Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LIU Guangying, LIANG Kuan, LI Zhipeng, et al., 2024. Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M 7.0 earthquake. Journal of Geomechanics, 30 (2): 242-259. DOI: 10.12090/j.issn.1006-6616.2023088
Citation: LIU Guangying, LIANG Kuan, LI Zhipeng, et al., 2024. Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M 7.0 earthquake. Journal of Geomechanics, 30 (2): 242-259. DOI: 10.12090/j.issn.1006-6616.2023088

Detection of the Late Quaternary activity of the Liaocheng-Lankao Fault in the south-central part of the North China Plain: Discussion on the seismogenic mechanism of the 1937 Heze M 7.0 earthquake

doi: 10.12090/j.issn.1006-6616.2023088
Funds:

the National Science Foundation of China 42202253

the Basic Research Funds of the National Institute of Natural Hazards, Ministry of Emergency Management of China ZDJ2019-28

the Basic Research Funds of the National Institute of Natural Hazards, Ministry of Emergency Management of China ZDJ2019-21

the Science and Technology Development Project of the China Railway Design Corporation 2020YY340411

More Information
  • Received: 2023-08-01
  • Revised: 2023-09-07
  • Accepted: 2023-10-24
  • Available Online: 2023-11-23
  • Published: 2024-04-28
  •   Objective  The North China Plain (NCP) is one of the most populated and economically developed areas in China and is a region with a high level of seismic hazards. Studying the Quaternary activity of the faults and the seismogenic mechanism of the large earthquakes in NCP is conducive to exploring the seismogenic pattern of intraplate earthquakes and reducing the damage caused by seismic hazards. The Liaocheng-Lankao fault (LLF) is an important buried deep major fault in the south-central part of the NCP. The activity of the LLF and its relationship with the 1937 Heze M 7.0 earthquake is still highly controversial.  Methods  In this study, the activity of the Liaocheng-Liaokao fault is finely studied by combining shallow seismic exploration, drilling, and Quaternary dating methods.  Results  Shallow seismic reflection profile ZF-2 reveals that the strata below 145 m are obviously displaced, and the strata above 145 m are disturbed. The Bachengsi drilling profile reveals 16 sets of marker layers and three west-dipping normal faults Fa, Fb, and Fc; they form a "compound Y" structure in the profile, of which Fa displaces the bottom boundary of the Holocene (burial depth of approximately 38.9 m) and is an early Holocene active fault. It also reveals four paleoseismic events since the Late Pleistocene, with vertical displacement of 1.2±0.2 to 3.7±0.2 m for a single event. Based on the stratigraphic offsets in the boreholes, the average vertical slip rate of this fault is calculated to be about 0.1±0.05 mm/a for the early Late Pleistocene and 0.35±0.04 mm/a for the late Late Pleistocene-middle Holocene. The fitted age-depth curves by the test results of seven 14C samples and four OSL samples can be divided into two segments. Within the depth range of 0 to 86.0 m (approximately 21 to 0 ka), the age and depth of the strata conform to the formula y=(253.69±16.56)x+(924.72±681.36), from which the average deposition rate of this section is calculated to be 3.94±0.26 mm/a. Within the depth range of 102.9 to 145.4 m (approximately 128 to 59 ka), the age and depth of the strata conform to the formula y=(1470.67±259.91)x+(-95061.92±30190.73), from which the average deposition rate of this section is calculated to be 0.68±0.12 mm/a. The vertical slip rate of the LLF and the sedimentation rate of the Dongpu Sag have increased significantly since the late Late Pleistocene. The intensity lines of the Heze M 7.0 earthquake show an asymmetric butterfly shape.  Conclusion  The 1937 Heze M 7.0 and M 6${\raise0.7ex\hbox{$3$} \!\mathord{\left/{\vphantom {3 4}}\right.}\!