Volume 29 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
WANG Sheng, LYU Tongyan, WU Zhonghai, et al., 2023. Research on the applicability of electron spin resonance dating of the late Quaternary sinter deposits in the rift valley, southern Tibet. Journal of Geomechanics, 29 (2): 276-289. DOI: 10.12090/j.issn.1006-6616.2023016
Citation: WANG Sheng, LYU Tongyan, WU Zhonghai, et al., 2023. Research on the applicability of electron spin resonance dating of the late Quaternary sinter deposits in the rift valley, southern Tibet. Journal of Geomechanics, 29 (2): 276-289. DOI: 10.12090/j.issn.1006-6616.2023016

Research on the applicability of electron spin resonance dating of the late Quaternary sinter deposits in the rift valley, southern Tibet

doi: 10.12090/j.issn.1006-6616.2023016

the China Geological Survey Project DD20221644

the General Program of National Natural Science Foundation of China 41877443

the General Program of National Natural Science Foundation of China 42176226

the National Natural Science Foundation of China-Local Government United Fund U2002211-04

  • Received Date: 2022-02-10
  • Rev Recd Date: 2022-04-10
  • Sinters in the rift valleys of southern Tibet, including silica sinter and travertine deposits, are the products of hydrothermal activity under regional tectonic movement. Their formation age is significant for studying hydrothermal activity history in this region. Electron spin resonance (ESR) dating is a practical dating method for determining the age of silica sinter and travertine deposits. However, silica sinter's ESR signals vary due to the complex composition. Meanwhile, these ESR signals are mixed, superimposed, and interfere with each other, affecting the ESR signal's measurement. Furthermore, ESR dating has been applied less in travertine samples in southern Tibet, which is not conducive to a comprehensive understanding of the hydrothermal activity history in southern Tibet. Studying the applicability of ESR dating of southern Tibetan silica sinter and travertine deposits helps obtain accurate ESR ages. It lays the chronologic foundation for researching tectonic activities in these rift valleys. This research applied ESR dating to the silica sinter and travertine deposits collected separately from the Targejia thermal field area and the Xiakangjian hot spring area, located in the Ngri-Xigaze area in southern Tibet. We performed ESR dating tests, including how to choose ESR signals, the effect of additional doses, and the thermal stability of ESR signals in travertine. Based on these tests, relatively accurate, reliable ESR ages of silica sinter and travertine were obtained. The results show that: According to the ESR dating results, the silica sinter samples collected from the fourth and third terrace of the Targejia geothermal field were formed at 177±20 and 81±16 ka, respectively, and the travertine deposits collected from the floodplain and first terrace of the Xiakangjian hot spring were formed at 106±32 ka and 264±26 ka, respectively. In terms of irradiation dose, sinter samples collected from southern Tibet respond well to irradiation dose in the range of 0~7680 Gy; In terms of temperature, silica sinter samples are less affected by closure temperature, and the thermal behavior of the ESR signal at g=2.0034 of travertine in southern Tibet is stable in the range of 20 ℃~250 ℃ that is suitable for ESR dating. Regarding mineral structure, The travertine in southern Tibet has better mineral purity and crystallinity; thus, the ESR age results are relatively accurate.


  • loading
  • AITKEN M J, 1985. Thermoluminescence dating[M]. London: Academic Press.
