault in Beijing and research on its Quaternary activity[J]. Journal of Geomechanics,29(6):879−887 doi: 10.12090/j.issn.1006-6616.2023032
Citation: NIU W Z,HE F B,LIU Z H,et al.,2023. Determination of the northeast section of the Nanyuan–Tongxian fault in Beijing and research on its Quaternary activity[J]. Journal of Geomechanics,29(6):879−887 doi: 10.12090/j.issn.1006-6616.2023032

Determination of the northeast section of the Nanyuan–Tongxian fault in Beijing and research on its Quaternary activity

doi: 10.12090/j.issn.1006-6616.2023032
Funds:  This research is financially supported by the Beijing Geological Survey Project (Grant No. PXM2018-158203-000014) and the Fund of the Beijing Natural Science Foundation(Grant No.8234070)
More Information
  • The Nanyuan–Tongxian fault is the boundary fault between the Beijing depression and the Daxing uplift, also the primary seismic-controlling fault of the Beijing M 612 earthquake in 1665. Its activity is of great significance to land planning and geological disaster prediction in Beijing. Using high-precision gravity, longitudinal-wave and shear-wave seismic comprehensive exploration profiles, and composite borehole geological profiles, this study investigated the geometric characteristics and activity of the northeastern section of the Nanyuan–Tongxian fault. The results show that after passing through Pingjiatuan Village in Tongzhou District, the fault turns to a nearly east-west direction, trending north with a dip angle of 56° to 75°. The new activity in the northeastern section exhibits characteristics of a normal fault, with an estimated buried depth of about 21.6 m, indicating it as a late Pleistocene active fault. The findings demonstrate that the activity age of the northeast section of the Nanyuan–Tongxian fault differs from that of the middle and southwestern sections, providing crucial geological foundations for the spatial planning and disaster reduction systems in the Beijing region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BAI L Y, LI X, QIN H M, et al. , 2018. Study on the cyclic stratigraphy activity of Nankou-Sunhe fault in Beijing plain since Quaternary and its tectonic significance[J]. Geoscience, 32(2): 270-278. (in Chinese with English abstract)
    [2]
    CAO X W, MA X M, HU D G, 2017. Application of the resistivity tomography method to detection of active faults northeast of the Hainan island[J]. Geology and Exploration, 53(5): 1001-1009. (in Chinese with English abstract)
    [3]
    FANG T M, LIU H, LIU Y, et al. , 2016. Fundamental geological survey situations and development trend in Beijing's urbanization process[J]. Land and Resources Information(4): 52-56. (in Chinese with English abstract)
    [4]
    FENG C J, 2014. Study on the present in situ stress field beneath the capital circle region[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [5]
    GAO X L, WANG Q, LI Y D, et al. , 1986. On correlations between transgressions and climatic phases since late Middle-Pleistocene based on data of drilling hole P8 in Tianjin[J]. Marine Geology & Quaternary Geology, 6(1): 53-64. (in Chinese with English abstract)
    [6]
    HE F B, 2019. Study on geometry and kinematics of the Nankou-Sunhe fault and its relationship with ground fissures[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    [7]
    HE F B, XU X W, HE Z J, et al. , 2020. Research on Neogene-Quaternary stratigraphic structure and shallow tectonic features in the north section of Daxing fault zone based on shallow seismic reflection profiling[J]. Seismology and Geology, 42(4): 893-908. (in Chinese with English abstract)
    [8]
    HE F B, 2021. Geological survey of twelve faults such as Lixian Beijing plain[R]. Beijing: Beijing Institute of Geological Survey. (in Chinese)
    [9]
    HUANG X, CHEN G, LI Z L, et al. , 2012. The study on Nanyuan-Tongxian fault in Beijing Daxing planning town[J]. Urban Geology, 7(4): 15-19. (in Chinese with English abstract)
    [10]
    HUANG X M, WANG L M, XU J, et al. , 1991. Characteristics of Neotectonic movement in Beijing area[J]. Seismology and Geology, 13(1): 43-51. (in Chinese with English abstract)