\lower0.7ex\hbox{$4$}} $ earthquakes formed "Z" -shaped ground fissure zones, which can be divided into three sections: the southeastern section (section A), the middle section (section B), and the northwestern section (section C). The long axis of the intensity lines and the distribution of the surface rupture of the 1937 Heze M 7.0 coincide with the NNE-striking Xiaoliu-Xieyuanjie and NWW-striking Dongming-Chengwu faults in location and striking. The analysis of the intensity lines, surface rupture distribution, focal mechanism solution of the 1937 Heze M 7.0 earthquake and M 6${\raise0.7ex\hbox{$3$} \!\mathord{\left/{\vphantom {3 4}}\right.}\!\lower0.7ex\hbox{$4$}} $ earthquakes, and regional stress implies that the Xiaoliu-Xieyuanji fault and the Dongming-Chengwu fault are the seismogenic faults of the 1937 Heze M 7.0 earthquake. The LLF, as the deep major fault in the region, controlled the accumulation of stress, stimulated the earthquake with its deep movement, and reduced the effect of the seismic energy westward, acting as the regional seismic controlling fault of the 1937 Heze M 7.0 earthquake.  Significance  This article proposes a method for fine detection of the localization, structure, latest activity age, sliding rate, and paleoseismic sequences of the buried fault and also proposes a pattern of seismicity in which seismogenic faults do not coincide with the regional seismic controlling fault. It provides new insights into the characterization of seismicity within the NCP and can provide the geological basis for urban and rural planning, high-speed railway design, and earthquake prevention and disaster reduction project construction in this region.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHANG Z F, ZHANG J G, SHEN C Y, et al., 2022. The 2012 Thabeikkjin (Myanmar) M 7.0 earthquake and its surface rupture characteristics[J]. Journal of Geomechanics, 28(2): 169-181. (in Chinese with English abstract)
    CHEN W P, NÁBELEK J, 1988. Seismogenic strike-slip faulting and the development of the North China Basin[J]. Tectonics, 7(5): 975-989. doi: 10.1029/TC007i005p00975
    DENG Q D, 2007. Map of active tectonics in China[M]. Beijing: Seismological Press. (in Chinese)
    GUO H, ZHAO J X, 2019. The surface rupture zone and paleoseismic evidence on the seismogenic fault of the 1976 MS 7.8 Tangshan earthquake, China[J]. Geomorphology, 327: 297-306. doi: 10.1016/j.geomorph.2018.11.006
    GUO Z J, JIANG X E, 1965. Discussion of modern tectonic movements in China using information on earthquake source mechanisms[M]//Chinese Geophysical Society. Proceedings of the 1963 academic conference of the Chinese geophysical society. Beijing: Science Press. (in Chinese)
    HA G H, WU Z H, 2021. Discussion of the seismogenic structure of the 1901 M 6${\raise0.7ex\hbox{$3$} \!\mathord{\left/{\vphantom {3 4}}\right.}\!\lower0.7ex\hbox{$4$}} $ Nyemo earthquake[J]. Journal of Geomechanics, 27(2): 218-229. (in Chinese with English abstract)
    HE L J, 2015. Thermal regime of the North China Craton: implications for craton destruction[J]. Earth-Science Reviews, 140: 14-26. doi: 10.1016/j.earscirev.2014.10.011
    HE Z Q, YE T L, DING Z F, et al., 2001. The application of shallow seismic prospecting methods to active fault dectection in cities[J]. Recent Developments in World Seismology(3): 1-6. (in Chinese with English abstract)
    HE Z Q, CHEN Y K, YE T L, et al., 2007. Application of shallow seismic exploration in detection of buried fault in coastal areas[J]. Seismology and Geology, 29(2): 363-372. (in Chinese with English abstract)
    HU C H, 1991. Heze earthquake in 1937[M]. Beijing: Earthquake Press. (in Chinese)
    HU X P, CUI X F, 2013. Study on earthquake relocation and tectonic stress field in central North China[J]. Technology for Earthquake Disaster Prevention, 8(4): 351-360. (in Chinese with English abstract)
    HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005