    BIAN S, YU Z Q, GONG J F, et al., 2021. Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 178-194. (in Chinese with English abstract)
    CASS J, KENT R S, MARSHALL S A, et al., 1974. Electron spin resonance absorption spectrum of HCO32- molecule-ions in irradiated single-crystal calcite[J]. Journal of Magnetic Resonance (1969), 14(2): 170-181. doi: 10.1016/0022-2364(74)90271-6
    CHEN Y, GAO J, FENG J, 1993. ESR dating of geyserites from intermittent geyser sites on the Tibetan Plateau[J]. Applied Radiation and Isotopes, 44(1-2): 207-213. doi: 10.1016/0969-8043(93)90221-U
    CHEN Y J, GAO J C, FENG J J, et al., 1992. A preliminary study on the history of hydrothermal activities occurred in Southern Tibetan[J]. Hydrogeology and Engineering Geology, 19(5): 18-21, 24. (in Chinese with English abstract)
    CHOI P Y, HWANG J H, BAE H, et al., 2015. Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea[J]. Journal of the Korean Earth Science Society, 36(1): 1-15. doi: 10.5467/JKESS.2015.36.1.1
    DUVAL M, GUILARTE V, 2015. ESR dosimetry of optically bleached quartz grains extracted from Plio-Quaternary sediment: evaluating some key aspects of the ESR signals associated to the Ti-centers[J]. Radiation Measurements, 78: 28-41. doi: 10.1016/j.radmeas.2014.10.002
    ENGIN B, GVVEN O, KÖKSAL F, 1999. Thermoluminescence and electron spin resonance properties of some travertines from Turkey[J]. Applied Radiation and Isotopes, 51(6): 729-746. doi: 10.1016/S0969-8043(99)00091-3
    EULER F K, KAHAN A, 1987. Radiation effects and anelastic loss in germanium-doped quartz[J]. Physical Review B, 35(9): 4351-4359. doi: 10.1103/PhysRevB.35.4351
    GAO L, YIN G M, LIU C R, et al., 2011. ESR dating of fault gouge from the eastern Liupanshan piedmont fault zone[J]. Nuclear Techniques, 34(2): 121-125. (in Chinese with English abstract)
    GRÜN R, SCHWARCZ H P, FORD D C, et al., 1988. ESR dating of spring deposited travertines[J]. Quaternary Science Reviews, 7(3-4): 429-432. doi: 10.1016/0277-3791(88)90041-8
    GRÜN R, 1989. Electron spin resonance (ESR) dating[J]. Quaternary International, 1: 65-109. doi: 10.1016/1040-6182(89)90010-4
    GRÜN R, 1991. Potential and problems of ESR dating[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18(1-2): 143-153. doi: 10.1016/1359-0189(91)90106-R
    GRÜN R, 1997. Electron spin resonance dating[M]//TAYLOR R E, AITKEN M J. Chronometric dating in archaeology. New York: Springer: 217-260.
    HA G H, WU Z H, 2021. Discussion of the seismogenic structure of the 1901 M 6 $ {\scriptstyle{}^{3}\!\!\diagup\!\!{}_{4}\;}$ Nyemo earthquake[J]. Journal of Geomechanics, 27(2): 218-229. (in Chinese with English abstract)
    HAN F, XIAO P, LI M Q, et al., 2022. Establishment of the standardized growth curves for ESR dating of fossil teeth[J]. Quaternary Sciences, 42(5): 1401-1409. (in Chinese with English abstract)
    HE J G, ZHOU Y Z, NIE F J, et al., 2007. Petrologic and geochemical characteristics of the hydrothermal chert in Southern Tibet and its geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 74-81. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2007.01.011
    HENNIG G J, GRÜN R, 1983. ESR dating in quaternary geology[J]. Quaternary Science Reviews, 2(2-3): 157-238. doi: 10.1016/0277-3791(83)90006-9
    HOU Z Q, LI Z Q, QU X M, et al., 2001. Uplift processes of the Tibetan Plateau since 0. 5 Ma: evidence from hydrothermal activity in Gangdese belt[J]. Science in China (Series D), 31(S1): 27-33. (in Chinese)
    HOU Z Q, ZHAO Z D, GAO Y F, et al., 2006. Tearing and dischronal subduction of the Indian Continental Slab: evidence from cenozoic gangdese volcano-magmatic rocks in South Tibet[J]. Acta Petrologica Sinica, 22(4): 761-774. (in Chinese with English abstract)
    HUANG P H, PENG Z C, JIN S Z, et al., 1986. Study on the age determination of Quaternary materials by electron spin resonance (ESR)[J]. Chinese Science Bulletin, 31(6): 453-455. (in Chinese) doi: 10.1360/csb1986-31-6-453
    IKEYA M, 1993. New applications of electron spin resonance: dating, dosimetry and microscopy[M]. Singapore: World Scientific.