    [11]
    Institute of Geophysics, China Earthquake Administration, 1978. A compilation of researches of Beijing seismic and geological campaign[M]. Beijing: Beijing Earthquake and Geology Office. (in Chinese)
    [12]
    JIANG W L, 2007. Active fault detection and seismic risk assessment in Beijing[R]. Beijing: Institute of Geology China Earthquake Administration. (in Chinese)
    [13]
    LEI X D, QI B S, GUAN W, et al. , 2021. Research on the faults identification based on gravity anomaly in Beijing plain[J]. Chinese Journal of Geophysics, 64(4): 1253-1265. (in Chinese with English abstract)
    [14]
    LI Z F, LI Y B, ZHOU B G, et al. , 2021. New insight on the holocene activity of the Eastern marginal fault of Daxing uplift, Beijing plain[J]. Seismology and Geology, 43(6): 1671-1681. (in Chinese with English abstract)
    [15]
    LIU B J, HU P, CHEN Y, et al. , 2009. The crustal shallow structures and buried active faults revealed by seismic reflection profiles in Northwestern area of Beijing plain[J]. Chinese Journal of Geophysics, 52(8): 2015-2025. (in Chinese with English abstract)
    [16]
    NI J B, LIU X, ZHANG X L, et al. , 2023. Quaternary stratigraphic division and sedimentary characteristics of borehole TB02 in the Southeast margin of Beijing plain, China[J]. Journal of Earth Sciences and Environment, 45(1): 68-79. (in Chinese with English abstract)
    [17]
    SUN Y H, 2021. Beijing regional geology[R]. Beijing: Beijing Institute of Geological Survey. (in Chinese)
    [18]
    TIAN T T, WU Z H, ZHANG K Q, et al. , 2013. Overview of Quaternary dating methods and their application in neotectonics and active tectonics research[J]. Journal of Geomechanics, 19(3): 242-266. (in Chinese with English abstract)
    [19]
    WANG C Q, JIA L Y, HU D G, et al. , 2022. Quaternary activity characteristics of the Maniao-Puqian fault in the Jiangdong new district of Haikou[J]. Acta Geologica Sinica, 96(2): 403-417. (in Chinese with English abstract)
    [20]
    XU X W, YU G H, RAN Y K, et al. , 2015. An introduction to urban active faults in China[M]. Beijing: Seismological Press: 380-403. (in Chinese)
    [21]
    YUN L, ZHANG J, WANG J, et al. , 2021. Discovery of active faults in the southern Beishan area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207. (in Chinese with English abstract)
    [22]
    ZHANG L, BAI L Y, CAI X M, et al. , 2014. An analysis of the activity of the Northwest part of Nankou-Sunhe fault[J]. Geology in China, 41(3): 902-911. (in Chinese with English abstract)
    [23]
    ZHANG X L, ZHANG L, CAI X M, et al. , 2016. A study of structure and activity characteristics of the northern segment of Huangzhuang-Gaoliying fault in Beijing plain area[J]. Geology in China, 43(4): 1258-1265. (in Chinese with English abstract)
    [24]
    ZHAO J R, ZHANG X K, ZHANG C K, et al. , 2004. Deep structural features of the Sanhe-Pinggu strong earthquake area imaged by wide angle reflection / refraction and deep seismic reflection profiling[J]. Chinese Journal of Geophysics, 47(4): 736-744. doi: 10.1002/cjg2.3544
    [25]
    ZHAO L, LI Y M, CUI W J, et al. , 2018. Disaster characteristics and influence factors for ground fissures at Songzhuang village in Beijing[J]. Journal of Engineering Geology, 26(6): 1600-1610. (in Chinese with English abstract)
    [26]
    ZHAO L, LI Y M, LUO Y, et al. , 2021. An extension-dominant 9-km-long ground failure along a buried geological fault on the eastern Beijing Plain, China[J]. Engineering Geology, 289: 106168. doi: 10.1016/j.enggeo.2021.106168
    [27]
    ZHAO Y, LI R J, WEI B, et al. , 2019. Magnetostratigraphy of borehole PGZ05 in Southern Daxing uplift, Beijing plain[J]. Geoscience, 33(1): 56-62. (in Chinese with English abstract)
    [28]
    ZHAO Z H, ZHU H J, 2003. The main characteristics of geological environment and present situation of geological hazard in plain area of Shunyi, Beijing[J]. The Chinese Journal of Geological Hazard and Control, 14(2): 61-66. (in Chinese with English abstract)
    [29]
    白凌燕, 李潇, 秦浩敏, 等, 2018. 北京平原南口—孙河断裂南段第四纪活动性及其构造意义[J]. 现代地质, 32(2): 270-278.