    HUANG X X, DING J H, 1990. Anomalous variation of regional geomagnetic field before the Bohai sea earthquake (7.4Ms)[J]. Journal of Seismology(3): 45-52. (in Chinese with English abstract)
    JIANG W L, ZHANG Y L, HOU Z H, 1994. The discovery of the freshest surface fracture zone in the west mountain of Cixian County of Hebei Province related to the 1830 Cixian earthquake of M7.5[J]. Earthquake Research in China(4): 357-362. (in Chinese with English abstract)
    JIANG W L, ZHANG Y L, 1996. Characteristics of the WNW trending Nanshancun-Chakou Active Fault in Cixian, Hebei Province and relationship with 1830 Cixian Earthquake[J]. Seismology and Geology, 18(4): 349-357. (in Chinese with English abstract)
    JIANG W L, 1999. Estimation of right-lateral strike-slip offset of the Xiadian Seismic Fault Zone Produced at the 1679 Sanhe-Pinggu M=8 earthquake[J]. Bulletin of the Institute of Crustal Dynamics(1): 1-6. (in Chinese with English abstract)
    KANG H L, LIN C S, NIU C M, 2021. Ancient landform of the Dongying formation in the Shadongnan structural zone, western Bohai Sea area and its control on the sedimentation[J]. Journal of Geomechanics, 27(1): 19-30. (in Chinese with English abstract)
    LEI Q Y, CHAI C Z, MENG G K, et al., 2011. Method of locating buried active fault by composite drilling section doubling exploration[J]. Seismology and Geology, 33(1): 45-55. (in Chinese with English abstract)
    LI J H, 1988. Discussion on the structural background of Heze earthquake[J]. Journal of Seismology(2): 19-23. (in Chinese with English abstract)
    LI Q, 1987. The August 1, 1937 Shandong Heze earthquake investigation report[J]. China Earthquake Investigation (Volume 1), 105-120. (in Chinese)
    LI S B, JIA L H, 1940. A summary of the earthquake in Heze, Shandong[J]. Geological Review(5): 431-436. (in Chinese)
    LI T, WANG Z S, GAO J Y, et al., 2022. Structural style and latest activity analysis of the southern segment of the Lanliao fault[J]. Technology for Earthquake Disaster Prevention, 17(2): 278-293. (in Chinese with English abstract)
    LI T Z, WANG G D, 1981. A preliminary analysis of the earthquake-controlling and the earthquake-generating tectonics[J]. Journal of Seismological Research, 4(3): 312-317. (in Chinese with English abstract)
    LIANG K, SUN C B, MA B Q, et al., 2018. Investigation of the Yellow River buried fault in the Wuhai basin, northwestern Ordos Block, China, using deep/shallow seismic reflection and drilling techniques[J]. Journal of Asian Earth Sciences, 163: 54-69. doi: 10.1016/j.jseaes.2018.05.025
    LIANG K, HE Z T, JIANG W L, et al., 2022. Surface rupture characteristics of the Menyuan MS6.9 Earthquake on January 8, 2022, Qinghai province[J]. Seismology and Geology, 44(1): 256-278. (in Chinese with English abstract)
    LIN X D, YUAN H Y, XU P, et al., 2017. Zonational characteristics of Earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract)
    LIU B J, CHAI C Z, FENG S Y, et al., 2008. Seismic exploration method for buried fault and its up-breakpoint in Quaternary sediment area-An example of Yinchuan buried active fault[J]. Chinese Journal of Geophysics, 51(5): 1475-1483. (in Chinese with English abstract)
    LIU W Q, 1983. On a possible barrier along the rupture direction of the M=7.2 Xingtai earthquake of 1966[J]. Acta Seismologica Sinica, 5(1): 116-125. (in Chinese with English abstract)
    MA X Y, WU D N, 1987. Cenozoic extensional tectonics in China[J]. Tectonophysics, 133(3-4): 243-255. doi: 10.1016/0040-1951(87)90268-X
    MAO C W, DING R, GONG Z, et al., 2010. GPS survey of the surface fault scarp of 1679 Sanhe-Pinggu M8 earthquake[J]. Bulletin of the Institute of Crustal Dynamics(1): 11-18. (in Chinese with English abstract)
    MIAO Q J, ZHOU C Y, MA Y X, et al., 2010. A review of researches on 1969 Bohai Mb7.4 earthquake[J]. North China Earthquake Sciences, 28(1): 8-15. (in Chinese with English abstract)
