Citation: | WANG Haojie, SUN Ping, ZHANG Shuai, et al., 2023. Characteristics and slope structure of the Beishan landslide group in Tianshui City. Journal of Geomechanics, 29 (2): 236-252. DOI: 10.12090/j.issn.1006-6616.2022052 |
BURCHFIEL B C, ZhANG P Z, WANG Y P, et al., 1991. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau[J]. Tectonics, 10(6): 1091-1110. doi: 10.1029/90TC02685
|
CHEN P, LIN A M, 2019. Tectonic topography and Late Pleistocene activity of the West Qinling Fault, northeastern Tibetan Plateau. Journal of Asian Earth Sciences [J], 176: 68-78.
|
CRUDEN D M, VARNES D J, 1996. Landslide types and processes. Special Report-National Research Council, Transportation Research Board 247: 36-75.
|
DENG L S, FAN W, 2013. Deformation Breakage Characteristics and Development Mechanism of Loess Landslide Triggered by Haiyuan M8.5 Earthquake in Ningxia [J]. Journal of Catastrophology, 28(3): 30-37. (in Chinese with English abstract)
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2015. Seismic ground motion parameters zonation map of China: GB 18306-2015[S]. Beijing: China Building Industry Press. (in Chinese)
|
LI H, YANG W M, HUANG X, et al., 2016. Characteristics and deformation mechanism of Shuiwan seismic loess landslide in Maiji, Tianshui [J]. Journal of Geomechanics, 22(1): 12-24. (in Chinese with English abstract)
|
LIU J M, WANG T, SHI J S, et al., 2018. The influence of different newmark displacement models on seismic landslide hazard assessment: a case study of Tianshui area, China [J]. Journal of Geomechanics, 24 (1): 87-95. (in Chinese with English abstract)
|
MA S X, LI H L, ZHANG Y Q, et al., 2016. The Neogene extension of the Tianshui basin: Evidence from sedimentary and structural records [J]. Geological Bulletin of China, 35(8): 1314-1323. (in Chinese with English abstract)
|
MU H D, SUN P, LI R J, et al., 2017. Dynamic damping characteristics and evolution law of Pan'an structural loess [J]. Journal of Geomechanics, 23 (6): 935-942. (in Chinese with English abstract)
|
MENG X M, QI T J, ZHAO Y, et al., 2021. Deformation of the Zhangjiazhuang high-speed railway tunnel: an analysis of causal mechanisms using geomorphological surveys and D-InSAR monitoring [J]. Journal of Mountain Science, 18(7): 1920-1936. doi: 10.1007/s11629-020-6493-5
|
PENG J B, FAN Z J, WU D, et al., 2015. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China [J]. Engineering Geology, 186: 79-90. doi: 10.1016/j.enggeo.2014.08.015
|
PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone [J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8
|
PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau [J]. Journal of Geomechanics, 26 (5): 714-730. (in Chinese with English abstract)
|
SCHEIDEGGER A E, 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 5(4): 231-236. doi: 10.1007/BF01301796
|
SUN P, LI R J, JIANG H, et al., 2017. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province, northwest China [J]. Bulletin of Engineering Geology and the Environment, 76(4): 1281-1295. doi: 10.1007/s10064-016-0949-4
|
TIAN Y, YANG W M, HUANG X, et al., 2016. Distribution characteristics and inducing factors of loess landslide in Maiji mappable unit, Tianshui [J]. Journal of Geomechanics, 22 (1): 25-38. (in Chinese with English abstract)
|
WANG H J, SUN P, ZHANG S, et al., 2020a. Rainfall-induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, 2019, in Gansu Province[J]. Landslides, 17(9): 2145-2160. doi: 10.1007/s10346-020-01460-0
|
WANG H J, 2021. Potential hazard and quantitative risk assessment of landslides under earthquake in Tianshui north mountain [D]. Beijing: Chinese Academy of Geological Sciences (in Chinese t).
|
WANG J D, BAI M X, XIAO S F, 2001. A study on compound mechanism of earthquake-related sliding displacements on gently inclined loess slope[J]. Chinese Journal of Geotechnical Engineering, 22(4): 445-449. (in Chinese with English abstract)
|
WANG T, LIU J M, SHI J S, et al., 2020b. Probabilistic seismic landslide hazard assessment: a case study in Tianshui, Northwest China[J]. Journal of Mountain Science, 17(1): 173-190. doi: 10.1007/s11629-019-5618-1
|
WANG X X, LI J J, SONG C H, et al., 2012. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui basin, northeastern margin of Tibetan Plateau [J]. International Journal of Earth Sciences, 101(5): 1345-1356. doi: 10.1007/s00531-011-0724-5
|
WU W J, SU X, LIU W, et al., 2014. Loess-mudstone interface landslides: Characteristics and causes [J]. Journal of Glaciology and Geocryology, 36(5): 1167-1175. (in Chinese with English abstract).