    [30]
    曹新文, 马秀敏, 胡道功, 2017. 电阻率层析成像技术在琼东北活动断裂探测中的应用[J]. 地质与勘探, 53(5): 1001-1009. doi: 10.13712/j.cnki.dzykt.2017.05.016
    [31]
    方同明, 刘鸿, 刘予, 等, 2016. 北京城市化过程基础地质工作现状及发展趋势[J]. 国土资源情报(4): 52-56.
    [32]
    丰成君, 2014. 首都圈地区现今地应力环境研究[D]. 北京: 中国地质科学院.
    [33]
    高秀林, 王强, 李玉德, 等, 1986. 从天津P8孔看中更新世末期以来海侵期、气候期对比问题[J]. 海洋地质与第四纪地质, 6(1): 53-64.
    [34]
    国家地震局地球物理研究所, 1978. 北京市地震地质会战研究成果汇编[M]. 北京: 北京市地震地质会战办公室.
    [35]
    何付兵, 2019. 南口—孙河断裂几何学、运动学特征及与地裂缝关系研究[D]. 北京: 中国地震局地质研究所.
    [36]
    何付兵, 徐锡伟, 何振军, 等, 2020. 利用浅层地震反射剖面探测研究大兴断裂北段新近纪—第四纪的构造特征[J]. 地震地质, 42(4): 893-908. doi: 10.3969/j.issn.0253-4967.2020.04.008
    [37]
    何付兵, 2021. 北京平原区礼贤等十二条断裂地质调查[R]. 北京: 北京市地质调查研究所.
    [38]
    黄骁, 陈刚, 李哲琳, 等, 2012. 南苑—通县断裂大兴规划新城段的研究[J]. 城市地质, 7(4): 15-19. doi: 10.3969/j.issn.1007-1903.2012.04.004
    [39]
    黄秀铭, 汪良谋, 徐杰, 等, 1991. 北京地区新构造运动特征[J]. 地震地质, 13(1): 43-51.
    [40]
    江娃利, 2007. 北京市活断层探测与地震危险性评价[R]. 北京: 中国地震局地壳应力研究所.
    [41]
    雷晓东, 戚帮申, 关伟, 等, 2021. 北京平原区断裂构造重力异常识别研究[J]. 地球物理学报, 64(4): 1253-1265. doi: 10.6038/cjg2021O0210
    [42]
    李正芳, 李彦宝, 周本刚, 等, 2021. 北京平原大兴凸起东缘断裂全新世活动的新认识[J]. 地震地质, 43(6): 1671-1681. doi: 10.3969/j.issn.0253-4967.2021.06.018
    [43]
    刘保金, 胡平, 陈颙, 等, 2009. 北京平原西北部地壳浅部结构和隐伏活动断裂: 由地震反射剖面揭示[J]. 地球物理学报, 52(8): 2015-2025.
    [44]
    倪敬波, 刘晓, 张晓亮, 等, 2023. 北京平原区东南缘钻孔TB02第四纪地层划分与沉积特征[J]. 地球科学与环境学报, 45(1): 68-79. doi: 10.19814/j.jese.2022.04014
    [45]
    孙永华, 2021. 北京市区域地质志[R]. 北京: 北京市地质调查研究院.