    NÁBĚLEK J L, CHEN W P, YE H, 1987. The Tangshan Earthquake Sequence and its implications for the evolution of the North China Basin[J]. Journal of Geophysical Research: Solid Earth, 92(B12): 12615-12628. doi: 10.1029/JB092iB12p12615
    RAN Y K, DENG Q D, YANG X P, et al., 1997. Paleoearthquakes and recurrence interval on the seismogenic fault of 1679 Sanhe-Pinggu M 8 earthquake, Hebei and Beijing[J]. Seismology and Geology, 19(3): 193-201. (in Chinese with English abstract)
    SHEDLOCK K M, BARANOWSKI J, XIAO W W, et al., 1987. The Tangshan aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 92(B3): 2791-2803. doi: 10.1029/JB092iB03p02791
    SONG H Z, YUAN Y G, HUANG L R, et al., 1988. Analysis on the 1976 Tangshan earthquake process[J]. Seismology and Geology, 10(4): 98-108. (in Chinese with English abstract)
    WANG H L, GENG J, 1995. Study on the seismogenesis of Heze earthquake MS=7.0 in 1937[J]. Plateau Earthquake Research, 7(3): 1-8. (in Chinese with English abstract)
    WANG R T, ZHAO X C, BI G X, 1994. Tracing research on geofractures due to the Heze earthquake in 1937[J]. Northwestern Seismological Journal, 16(4): 70-75. (in Chinese with English abstract)
    WEI G X, 1980. A discussion on the source fault plane of Bohai sea earthquake with M=7.4[J]. Seismology and Geology, 2(3): 64. (in Chinese)
    WEI G X, ZHOU C Y, XU K F, 1985. The 1983 Heze earthquake of magnitude 5.9[J]. Acta Seismologica Sinica, 7(1): 118-123. (in Chinese with English abstract)
    WU F Y, LIN J Q, WILDE S A, et al., 2005. Nature and significance of the early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019
    XIANG H F, WANG X C, GUO S M, et al., 2000. Integrated survey and investigation on the quaternary activity of the Liaocheng-Lankao buried fault[J]. Seismology and Geology, 22(4): 351-359. (in Chinese with English abstract)
    XIE Y M, HAN H P, JU Y, et al., 2006. The seismogenic background of Xingtai M7.2 earthquake[J]. North China Earthquake Sciences, 24(2): 55-57. (in Chinese with English abstract)
    XU H, 2018. Numerical simulation and structural analysis on the formation and evolution of the Dongpu Sag, Bohai Bay Basin[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    XU J, FANG Z J, YANG L H, 1988. Tectonic background and causative fault of 1966 Xingtai Ms7.2 earthquake[J]. Seismology and Geology, 10(4): 51-59. (in Chinese with English abstract)
    XU J, GAO Z W, SUN J B, et al., 2001. Analysis of structures in 1969 Bohai Sea MS 7.4 earthquake area and discussion about the causative structure[J]. Earthquake Research in China, 17(2): 121-133. (in Chinese with English abstract)
    YE H, SHEDLOCK K M, HELLINGER S J, et al., 1985. The north China basin: an example of a Cenozoic rifted intraplate basin[J]. Tectonics, 4(2): 153-169. doi: 10.1029/TC004i002p00153
    YIN X F, ZHANG G M, SHAO Z G, et al., 2020. Research on activity characteristics of strong earthquakes in North China[J]. Earthquake, 40(1): 11-33. (in Chinese with English abstract)
    YU P, YANG D, YANG B J, 2003. The basic character of geophysical field and the tectonic significance of Liaocheng-Lankao fault in Northern China platform[J]. Journal of Jilin University (Earth Science Edition), 33(1): 106-110. (in Chinese with English abstract)
    ZHANG H Z, DIAO G L, CHEN Q F, et al., 2008. Focal mechanism analysis of the recent earthquakes in Tangshan seismic region of M7. 6 in 1976[J]. Journal of Seismological Research, 31(1): 1-6. (in Chinese with English abstract)
    ZHANG J W, ZHAO Q S, GUO X Y, et al., 2010. The Liaocheng-Lankao fault and its mercury and radon anomalies[J]. Geology in China, 37(5): 1419-1425. (in Chinese with English abstract)
    ZHANG L, XIE X S, GUO H, 2020. Study of the activity since Late Pleistocene of west section of Cixian-Daming Faults Zone[J]. Earthquake, 40(3): 83-98. (in Chinese with English abstract)
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24.