    LAWLESS J L, CHEN R, LO D, et al., 2005. A model for non-monotonic dose dependence of thermoluminescence (TL)[J]. Journal of Physics: Condensed Matter, 17(4): 737-753. doi: 10.1088/0953-8984/17/4/016
    LI X X, LIU C R, JI H, et al., 2022. Response characteristics of travertine ESR signal to different artificial irradiation dose rates[J]. Quaternary Sciences, 42(5): 1443-1449. (in Chinese with English abstract)
    LI Y W, WEI C Y, LI C A, et al., 2022. Application and evaluation of multiple-centres ESR dating of Pliocene-Quaternary fluvial sediments: a case study from the Zhoulao core from the Jianghan Basin, middle Yangtze River basin, China[J]. Quaternary Geochronology, 70: 101297. doi: 10.1016/j.quageo.2022.101297
    LI Z Q, 2002. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    LI Z Q, HOU Z Q, NIE F J, et al., 2005. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the South Tibet[J]. Acta Geologica Sinica, 79(1): 68-77. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2005.01.008
    LIU C R, YIN G M, GAO L, et al., 2011. Research advances in ESR geochronology of quaternary deposits[J]. Seismology and Geology, 33(2): 490-498. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.02.022
    LIU X, 1998. ESR dating and its geological significance of travertine in the stone forest, Yunnan province[J]. Carsologica Sinica, 17(1): 9-14. (in Chinese with English abstract)
    MAHMUD H H, MANSOUR A, EZZ-ELDIN F M, 2014. Generation and bleaching of E′-centers induced in a-SiO2 by γ-irradiation[J]. Journal of Radioanalytical and Nuclear Chemistry, 302(1): 261-272. doi: 10.1007/s10967-014-3174-2
    NIU X S, ZHENG M P, LIU X F, et al., 2017. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 35(6): 59-64. (in Chinese with English abstract)
    PAN G T, MO X X, HOU Z Q, et al., 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533. (in Chinese with English abstract)
    PAN Y S, FANG A M, 2010. Formation and evolution of the Tethys in the Tibetan Plateau[J]. Chinese Journal of Geology, 45(1): 92-101. (in Chinese with English abstract) doi: 10.3969/j.issn.0563-5020.2010.01.009
    PIROUELLE F, BAHAIN J J, FALGUÈRES C, et al., 2007. Study of the effect of a thermal treatment on the DE determination in ESR dating of speleothems[J]. Quaternary Geochronology, 2(1-4): 386-391. doi: 10.1016/j.quageo.2006.05.030
    PRESCOTT J R, HUTTON J T, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 23(2-3): 497-500. doi: 10.1016/1350-4487(94)90086-8
    QIU D F, YUN J B, LIU Q Y, et al., 2018. The current research status and prospects of quartz electron spin resonance dating in geology[J]. Chinese Journal of Geology, 53(2): 749-764. (in Chinese with English abstract)
    QIU S B, WANG F D, DONG D Q, et al., 2022. Sedimentary evolution of the Dawan travertines and their geological environmental significance, Huanglong, China[J]. The Depositional Record, 8(1): 251-265. doi: 10.1002/dep2.165
    RINK W J, BARTOLL J, SCHWARCZ H P, et al., 2007. Testing the reliability of ESR dating of optically exposed buried quartz sediments[J]. Radiation Measurements, 42(10): 1618-1626. doi: 10.1016/j.radmeas.2007.09.005
    SERWAY R A, MARSHALL S A, 1967. Electron spin resonance absorption spectra of CO3- and CO33- molecule-ions in irradiated single-crystal calcite[J]. The Journal of Chemical Physics, 46(5): 1949-1952. doi: 10.1063/1.1840958