    [46]
    田婷婷, 吴中海, 张克旗, 等, 2013. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J]. 地质力学学报, 19(3): 242-266. doi: 10.3969/j.issn.1006-6616.2013.03.002
    [47]
    王超群, 贾丽云, 胡道功, 等, 2022. 海口市江东新区马袅-铺前断裂第四纪活动特征[J]. 地质学报, 96(2): 403-417. doi: 10.19762/j.cnki.dizhixuebao.2022109
    [48]
    徐锡伟, 于贵华, 冉勇康, 等. 2015. 中国城市活动断层概论: 20个城市活动断层探测成果[M]. 北京: 地震出版社: 380-403.
    [49]
    云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019
    [50]
    张磊, 白凌燕, 蔡向民, 等, 2014. 北京平原南口—孙河断裂带北西段活动性分析[J]. 中国地质, 41(3): 902-911.
    [51]
    张晓亮, 张磊, 蔡向民, 等, 2016. 北京平原区黄庄—高丽营断裂北段结构特征及活动特点研究[J]. 中国地质, 43(4): 1258-1265. doi: 10.12029/gc20160412
    [52]
    赵龙, 李玉梅, 崔文君, 等, 2018. 北京宋庄地裂缝灾害特征及影响因素分析[J]. 工程地质学报, 26(6): 1600-1610. doi: 10.13544/j.cnki.jeg.2017-426
    [53]
    赵勇, 李瑞杰, 魏波, 等, 2019. 北京大兴凸起南部PGZ05钻孔剖面第四纪磁性地层学[J]. 现代地质, 33(1): 56-62. doi: 10.19657/j.geoscience.1000-8527.2019.01.06
    [54]
    赵忠海, 朱红军, 2003. 北京市顺义平原区地质环境的主要特征及地质灾害现状[J]. 中国地质灾害与防治学报, 14(2): 61-66. doi: 10.3969/j.issn.1003-8035.2003.02.013
  • Relative Articles

    YAO Shenghai, GAI Hailong, YIN Xiang, LIU Wei, ZHANG Jiaqing, ZHANG Zhanxian. 2024: Late Quateranry paleoseismicity of the Xitieshan-Amunikeshan section of the northern margin fault of the Qaidam Basin. Journal of Geomechanics, 30(2): 260-274. doi: 10.12090/j.issn.1006-6616.2023114
    LIU Guangying, LIANG Kuan, LI Zhipeng, MA Baoqi, LONG Tao, LI Lei, TAN Xin, LI Haoyang. 2024: Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M 7.0 earthquake. Journal of Geomechanics, 30(2): 242-259. doi: 10.12090/j.issn.1006-6616.2023088
    WANG Sheng, LYU Tongyan, WU Zhonghai, BAIMA Duoji, YE Qiang, NIMA Ciren, SHA Longbin. 2023: Research on the applicability of electron spin resonance dating of the late Quaternary sinter deposits in the rift valley, southern Tibet. Journal of Geomechanics, 29(2): 276-289. doi: 10.12090/j.issn.1006-6616.2023016
    YANG Xiaoxiao, HU Daogong, JIA Liyun, WANG Chaoqun, SUN Dongxia, ZHANG Lei. 2023: Quaternary activity characteristics of the Qionghua–Liantang fault belt in Hainan. Journal of Geomechanics, 29(1): 127-137. doi: 10.12090/j.issn.1006-6616.2022020
    ZHANG Hao, SHI Gang, WU Hong, SHAO Lei, SONG Chunhua, YU Fei. 2021: Quaternary activity of the Luodian-Zhoupu buried fault in the Shanghai region: Integrated exploration and research. Journal of Geomechanics, 27(2): 267-279. doi: 10.12090/j.issn.1006-6616.2021.27.02.025
    CAO Xinwen, MA Xiumin, GONG Shuyun, JI Youliang, FANG Chunbo, LI Zhen, DU Wei. 2018: A STUDY ON DISTRIBUTION CHARACTERISTICS AND ACTIVITY OF NORTH-WEST FAULTS IN SHENZHEN. Journal of Geomechanics, 24(6): 759-767. doi: 10.12090/j.issn.1006-6616.2018.24.06.078
    ZHANG Lei, ZHANG Xiaoliang, BAI Lingyan, YANG Tianshui, CAI Xiangmin, LIANG Yanan. 2017: ACTIVITY STUDY AND DISASTER EFFECT ANALYSIS OF THE NORTH SECTION OF HUANGZHUANG-GAOLIYING FAULT IN BEIJING. Journal of Geomechanics, 23(4): 548-557.