    ZHANG S M, WANG D D, LIU X D, et al., 2007. Sequence stratigraphy study of late quaternary activities of Nankou-Sunhe fault in its northern segment, Beijing[J]. Seismology and Geology, 29(4): 729-743. (in Chinese with English abstract)
    ZHAO X C, HUANG B Q, 1981. The 1937 Heze M7 earthquake[J]. Earthquake(6): 28-30, 30. (in Chinese)
    ZHAO X C, XU K F, 1984. Macroscopic precursor of the 1937 Heze M7.0 earthquake[J]. North China Earthquake Sciences, 2(3): 49-52. (in Chinese)
    ZHAO X C, 1991. Fissures and its characteristics of Heze earthquake M 7.0 in 1937[J]. Crustal Deformation and Earthquake, 11(1): 93-96. (in Chinese with English abstract)
    ZHAO X J, LIU X D, HOU J J, 1997. A dynamic model of 1996 Xingtai MS 7.2 earthquake[J]. North China Earthquake Sciences, 15(3): 9-17. (in Chinese)
    ZHU R X, CHEN L, WU F Y, et al., 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 54(6): 789-797. doi: 10.1007/s11430-011-4203-4
    ZUO Z R, WU J P, WU Z L, 1995. Foreshock sequence analysis of the Xingtai MS 7.2 earthquake in 1966[J]. North China Earthquake Sciences, 13(2): 7-15. (in Chinese with English abstract)
    常祖峰, 张建国, 申重阳, 等, 2022. 2012年缅甸德贝金M 7.0地震及其地表破裂特征[J]. 地质力学学报, 28(2): 169-181. doi: 10.12090/j.issn.1006-6616.2021161
    邓起东, 2007. 中国活动构造图[M]. 北京: 地震出版社.
    郭增建, 姜秀娥, 1965. 用震源机制资料讨论中国境内的现代构造运动[M]//中国地球物理学会. 中国地球物理学会1963年学术会议论文集. 北京: 科学出版社.
    哈广浩, 吴中海, 2021. 西藏尼木1901年M 6${\raise0.7ex\hbox{$3$} \!\mathord{\left/{\vphantom {3 4}}\right.}\!\lower0.7ex\hbox{$4$}} $地震的发震构造探讨[J]. 地质力学学报, 27(2): 218-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202302009.htm
    何正勤, 叶太兰, 丁志峰, 等, 2001. 城市活断层探测中的浅层地震勘探方法[J]. 国际地震动态(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200103000.htm
    何正勤, 陈宇坤, 叶太兰, 等, 2007. 浅层地震勘探在沿海地区隐伏断层探测中的应用[J]. 地震地质, 29(2): 363-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702013.htm
    胡长和, 1991. 1937年菏泽地震[M]. 北京: 地震出版社.
    胡幸平, 崔效锋, 2013. 华北地区中部地震精定位与构造应力场研究[J]. 震灾防御技术, 8(4): 351-360. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201304002.htm
    黄雪香, 丁鉴海, 1990. 渤海7.4级地震前区域地磁场的异常变化[J]. 地震学刊(3): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK199003010.htm
    江娃利, 张英礼, 侯志华, 1994. 河北磁县西部山区最新地表破裂带的发现与1830年磁县7.5级地震的关系[J]. 中国地震(4): 357-362. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD404.005.htm
    江娃利, 张英礼, 1996. 河北磁县北西西向南山村-岔口活动断裂带活动特征与1830年磁县地震[J]. 地震地质, 18(4): 349-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ604.008.htm
    江娃利, 1999. 1679年三河-平谷8级地震夏垫地震破裂带右旋走滑位移量计算[J]. 地壳构造与地壳应力文集(1): 1-6.
    康海亮, 林畅松, 牛成民, 2021. 渤海西部沙东南构造带东营组古地貌特征及对沉积的控制作用[J]. 地质力学学报, 27(1): 19-30. doi: 10.12090/j.issn.1006-6616.2021.27.01.003
    雷启云, 柴炽章, 孟广魁, 等. 2011. 隐伏活断层钻孔联合剖面对折定位方法[J]. 地震地质, 33(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101007.htm
    李建华, 1988. 1937年菏泽7级地震地质构造背景的讨论[J]. 地震学刊(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198802003.htm
    李群, 1987. 1937年8月1日山东菏泽地震调查报告[J]. 中国地震考察报告(第一卷), 105-120.
    李善邦, 賈連亨, 1940. 山東菏澤地震述要[J]. 地质论评(5): 431-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP194005007.htm
    李涛, 王志铄, 高家乙, 等, 2022. 兰聊断裂南段构造样式与最新活动性分析[J]. 震灾防御技术, 17(2): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202202009.htm
    李天祒, 王光弟, 1981. 浅析控震构造与发震构造[J]. 地震研究, 4(3): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198103007.htm
    梁宽, 何仲太, 姜文亮, 等, 2022. 2022年1月8日青海门源MS6.9地震的同震地表破裂特征[J]. 地震地质, 44(1): 256-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202201016.htm
    林向东, 袁怀玉, 徐平, 等, 2017. 华北地区地震震源机制分区特征[J]. 地球物理学报, 60(12): 4589-4622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712006.htm
    刘保金, 柴炽章, 酆少英, 等, 2008. 第四纪沉积区断层及其上断点探测的地震方法技术: 以银川隐伏活动断层为例[J]. 地球物理学报, 51(5): 1475-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805022.htm
    刘万琴, 1983. 1966年邢台地区7.2级地震前地震破裂方向上的可能障碍物[J]. 地震学报, 5(1): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198301012.htm
    毛昌伟, 丁锐, 龚正, 等, 2010. 1679年三河-平谷8级地震地表断层陡坎的GPS测量[J]. 地壳构造与地壳应力文集(1): 11-18.
    苗庆杰, 周翠英, 马玉香, 等, 2010. 1969年渤海7.4级地震研究述评[J]. 华北地震科学, 28(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD201001001.htm
    冉勇康, 邓起东, 杨晓平, 等, 1997. 1679年三河-平谷8级地震发震断层的古地震及其重复间隔[J]. 地震地质, 19(3): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ703.000.htm
    宋惠珍, 袁岩光, 黄立人, 等, 1988. 1976年唐山7.8级地震震源过程的研究[J]. 地震地质, 10(4): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198804012.htm
    王华林, 耿杰, 1995. 关于1937年菏泽7级地震成因的探讨[J]. 高原地震, 7(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDZ503.000.htm
    王瑞田, 赵宪超, 毕桂香, 1994. 1937年菏泽地震地裂缝追踪研究[J]. 地震工程学报, 16(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ404.010.htm
    魏光兴, 1980. 关于渤海7.4级地震震源断层面的讨论[J]. 地震地质, 2(3): 64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198003010.htm
    向宏发, 王学潮, 虢顺民, 等, 2000. 聊城-兰考隐伏断裂第四纪活动性的综合探测研究[J]. 地震地质, 22(4): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200004002.htm
    解用明, 韩和平, 鞠永, 等, 2006. 邢台7.2级地震的发震背景特征[J]. 华北地震科学, 24(2): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD200602008.htm
    徐翰, 2018. 渤海湾盆地东濮凹陷形成与演化的数值模拟与构造分析[D]. 北京: 中国地质大学(北京).
    徐杰, 方仲景, 杨理华, 1988. 1966年邢台7.2级地震的构造背景和发震构造[J]. 地震地质, 10(4): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198804007.htm
    徐杰, 高战武, 孙建宝, 等, 2001. 1969年渤海7.4级地震区地质构造和发震构造的初步研究[J]. 中国地震, 17(2): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200102002.htm
    尹晓菲, 张国民, 邵志刚, 等, 2020. 华北地区强震活动特点研究[J]. 地震, 40(1): 11-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN202001002.htm
    于平, 杨冬, 杨宝俊, 2003. 华北地台聊城—兰考断裂地球物理场基本特征及其构造意义[J]. 吉林大学学报(地球科学版), 33(1): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200301023.htm
    张建伟, 赵全升, 郭秀岩, 等. 2010. 聊城—兰考断裂及其土壤汞、氡气异常[J]. 中国地质, 37(5): 1419-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201005021.htm
    张路, 谢新生, 郭慧, 2020. 磁县—大名断裂带西段晚更新世以来活动性研究[J]. 地震, 40(3): 83-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN202003007.htm
    张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm
    张世民, 王丹丹, 刘旭东, 等, 2007. 北京南口-孙河断裂带北段晚第四纪活动的层序地层学研究[J]. 地震地质, 29(4): 729-743. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200704003.htm
    赵希俊, 刘锡大, 侯建军, 1997. 1966年邢台7.2级地震的动力学模型[J]. 华北地震科学, 15(3): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD199703001.htm
    赵宪超, 黄保起, 1981. 1937年菏泽7级地震[J]. 地震(6): 28-30, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN198106012.htm
    赵宪超, 许坤福, 1984. 一九三七年菏泽7.0级地震的宏观前兆[J]. 华北地震科学, 2(3): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD198403007.htm
    赵宪超, 1991. 1937年菏泽7.0级地震的地裂缝特征[J]. 地壳形变与地震, 11(1): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB199101012.htm
    朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
    左兆荣, 吴建平, 巫志玲, 1995. 1966年邢台MS 7.2级地震的前震序列分析[J]. 华北地震科学, 13(2): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD502.001.htm
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (620) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return