    TAO X F, LIU D Z, ZHU L D, et al., 2004. Tectonic landform characteristics and formation mechanism of Xiakangjian Jokul in Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(2): 129-132. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-9727.2004.02.004
    WANG J H, 1998. Continental hydrothermal sedimentation: a case study of Yunnan Province[M]. Beijing: Geology Press. (in Chinese)
    WANG P, 2013. Study on modern geochemical processes and CO2 source and sink relationship of small watershed of typical hydrothermal area in Southern Tibet collision orogenic belt[D]. Chongqing: Southwest University. (in Chinese with English abstract)
    WANG S L, 1992. Palaeosinters and its significance, Qing-Xizang Plateau[J]. Hydrogeology and Engineering Geology, 19(4): 29-31. (in Chinese with English abstract)
    WANG X, 2018. The geochemical characteristic and indicating meaning of sinters in the Yangyi geothermal field, Tibet[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    WEN H G, LUO L C, LUO X T, et al., 2019. Advances and prospects of terrestrial thermal spring travertine research[J]. Acta Sedimentologica Sinica, 37(6): 1162-1180. (in Chinese with English abstract)
    WIESER A, GÖKSU H Y, REGULLA D F, et al., 1993. ESR and TL dating of travertine from Jordan: complications in paleodose assessment[J]. Applied Radiation and Isotopes, 44(1-2): 149-152. doi: 10.1016/0969-8043(93)90210-2
    XUAN Y T, ZHAN W H, YAO Y T, et al., 2022. Testing of quartz ESR dating for the marine strata on the northwestern coast of Hainan Island[J]. Marine Geology & Quaternary Geology, 42(3): 123-132. (in Chinese with English abstract) http://www.sciengine.com/doi/pdf/D1EAD5A62F7B41368957E65642E6196D
    YI C L, BI W L, LI J P, 2016. ESR dating of glacial moraine deposits: some insights about the resetting of the germanium (Ge) signal measured in quartz[J]. Quaternary Geochronology, 35: 69-76. doi: 10.1016/j.quageo.2016.06.003
    YOU Y X, WEN H G, ZHENG R C, et al., 2019. Advances and prospects of the terrestrial geothermal siliceous sinter research[J]. Geological Science and Technology Information, 38(1): 68-81. (in Chinese with English abstract)
    ZHANG S Q, WU H D, ZHANG Y, et al., 2020. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County, Qinghai Province[J]. Acta Geologica Sinica, 94(5): 1591-1605. (in Chinese with English abstract) doi: 10.1111/1755-6724.14324
    ZHAO W J, KUMAR P, MECHIE J, et al., 2011. Tibetan plate overriding the Asian plate in central and northern Tibet[J]. Nature Geoscience, 4(12): 870-873. doi: 10.1038/ngeo1309
    ZHAO Y Y, NIE F J, HOU Z Q, et al., 2006. Geological characteristics and formation age of hot spring cesium deposit in Targejia area, Tibet[J]. Mineral Deposits, 25(3): 281-291. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2006.03.007
    ZHAO Y Y, ZHAO X T, MA Z B, et al., 2010. Chronology of the Gulu hot spring cesium deposit in Nagqu, Tibet and it Geological Significance[J]. Acta Geologica Sinica, 84(2): 211-220. (in Chinese with English abstract)
    ZHENG M P, WANG Q X, DUO J, et al., 1995. A new type of hydrothermal deposit-cesium-bearing geyserite in Tibet[M]. Beijing: Geology Press. (in Chinese)
    卞爽, 于志泉, 龚俊峰, 等, 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 178-194. doi: 10.12090/j.issn.1006-6616.2021.27.02.018
    陈以健, 高钧成, 冯锦江, 等, 1992. 藏南的水热活动历史初探[J]. 水文地质工程地质, 19(5): 18-21, 24. doi: 10.16030/j.cnki.issn.1000-3665.1992.05.009
    高璐, 尹功明, 刘春茹, 等, 2011. 六盘山东麓断裂断层泥ESR测年研究[J]. 核技术, 34(2): 121-125.