    JIA Ting, WANG Yong, PU Qing-yu, CHEN Bao-guo. 2016: REVIEW ON THE LOWER BOUNDARY OF QUATERNARY IN CHINA. Journal of Geomechanics, 22(1): 162-177.
    GONG Wang-bin, SHI Wei, CHEN Hong, QIU Shi-dong, YIN Yan-guang, ZHAO Yi. 2016: QUATERNARY ACTIVE CHARACTERISTICS OF THE LIUMUGAO FAULT IN THE NORTHERN SEGMENT OF THE NIUSHOUSHAN-LUOSHAN FAULT. Journal of Geomechanics, 22(4): 1004-1014.
    LI Kai, WU Zhong-hai, LI Jia-cun, ZHOU Chun-jing, MA Xiao-xue. 2016: COMPREHENSIVE REMOTE SENSING ANALYSIS ON ACTIVITIES OF THE MAIN FAULTS IN JIUJIANG AND ADJACENT AREAS, JIANGXI. Journal of Geomechanics, 22(3): 577-593.
    ZONG Kai-hong, ZONG Wen, KANG Cong-xuan, BAI Shi-biao. 2016: RESEARCH ON THE MAJOR ACTIVE FAULTS IN ZHENJIANG, JIANGSU AND THEIR LATE QUATERNARY ACTIVITIES. Journal of Geomechanics, 22(3): 439-453.
    ZHANG Xiang-cheng, DAI Jun-sheng, ZOU Juan, WANG Xin-xin, YUE Xi-wei, WU Ya. 2014: FAULT ACTIVITY FEATURES OF TONGCHENG FAULT ZONE IN JINHU SAG. Journal of Geomechanics, 20(4): 424-433.
    CHEN Bai-lin, LIU Jian-sheng, ZHANG Yong-shuang, LIU Jian-min. 2007: LATE QUATERARY NEOTECTONIC MOVEMENT OF THE JIAYUGUAN FAULT. Journal of Geomechanics, 13(1): 78-85.
    WU Zhong-hai, ZHAO Xi-tao, WU Zhen-han, JIANG Wan, HU Dao-gong. 2006: QUATERNARY GEOLOGY AND FAULTING IN THE DAMXUNG-YANGBAJAIN BASIN, SOUTHERN TIBET. Journal of Geomechanics, 12(3): 305-316.
    PENG Hua, MA Xiu-min, BAI Jia-qi, DU De-ping. 2006: CHARACTERISTICS OF QUATERNARY ACTIVITIES OF THE GARZÊ-YUSHU FAULT ZONE. Journal of Geomechanics, 12(3): 295-304.
    SHI Wei, MA Yin-sheng, WU Man-lu, DU Jian-jun, ZHANG Xi-juan. 2004: QUATERNARY SPOROPOLLEN ASSEMBLAGES AND ENVIRONMENTAL EVOLUTION OF THE GONGHE BASIN ON THE NORTHEASTERN MARGIN OF THE QINGHAI-TIBET PLATEAU. Journal of Geomechanics, 10(4): 310-318.
    SUN Hong-yan, LI Zhi-xiang, TIAN Ming-zhong. 2003: NEW PROGRESS IN QUATERNARY DATING RESEARCH. Journal of Geomechanics, 9(4): 371-378.
    LI Yong, LI Yong-zhao, ZHOU Rong-jun, WANG Guo-zhi, SI Guang-yin, WANG Feng-lin, LIANG Xiang-zhong. 2002: THE DISCOVERY OF THE QUATERNARY FOSSIL ICE-WEDGES IN CHENGDU PLAIN. Journal of Geomechanics, 8(4): 341-346.
    ZHU Da-gang, ZHAO Xi-tao, MENG Xian-gang, WU Zhong-ha, SHAO Zhao-gang, FENG Xiang-yang, WANG Jin, YANG Chao-bin. 2002: FABRIC ANALYSIS OF GRAVEL IN QUATERNARY GRAVEL BEDS ON BACKBONE AREA OF NIQINGTANGGULASHAN MOUNTAINS. Journal of Geomechanics, 8(4): 323-332.
    Zhao Zhizhong, He Peiyuan. 1997: QUATERNARY GLACIATION IN SHENNONGJIA. Journal of Geomechanics, 3(2): 18-23.
  • Cited by

    Periodical cited type(1)

    1. 牛文治,何付兵,沙春梅,张悦泽,刘振华. 北京平原区南苑—通县断裂南西段结构特征和活动性. 科学技术与工程. 2024(18): 7552-7562 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0301020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.0 %FULLTEXT: 31.0 %META: 62.7 %META: 62.7 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %China: 0.5 %China: 0.5 %Seattle: 0.1 %Seattle: 0.1 %上海: 1.3 %上海: 1.3 %中卫: 0.7 %中卫: 0.7 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九龙: 0.2 %九龙: 0.2 %亚特兰大: 0.2 %亚特兰大: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.1 %六安: 0.1 %内江: 0.1 %内江: 0.1 %北京: 24.2 %北京: 24.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.8 %南京: 0.8 %南宁: 0.1 %南宁: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.2 %厦门: 0.2 %古吉拉特: 0.1 %古吉拉特: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %天津: 1.0 %天津: 1.0 %太原: 0.4 %太原: 0.4 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %常州: 0.6 %常州: 0.6 %广安: 0.1 %广安: 0.1 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %廊坊: 1.1 %廊坊: 1.1 %延安: 0.1 %延安: 0.1 %张家口: 5.4 %张家口: 5.4 %成都: 0.5 %成都: 0.5 %扬州: 0.2 %扬州: 0.2 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.7 %昆明: 0.7 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.5 %杭州: 0.5 %格兰特县: 0.1 %格兰特县: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.6 %沧州: 0.6 %波士顿: 0.1 %波士顿: 0.1 %济南: 2.4 %济南: 2.4 %淮南: 0.2 %淮南: 0.2 %湖州: 0.1 %湖州: 0.1 %漯河: 2.2 %漯河: 2.2 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.4 %烟台: 0.4 %石家庄: 1.6 %石家庄: 1.6 %福州: 0.1 %福州: 0.1 %芒廷维尤: 15.2 %芒廷维尤: 15.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.1 %萍乡: 0.1 %衡水: 0.4 %衡水: 0.4 %西宁: 17.9 %西宁: 17.9 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 4.4 %诺沃克: 4.4 %费利蒙: 0.2 %费利蒙: 0.2 %运城: 1.2 %运城: 1.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.2 %郑州: 1.2 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.6 %重庆: 0.6 %长沙: 1.0 %长沙: 1.0 %防城港: 0.1 %防城港: 0.1 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.2 %鞍山: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaSeattle上海中卫丹东乌鲁木齐九龙亚特兰大保定六安内江北京十堰南京南宁南通厦门古吉拉特呼和浩特哥伦布嘉兴大同天津太原安康宣城宿迁常州广安广州库比蒂诺廊坊延安张家口成都扬州日喀则昆明晋中朝阳杭州格兰特县沈阳沧州波士顿济南淮南湖州漯河潍坊烟台石家庄福州芒廷维尤芝加哥苏州萍乡衡水西宁西安西雅图诺沃克费利蒙运城遵义邯郸郑州酒泉重庆长沙防城港阳泉鞍山马鞍山

Catalog

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (517) PDF downloads(52) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return