|
XIN P, WU S R, ZHANG Z L, et al., 2017. Distribution characteristics and formation mechanism of landslides triggered by activities of Baoji-Wushan segment at the northern margin of western Qinling fault zone [J]. Journal of Geomechanics, 23 (5): 723-733. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.05.009
|
XU C, XU X W, Shyu J B H, et al., 2014. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: Inventory compiling and spatial distribution analysis [J]. Journal of Asian Earth Sciences, 92: 125-142. doi: 10.1016/j.jseaes.2014.06.014
|
YAO C C, YAO X, GU Z K, et al., 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083.(in Chinese with English abstract)
|
YUAN B Y, GUO Z T, HAO Q Z, et al., 2007. Cenozoic evolution of geomorphic and sedimentary environments in the Tianshui-Qin'an regions [J]. Quaternary Sciences, 27(2): 161-171. (in Chinese with English abstract)
|
YUAN D Y, LEI Z S, WANG A G, 2017. Additional Textual Criticism of Southern Tianshui M8 Earthquake in Gansu Province in 1654 [J]. China Earthquake Engineering Journal, 39(3): 509-520. (in Chinese with English abstract)
|
ZHANG F Y, PENG J B, WU X G, et al., 2021. A catastrophic flowslide that overrides a liquefied substrate: the 1983 Saleshan landslide in China [J]. Earth Surface Processes and Landforms, 46(10): 2060-2078. doi: 10.1002/esp.5144
|
ZHANG M S, LIU J, 2010. Controlling factors of loess landslides in western China [J]. Environmental Earth Sciences, 59 (8): 1671-1680. doi: 10.1007/s12665-009-0149-7
|
ZHANG S X, YANG W M, CHENG X J, et al., 2017. Genetic mechanism and stability analysis of loess landslides group in Tianshui Hongqishan, Gansu Province[J]. Geology in China, 44(5): 924-937. (in Chinese with English abstract)
|
ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27 (2): 159-177. DOI: 10.12090/j.issn.1006-6616.2021.27.02.017.(in Chinese with English abstract)
|
ZHANG Z L, 2016. The initating mechanism and runout pattern of typical seismic loess landslides[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
|
ZHANG Z L, WANG T, WU S R, 2020. Distribution and features of landslides in the Tianshui Basin, Northwest China [J]. Journal of Mountain Science, 17(3): 686-708. doi: 10.1007/s11629-019-5595-4
|
ZHONG X M, WANG Q, ZHANG G X, et al., 2014. Characteristics and Stability Analysis of Shuiyanzhai Landslide in Tianshui City [J]. China Earthquake Engineering Journal, 36(4): 887-891. (in Chinese with English abstract)
|
邓龙胜, 范文, 2013. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J]. 灾害学, 28(3): 30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007
|
李浩, 杨为民, 黄晓, 等, 2016. 天水市麦积区税湾地震黄土滑坡特征及其形成机制[J]. 地质力学学报, 22(1): 12-24. https://journal.geomech.ac.cn/article/id/aa875030-7a20-478a-9df0-6aa5d8a24be3
|
刘甲美, 王涛, 石菊松, 等, 2018. 基于不同位移预测模型的地震滑坡危险性评估研究: 以天水地区为例[J]. 地质力学学报, 24 (1): 87-95. doi: 10.12090/j.issn.1006-6616.2018.24.01.010
|
马收先, 李海龙, 张岳桥, 等, 2016. 天水盆地新近纪伸展构造: 来自沉积与构造变形方面的证据[J]. 地质通报, 35(8): 1314-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201608012.htm
|
慕焕东, 孙萍, 李荣建, 等, 2017. 磐安结构性黄土动阻尼特征及其演化规律研究[J]. 地质力学学报, 23 (6): 935-942. https://journal.geomech.ac.cn/article/id/343cc102-95b5-42c7-859b-2ce7276cf6ff
|
彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26 (5): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
|
田尤, 杨为民, 黄晓, 等, 2016. 天水市麦积区幅黄土滑坡发育分布特征及其孕灾因素分析[J]. 地质力学学报, 22 (1): 25-38. https://journal.geomech.ac.cn/article/id/34a08b58-ad41-402d-84df-2987193001ba
|
王浩杰, 2021. 天水北山地震滑坡危险性及风险定量评估[D]. 北京: 中国地质科学院.
|
王家鼎, 白铭学, 肖树芳, 2001. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 22(4): 445-449. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104014.htm
|
吴玮江, 宿星, 刘伟, 等, 2014. 黄土-泥岩接触面滑坡的特征与成因[J]. 冰川冻土, 36(5): 1167-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405013.htm
|
辛鹏, 吴树仁, 张泽林, 等, 2017. 西秦岭北缘断裂宝鸡—武山段活动触发滑坡分布规律与成因机制[J]. 地质力学学报, 23 (5): 723-733. https://journal.geomech.ac.cn/article/id/7fa11a66-0569-4950-b531-b19b835bb298
|
姚闯闯, 姚鑫, 顾畛逵, 等, 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083.
|
袁宝印, 郭正堂, 郝青振, 等, 2007. 天水-秦安一带中新世黄土堆积区沉积-地貌演化[J]. 第四纪研究, 27(2): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200702000.htm
|
袁道阳, 雷中生, 王爱国, 2017. 1654年甘肃天水南8级地震补充考证[J]. 地震工程学报, 39(3): 509-520.
|
张树轩, 杨为民, 程小杰, 等, 2017. 甘肃天水红旗山黄土滑坡群成因及稳定性分析[J]. 中国地质, 44(5): 924-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705008.htm
|
张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报, 27(2): 159-177. DOI: 10.12090/j.issn.1006-6616.2021.27.02.017.
|
张泽林, 2016. 典型黄土滑坡启动机制及成灾模式研究[D]. 武汉: 中国地质大学.
|
中华人民共和国国家盒子里监督检验检疫总局, 中国国家标准化管理委员会, 2015. 中国地震动参数区划图: . GB 18306-2015 [S]. 北京: 中国建筑工业出版社.
|
钟秀梅, 王谦, 张国信, 等, 2014. 天水市水眼寨滑坡特征及稳定性分析[J]. 地震工程学报, 36(4): 887-891.
|