    哈广浩, 吴中海, 2021. 西藏尼木1901年M 6 $ {\scriptstyle{}^{3}\!\!\diagup\!\!{}_{4}\;}$地震的发震构造探讨[J]. 地质力学学报, 27(2): 218-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202202001.htm
    韩非, 肖萍, 李梦琪, 等, 2022. 化石电子自旋共振(ESR)测年等效剂量标准生长曲线的构建[J]. 第四纪研究, 42(5): 1401-1409.
    何俊国, 周永章, 聂凤军, 等, 2007. 西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 26(1): 74-81. doi: 10.3969/j.issn.1007-2802.2007.01.011
    侯增谦, 李振清, 曲晓明, 等, 2001. 0. 5Ma以来的青藏高原隆升过程: 来自冈底斯带热水活动的证据[J]. 中国科学(D辑), 31(S1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1004.htm
    侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 22(4): 761-774.
    黄培华, 彭子成, 金嗣炤, 等, 1986. 电子自旋共振法(ESR)测定第四纪物质年龄的研究[J]. 科学通报, 31(6): 453-455.
    李新秀, 刘春茹, 姬昊, 等, 2022. 钙华ESR信号对不同人工辐照剂量率的响应特征[J]. 第四纪研究, 42(5): 1443-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202205017.htm
    李振清, 2002. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院.
    李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据[J]. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm
    刘春茹, 尹功明, 高璐, 等, 2011. 第四纪沉积物ESR年代学研究进展[J]. 地震地质, 33(2): 490-498. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201102027.htm
    刘星, 1998. 云南石林地区钙华的ESR测年及其地质意义[J]. 中国岩溶, 17(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR801.001.htm
    牛新生, 郑绵平, 刘喜方, 等, 2017. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 35(6): 59-64.
    潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533.
    潘裕生, 方爱民, 2010. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 45(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001010.htm
    邱登峰, 云金表, 刘全有, 等, 2018. 石英电子自旋共振(ESR)的地学研究现状与展望[J]. 地质科学, 53(2): 749-764.
    陶晓风, 刘登忠, 朱利东, 等, 2004. 西藏阿里地区夏康坚雪山构造地貌特征及其形成机制[J]. 成都理工大学学报(自然科学版), 31(2): 129-132.
    王江海, 1998. 陆相热水沉积作用: 以云南地区为例[M]. 北京: 地质出版社.
    王鹏, 2013. 藏南碰撞造山带典型水热区现代地球化学过程与小流域CO2源、汇关系研究[D]. 重庆: 西南大学.
    王绍令, 1992. 青藏高原古泉华及其意义[J]. 水文地质工程地质, 19(4): 29-31.
    王潇, 2018. 西藏羊易地热田泉华地球化学特征及其指示意义[D]. 北京: 中国地质科学院.
    文华国, 罗连超, 罗晓彤, 等, 2019. 陆地热泉钙华研究进展与展望[J]. 沉积学报, 37(6): 1162-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906007.htm
    禤宇添, 詹文欢, 姚衍桃, 等, 2022. 海南岛西北部更新世海相地层的石英ESR测年探讨[J]. 海洋地质与第四纪地质, 42(3): 123-132.
    游雅贤, 文华国, 郑荣才, 等, 2019. 陆地热泉硅华研究进展与展望[J]. 地质科技情报, 38(1): 68-81.
    张森琦, 吴海东, 张杨, 等, 2020. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报, 94(5): 1591-1605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202005017.htm
    赵元艺, 聂凤军, 侯增谦, 等, 2006. 西藏搭格架热泉型铯矿床地质特征及形成时代[J]. 矿床地质, 25(3): 281-291. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200603006.htm
    赵元艺, 赵希涛, 马志邦, 等, 2010. 西藏谷露热泉型铯矿床年代学及意义[J]. 地质学报, 84(2): 211-220.
    郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型: 西藏铯硅华矿床[M]. 北京: 地质出版社.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (184) PDF downloads(59) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint