Geological environment and main geological safety challenges in the northern segment of the southeast Xizang (Tibet) power transmission corridor
-
摘要: 藏东南地区独特的地形地貌和气候条件特点,使之蕴藏着非常丰富的水电资源。为保障藏东南输电走廊北线的地质选线、建设和运营工作,文章通过归纳总结国内外文献资料,详细阐述了输电走廊北线沿线区域地质环境和主要地质安全隐患,并对藏东南输电走廊进一步灾害识别与监测工作提出了合理建议。结果表明:藏东南输电走廊沿线构造活动强烈、活动断裂发育、强震频发、地形地貌差异显著、岩土体结构损伤和劣化等独特的区域地质环境,极易诱发地质安全隐患;藏东南输电走廊北线的地质安全隐患主要包括滑坡、崩塌、泥石流、雪(冰)崩、冰湖溃决和冻胀融沉等;沿线地质安全隐患的发育受控于极高陡的地形和复杂的地貌条件、升温融雪气候变化、强烈的断裂活动与频发的地震、内外动力耦合诱发的高位远程灾害链等因素;深入融合InSAR技术、光学遥感、无人机摄影测量、机载LiDAR技术和在线实地监测等软防控手段的优势,可以有效打破藏东南输电走廊沿线灾害隐患错判、漏判、少判、智能化程度低和精准性差等困局。研究结果将为藏东南地区水电开发项目规划建设中的地质安全风险防控工作提供理论依据,也对藏东南地区可持续发展具有重要的现实意义。Abstract:
Objective Southeast Xizang(Tibet) boasts a wealth of hydroelectric resources, attributed to its distinctive topography, geomorphology, and climatic conditions. This study aims to safeguard the geological route selection, construction, and operation of the northern segment of the southeast Xizang(Tibet) power transmission corridor. Methods We conduct a comprehensive review of literature from both domestic and international sources, and elaborate extensively the regional geological conditions and significant geological safety challenges encountered along the corridor. Furthermore, this study presents sound recommendations for the further disaster identification and monitoring of the southeast Xizang(Tibet) power transmission corridor. Results The results are: (1)The transmission corridor in southeast Xizang(Tibet) exhibits pronounced structural activity, well-developed active faults, frequent strong seismic events, notable variations in topography and geomorphology, and distinctive regional geological conditions characterized by structural degradation of rock and soil; all of which have the potential to cause geological safety challenges. (2)The primary geological safety challenges in the northern section of the southeast Xizang(Tibet) power transmission corridor include landslides, collapses, debris flows, snow (ice) avalanches, glacial lake outburst floods, and frost heave settlements. (3)The development of geological safety issues along the route is controlled by extremely steep topography, complex geomorphological conditions, warming and snowmelt due to climate change, intense fault activity, frequent earthquakes, as well as the coupling of internal and external dynamics that induce high-altitude and long-distance disaster chains. Conclusion By deeply integrating the advantages of soft measures including InSAR technology, optical remote sensing, UAV photogrammetry, airborne LiDAR technology, and online field monitoring the issues of misinterpretation, oversight, and imprecision in hazard assessment for the southeast Xizang(Tibet) power transmission corridor can be effectively overcome. Significance The research establishes a theoretical foundation for the prevention and control of geological safety risks in the planning and implementation of hydroelectric projects in southeast Xizang(Tibet), holding substantial practical value for the sustainable development of the region. -
0. 引言
藏东南地区地处印度板块与欧亚板块的挤压碰撞带,该地区发育强烈的地壳抬升运动和断裂活动(许志琴等,2007;Ding et al.,2022)。同时,印度洋的暖湿气流在此处汇聚,使得藏东南地区气候温暖湿润,降雨量丰沛。活跃的大地构造和温润多雨的气候特征,造就了藏东南地区山高谷深、冰峰林立的高山峡谷地貌景观(姚鑫等,2020;李征征等,2023)。念青唐古拉山、喜马拉雅山和横断山在此处交汇,发育了雅鲁藏布江、怒江、澜沧江和金沙江四大河流,藏东南地区素有“万山之巅,江河之源”之称。独特的地形和气候条件,河流水量丰富且水流湍急,使得该地区蕴藏着极为丰富的水电资源(Zhang et al.,2021;Qin et al.,2023)。
地质安全是指人居环境与工程活动免受各种地质作用威胁的状态(彭建兵等,2022)。地质安全问题涵盖了地壳活动、地质结构、地貌过程以及人类活动对地质环境的影响等多个方面(张永双等,2022)。因此,工程建设与地质环境相互作用引发的地质安全问题涉及地质体、岩土体、灾害体和结构体,四者相互作用,两两互馈(彭建兵等,2022)。这些地质安全隐患不仅威胁人类生命财产安全,还可能对基础设施、自然资源和生态环境造成长期影响(李滨等,2022)。相较于常见的建筑结构,输电线路具有塔身高、跨度大、延伸长和柔性强等特点,对山地灾害的响应具有较强的敏感性(Zhou et al.,2022)。因此,亟需针对高山峡谷地区输电线路选线、建设和运营期地质安全隐患调查、发育机制和风险评估等方面开展相关研究。此外,由于藏东南地区特殊的工程地质条件,使得灾害具有高位、高危、高隐蔽等特点(白永健等,2019;余国安等,2022),常规的灾害识别调查、监测预警手段应用受限,宜大力发展非接触遥感防范技术。
近年来,随着研究手段的不断丰富,学者们逐步对藏东南地区的地质安全隐患和山地灾害的发育规律和孕育机理取得了一定的认识。Fan et al.(2006)分析了西藏地区泥石流、崩塌、滑坡灾害的分布特征,研究表明,青藏高原东南部的灾害明显多于藏西北地区,且相较于高原内部及其湖盆地区,高原边缘山区和河谷地区的灾害类型更为多样。Peng et al.(2022)将西藏东南部南察巴瓦西侧一次典型的冰川泥石流划分为释放区、搬运区、夹带区和堆积区,冰雪融化导致的孔隙水压力增加和下伏冰碛物的抗剪强度降低共同引起了此次冰川泥石流灾害。Yao et al.(2017)利用InSAR技术对青藏高原东部鲜水河断裂带内的蠕变型边坡地质灾害进行了探测和识别,发现蠕变型滑坡、碎屑流和缓流冰川是蠕变型边坡地质灾害的3种主要类型。Zhou et al.(2022)通过物理模型试验和数值理论分析,发现输电塔基础在降雨滑坡中的破坏过程经历了表层土体冲刷、裂缝形成、滑坡后缘张拉裂缝发展、滑坡坡脚失稳、滑坡形成、塔基失稳等过程。
文章在整理藏东南地区工程地质背景研究成果的基础上,对影响藏东南输电线路安全的主要地质安全隐患及其影响进行了归纳总结,分析了该区主要地质安全隐患的诱发机制,并针对沿线地质安全隐患监测防控技术提出了建议。研究成果可为藏东南输电线路的选线、建设和运营期的防灾减灾提供科学依据,并为后续开展灾害防治相关研究提供参考。
1. 区域地质环境
1.1 区域构造地质背景
约70~50 Ma以来,印度板块与欧亚板块之间持续发生碰撞作用,使得藏东南地区成为现今地球构造运动最为活跃的区域之一(许志琴等,2006;李海兵等,2021)。数条重要的构造活动带将青藏高原划分为喜马拉雅地体、拉萨地体、羌塘地体、巴颜喀拉地体和昆仑−柴达木地体5个主要构造地体(图1)。规划建设中的藏东南输电走廊北线跨越拉萨地体和羌塘地体之间的班公湖−怒江缝合带,以及羌塘地体和巴颜喀拉地体之间的金沙江缝合带。受强烈的断裂活动影响,输电走廊内地震活动频繁,地质灾害频发,成为水电工程规划和建设的主要限制因素。藏东南输电走廊北线西起西藏林芝,向东经墨脱、波密、昌都、察雅、芒康和稻城等地,最终到达四川省九龙县,总面积约130011 km2。
1.2 主要活动断裂与地震活动
藏东南输电走廊沿线分布有雅鲁藏布江断裂、墨脱断裂、嘉黎断裂、察隅断裂、边坝−洛隆断裂、怒江断裂、巴青−类乌齐断裂、澜沧江断裂、字嘎寺−德钦断裂、金沙江断裂、巴塘断裂、理塘断裂、玉农希断裂、锦屏山断裂、安宁河断裂和大凉山断裂等(图2,表1)。青藏高原东南缘是世界上主要的地震活跃区之一,活动断裂运动剧烈,常发生强烈地震。由于5.9级及以下的地震分布无规律性(张培震等,2022),因此,在图2中仅呈现了6级及以上地震的分布情况。这些地震几乎全部分布在晚更新世以来的活动断裂之上,表明强震与断裂活动性密切相关(图2)。同时可以发现,输电走廊内地震活动十分频繁,属于典型的高烈度地震多发区,廊内墨脱地区附近的地震动峰值加速度达到0.4 g。
图 2 藏东南输电走廊沿线主要活动断裂与历史地震(MS≥6.0)分布MTF—墨脱断裂;APLF—阿帕龙断裂;YZF—雅鲁藏布江断裂;CYF—察隅断裂;JLF—嘉黎断裂;BBLF—边坝−洛隆断裂;NJF—怒江断裂;LCF—澜沧江断裂;JSF—金沙江断裂;MSF—麦宿断裂;BQLF—巴青−类乌齐断裂;XSF—鲜水河断裂;LTF—理塘断裂;YNF—玉农希断裂;ANF—安宁河断裂;DLF—大凉山断裂;JPF—锦屏山断裂;ZDF—字嘎寺−德钦断裂Figure 2. Distribution of major active faults and historical earthquakes (MS≥6.0) along the southeast Xizang (Tibet) power transmission corridorMTF—Muotuo Fault; APLF—Apalong Fault; YZF—Yarlung Zangbo Jiang Fault; CYF—Chayu Fault; JLF—Jiali Fault; BLF—Bianba-Luolong Fault; NJF—Nujiang Fault; LCF—Lancang River Fault; JSF—Jinsha River Fault; MSF—Maisu Fault; BLF—Baqing-Leiwuqi Fault; XSF—Xianshuihe Fault; LTF—Litang Fault; YNF—Yunongxi Fault; ANF—Anninghe Fault; DLF—Daliangshan Fault; JPF—Jinpingshan Fault; ZDF—Zigasi-Deqin Fault表 1 藏东南输电走廊主要活动断裂一览表Table 1. List of major active faults in the southeast Xizang(Tibet) power transmission corridor序号 断裂名称 断裂性质 活动时代 与地震的关系 水平速度/
(mm/a)垂直速度/
(mm/a)参考资料 1 雅鲁藏布江断裂东段 右旋走滑 全新世 引起墨脱及邻区多次发生强震 6.0~7.0 1.0~4.0 唐方头等,2010 2 墨脱断裂 右旋走滑/逆冲 全新世 1950年察隅8.6级地震 — — 王晓楠等,2018 3 嘉黎断裂东段 右旋走滑 全新世 2017年米林6.9级地震 1.3 2.9 李鸿儒等,2021;赵远方等,2021 4 察隅断裂 左旋走滑 全新世 第四纪晚期至少发生了5次古地震事件 2.0~4.0 5.1~6.2 钟宁等,2021 5 边坝−洛隆断裂 左旋走滑 全新世 1642年洛隆7.0级地震和1791年边坝 63/4级地震 — — 韩明明等,2022 6 怒江断裂 右旋走滑 晚更新世 1930年腾冲6.0级地震;1950年益庆5.5级地震 3.2~6.4 3.9~5.7 钟宁等,2022 7 巴青−类乌齐断裂 走滑/逆冲推覆 全新世 2020年丁青5.1级地震 0.9~1.7 1.0~1.6 Ren et al., 2022 8 澜沧江断裂 逆断 全新世 尚无6级以上的地震记录 2.7~4.6 1.7~2.0 Ren et al., 2022 9 金沙江断裂 右旋走滑/逆倾滑 晚更新世 1950年扎西8.6级地震;1976年陆良7.2级地震 3.3~4.1 0.2 Ren et al., 2022 10 巴塘断裂 右旋走滑 全新世 1870年巴塘71/4级地震 3.0~4.0 — 徐正宣等,2021;杨志华等,2021 11 理塘断裂德巫段 左旋走滑兼逆冲 全新世 1948年理塘7.3级地震 3.2~4.4 0.1 徐锡伟等,2005 12 安宁河断裂北段 左旋走滑兼逆断 全新世 1952年冕宁石龙6.8级地震 3.1~3.3 1.5~1.7 周荣军等,2001 13 大凉山断裂 左旋走滑 全新世 1944年昭觉51/4级地震 3.0~4.0 — 孙浩越等,2015 14 玉农希断裂 左旋走滑 全新世 1975年康定6.2级地震 1.0~2.0 <1.0 马超,2013 15 锦屏山断裂 逆断 晚更新世 历史上无6.0级以上地震 — <1.0 吴俊杰,2022 1.3 地形地貌特征
走廊沿线受喜马拉雅山脉、横断山脉和念青唐古拉山脉的强烈影响,高山峡谷地貌极为发育(Cui et al.,2022; 鲁晓等,2023)。地面高程多在3000~4500 m,最高点为喜马拉雅山脉的南迦巴瓦峰,最低点位于雅鲁藏布江下游河谷地带,地形高差悬殊(图3,图4)。廊内怒江、澜沧江和金沙江干流支沟密布,V形深切河谷发育,为崩塌、滑坡和泥石流等地质灾害的形成提供了地形地貌条件(Molnar et al.,1993; 李廷栋等,2013)。
1.4 气候特征
西藏东南地区具有强降雨、高寒和大温差等气候特点(张仪辉等,2022)。青藏高原东南缘为高原温带半干旱季风气候,海拔及地形起伏差异较大,区内气温差异较大,年均气温−20~24 ℃。由于夏季印度夏季风沿着雅鲁藏布江河谷北上,暖湿气流在此处形成了充沛的降水。输电走廊之南的察隅一带,年均降水量可达1200 mm左右。向北随着地势的抬升,年均降水量从林芝地区的900 mm左右锐减到昌都地区的500 mm左右,全年降水主要集中于6—8月,约占全年降水量的55%(齐文文等,2013)。
2. 沿线主要地质安全隐患
藏东南输电走廊沿线具有海拔高、高差大、构造活动强烈、水系剥蚀深切和气候严寒等特殊的地质气候背景,在内外动力耦合作用下极易孕育滑坡、崩塌、泥石流、雪崩、冰湖溃决和冻胀融沉等地质安全隐患(图5),多样而复杂的地质安全隐患给藏东南输电线路的选线、建设和安全运营带来了巨大的挑战。
2.1 滑坡和崩塌
青藏高原东南缘强烈的板块活动和独特的气候条件等内外动力耦合作用,使之成为世界范围内超高位远程崩滑灾害最为发育的地区之一(Li et al.,2022)。区内巨型超高位远程崩滑灾害具有超高起滑势能、超强运动特性和超大致灾能力等特点(汪发武等,2022)。藏东南输电走廊沿线滑坡和崩塌灾害的空间分布特征,如图6所示。可以发现,滑坡和崩塌的分布特点具有相似性,但滑坡的密度明显多于崩塌。根据滑坡和崩塌发生的空间分布频率和地形条件,可以将研究区分为米林−波密段、波密−稻城段和稻城−冕宁段。在米林−波密段,此段峡谷深切,滑坡和崩塌多沿雅鲁藏布江分布,并以大型崩滑为主,如东久滑坡群、易贡巨型滑坡和102塌方区等(王盈等,2019)。在波密−稻城段,滑坡和崩塌多沿怒江、澜沧江和金沙江组成的“三江并流区”呈条带状分布,以澜沧江流域分布最广,其次是金沙江和怒江流域。在稻城−冕宁段,滑坡和崩塌分布最为密集,其中在四川石棉和冕宁地区,因受龙门山断裂带活动影响,滑坡和崩塌异常发育。因此,输电走廊崩滑灾害的分布具有明显的不均匀性和分段群集性的特点。灾害多沿雅鲁藏布江北段、怒江、澜沧江、金沙江和雅砻江及其各支流呈条带状分布。这种分布特征主要受到地形地貌、气候条件、断裂活动和人类工程活动等多种因素耦合控制(张永双等,2016;彭建兵等,2020)。
图 6 藏东南输电走廊沿线滑坡和崩塌灾害的分布(滑坡和崩塌的分布数据来源于王盈等,2019)Figure 6. Distribution of landslide and collapse hazards along the power transmission corridor in southeast Xizang(Tibet) (the source of the landslide and collapse distribution data is Wang et al., 2019)输电走廊沿线分布有典型的超高位远程滑坡案例,如发生于2000年的易贡滑坡 (图7a),该滑坡相对高差达到3300 m,滑程达到2500 m,总堆方量约3.0×108 m3(Xu et al.,2012)。研究表明,活动断层造成的基岩破碎、气温转暖导致的冰雪融水、滑坡前的连续降雨为滑坡的形成提供了有利条件,而地震的动力作用是触发易贡特大高位远程滑坡的主要因素(Yin et al.,2012;辛鹏等,2022;袁浩等,2023)。烂泥沟滑坡(图7b)位于金沙江南侧支流普福河西侧,滑坡前后缘相对高差为1840 m,为滑坡的形成提供了有效临空面。此外,滑坡区有多条近南北向断层通过,断层面与滑坡主滑动方向一致,雨季时地表水易下渗直接向断层带补给,使之逐渐发育成滑带产生滑动(程先锋等,2015)。察达滑坡(图7c)地处横断山脉中段,其地形地貌受水系切割严重,滑坡整体呈上宽下窄的舌形状(代欣然等,2022)。滑坡区的断裂破碎作用和冻融循环作用,为滑坡的形成提供有利条件,最终在地震的触发作用下形成大规模滑坡(李元灵等,2021)。乱石包滑坡(图7d)位于青藏高原东部的毛垭坝盆地,其相对高差为820 m,滑程为3830 m,极有可能为地震诱发的高位远程滑坡(郭长宝等,2016)。
图 7 藏东南输电走廊沿线典型高位远程滑坡Ⅰ—高位起滑区;Ⅱ—高速流通区;Ⅲ—堆积区a—易贡滑坡;b—烂泥沟滑坡;c—察达滑坡;d—乱石包滑坡Figure 7. Typical long run-out landslides along the power transmission corridor in southeast Xizang(Tibet)(a) Yigong landslide; (b) Lannigou landslide; (c) Chada landslide; (d) Luanshibao landslideⅠ—High-altitude uplift area; Ⅱ—High-speed movement area; Ⅲ—Accumulation area2.2 泥石流
在现今全球气候变暖的背景下,藏东南地区内的冰川持续消融(余国安等,2024),产生了大量的松散冰碛物和冰川融水,为泥石流的孕育和发生提供了物源条件。藏东南输电走廊沿线分布着多种类型的泥石流,包括雨洪型、冰雪融水型、冰湖溃决型和混合型(图8),其成因极为复杂,既受到峡谷深切地貌条件的影响,也受到水文气象、现代冰川活动和区域性地震等多种因素的共同作用(Peng et al., 2022)。根据泥石流发生的空间分布频率和地形条件,可将走廊沿线划分为米林−波密段、波密−芒康段和芒康−冕宁段。在米林−波密段,泥石流多沿雅鲁藏布江两岸的深切高山峡谷分布。此段的泥石流沟落差大,冰碛物物源丰富,且雅鲁藏布江流域是藏东南地区降雨量的高值区,因此,米林−波密段以大型泥石流灾害为主,如色东普泥石流、直白沟泥石流和天摩沟泥石流等。波密−芒康段的气候温润,冰雪融水丰富,泥石流灾害主要沿澜沧江流域和怒江流域两侧分布,且以冰雪融水型泥石流为主。在芒康−冕宁段,泥石流分布最为密集,且以雨洪型泥石流为主。此段除沿金沙江和雅砻江两侧分布外,得荣县、乡城县和九龙县等山区降雨丰富,沟壑众多,泥石流分布也较为密集。
图 8 藏东南输电走廊沿线泥石流灾害的分布(泥石流分布数据来源于王盈等,2019)Figure 8. Distribution of debris flow hazard along the power transmission corridor in southeast Xizang(Tibet) (the source of the debris flow distribution data is Wang et al., 2019)输电走廊沿线典型的泥石流如古乡沟泥石流、天摩沟泥石流、色东普泥石流、培龙沟泥石流、米堆沟泥石流和直白沟泥石流等(图9)。1953年林芝古乡沟的特大型冰川泥石流将1×107 m3的泥沙冰碛物搬至山外,形成一个达3 km2的巨型冰川泥石流堆积(鲁安新等,2006;图9a)。此后,1957年、1962年、1963年和1964年又分别发生了几次较大规模的冰川泥石流。统计发现,泥石流发生最频繁的时段是当地冰雪消融和降雨最旺盛的6—8月(杜榕桓和章书成,1981)。由此可见,藏东南地区冰川泥石流具有继承性和周期波动性。走廊沿线泥石流的发育主要受到地形条件、气候变化、断裂活动和地震作用的综合控制(崔鹏等,2003;李尧等,2022)。沿线地形陡峭,坡度大,沟谷深切,相对高差大,这为泥石流的发生提供了有利的地形条件;其次,气候变暖增加了冰川融水,降低了物源土体的强度,促进了泥石流的启动;另外,沿线断裂活动和地震作用产生了大量松散的物质,进而为未来泥石流的形成提供丰富的物源(Tang et al.,2012)。
图 9 藏东南输电走廊沿线典型泥石流的光学影像a—古乡沟泥石流;b—天摩沟泥石流;c—色东普泥石流;d—培龙沟泥石流;e—米堆沟泥石流;f—直白沟泥石流Figure 9. Optical images of typical debris flows along the power transmission corridor in southeast Xizang(Tibet)(a) Guxiang gully debris flow; (b) Tianmo gully debris flow; (c) Sedongpu debris flow; (d) Peilong gully debris flow; (e) Midui gully debris flow; (f) Zhibai gully debris flow2.3 雪崩
雪崩和冰崩与滑坡和泥石流类似,均是由重力驱动的地表流山地灾害(宋章等,2016)。积雪在温度较低的条件下冻结成冰层,此时发生的雪崩可以称之为冰崩。雪崩是塑造青藏高原地形地貌和影响其生态系统的原动力之一,也是威胁人类活动的一种常见山地灾害(Schneider et al.,2011)。藏东南输电走廊沿线地区雪崩灾害的特点主要包括:潜在性、突发性、难以预测性和破坏力巨大等(Bhardwaj and Sam,2022)。
郝建盛等(2021)通过研究表明,青藏高原的雪崩灾害常发生于积雪多、气温低和风力大的10月初到次年的4月底。青藏高原高山区内的雪崩灾害大部分是由强降雪、升温、地震和强风等自然因素诱发形成 (王世金和任贾文,2012;Frigo et al.,2021;图10)。强降雪导致的雪崩占比41.1%,是发生雪崩最主要的因素;25%的雪崩是因每年2月下旬气温剧增所引发;地震诱发雪崩占比最低,但破坏性巨大。除上述诱因外,军事活动、矿产开采和工程建设等活动也能直接诱发雪崩。
图 10 青藏高原高山区不同因素诱发雪崩的占比(据郝建盛等,2021修改)Figure 10. Percentage of avalanches induced by different factors in the high mountainous areas of the Qinghai-Tibet Plateau (modified from Hao et al., 2021)2.4 冰湖溃决
冰湖溃决是指由于自然或人为因素导致的冰川湖湖水迅速、突然地冲破湖岸的天然或人工屏障,向下游地区迅速释放大量湖水的过程。这种现象通常伴随着巨大的能量释放,对下游地区的生态环境、基础设施和人类生活造成严重威胁(Goswami and Goyal,2021;杨宗佶等,2021)。青藏高原内的冰湖溃决灾害突发性强、规模巨大、破坏力强、防御困难、影响范围广,是藏东南输电走廊沿线地区典型的地质风险之一(Nie et al.,2023)。输电走廊沿线及邻区的冰湖主要分布在西部的高海拔地区(图11),尤以喜马拉雅山、南迦巴瓦峰和念青唐古拉山附近最发育。
图 11 藏东南输电走廊沿线及邻区冰湖和冰湖溃决分布(冰湖分布数据来源于陈宁生等,2019)Figure 11. Distribution of glacial lakes and glacial lake outbursts along the southeast Xizang(Tibet) power transmission corridor and neighboring areas (the glacial lake distribution data are from Chen et al., 2019)20世纪以来,西藏地区共发生了37次冰湖溃决,主要分布在高原南界喜马拉雅山脉和东南缘地区(刘建康等,2019)。冰湖溃决的触发因素多种多样,包括冰川退缩消融、地下冰融化、冰川融水、冰(雪)崩、强降水、泥石流和上游冰湖溃决洪水等7种类型(刘建康等,2011)。冰川退缩导致湖水体积不断增大,最终引起坝体失稳溃决;上游高海拔处冰湖溃决后的洪水和冰川泥石流等地表流体具有巨大的流量、流速和破坏力,冲入下游冰湖导致水位大幅抬升,并冲击冰湖坝体,导致冰湖溃决(Stuart-Smith et al.,2021)。藏东南输电走廊内历史上并无冰湖溃决,但输电走廊西段雅鲁藏布江和念青唐古拉山附近的冰湖众多,极有可能发生冰湖溃决,其诱因也将呈多样化发展(Shugar et al.,2020)。
2.5 冻胀融沉
冰川冻土是藏东南地区典型的不良地质体,是区域内地、气、热交换的结果。温度的季节性变化,将导致其力学特性发生显著变化,温度为0 ℃的冻土有着明显的流变和压缩特性(Guo et al.,2011;田旭文,2023)。当冻土处于相对稳定的环境状态下,其结构可以保持稳定,也不会成为致灾的主要因素;当环境发生变化,尤其当其与外界发生水热交换而融化时,极易引起冻土的力学性质迅速劣化,从而发生冻融滑塌和泥流,以及不均匀冻胀融沉和地裂缝等。
冰川冻土的温度和厚度受海拔的控制,海拔越高,地温越低,多年冻土越厚(Wu et al.,2020)。走廊沿线的冻土以中—深层季节性冻土为主,占比达到85.5%;高原多年冻土占3.8%,主要分布在念青唐古拉山和他念他翁山等高海拔地区(图12)。季节性冻土受到冻融循环作用后,土体的抗剪强度降低(Wu et al.,2022),极易引发输电塔附近的地表和边坡发生不均匀塌陷、冻融滑塌、冻融泥流和地裂缝等。
图 12 藏东南输电走廊沿线冻土分布(冻土分布数据来源于冉有华和李新,2018)Figure 12. Distribution of frozen soil along the southeast Xizang(Tibet) power transmission corridor (the frozen soil distribution data are from Ran and Li, 2018)3. 沿线地质安全隐患发育机制
3.1 地形与地貌
地形地貌是形成泥石流或滑坡的基本条件。藏东南地区在地壳抬升、构造应力和水系径流的影响下,河谷岸坡不断向下侵蚀,使得宽阔平缓的山谷逐渐转变为水系深切的“V”型峡谷地貌(Zhao et al.,2023;图13)。走廊沿线山体高大,坡度陡峭,沟谷深切,地形起伏较大,这些因素共同作用使得岩土体处于不稳定状态。在此类地形条件下,即使是微小的外部扰动,如降雨、地震或人类活动,都可能导致岩土体失稳,进而触发滑坡、崩塌和泥石流等地质灾害(李滨等,2022)。同时,复杂的地貌特征,如断裂带、褶皱区和岩性差异,进一步加剧了地形的脆弱性,使得走廊沿线成为地质安全隐患的高发区(张永双等,2016)。
图 13 高山峡谷地貌中滑坡、崩塌和泥石流等灾害的演化机制(据Zhao et al.,2023修改)Figure 13. Evolution mechanisms of disasters such as landslides, collapses, and debris flows in alpine canyon landforms (modified from Zhao et al., 2023)3.2 升温融雪气候变化
青藏高原作为地球的“第三极”,是全球气候变化响应最敏感的地区之一(Sun et al., 2024)。在全球气候变化的背景下,藏东南地区的波密、林芝和察隅等地的年均温度和降雨量也呈上升趋势(余国安等,2024;图14)。快速升温导致的雪线上升和冰雪融化等现象,会增大滑坡、崩塌和泥石流等山地灾害的发生概率。并且,气温转暖可使大量冰雪融化成水,然后渗入岩层、裂隙及松散岩土中,导致斜坡体结构面软化和孔隙水压力上升,最终诱发崩滑和泥石流等灾害。此外,升温将导致降雨量的增加,降雨量的大小和持续时长也是导致滑坡、崩塌和泥石流等灾害产生的重要因素。藏东南地区雨季主要分布6—9月份,而研究区的泥石流、滑坡的暴发也主要集中在该时段内,说明降雨是导致研究区滑坡、崩塌和泥石流等灾害的主要原因。
图 14 近60年藏东南地区典型气象站点年降雨/年均温变化(气象数据来源于余国安等,2024)Figure 14. Variations in annual precipitation and mean annual air temperature over the past six decades at typical meteorological stations in southeast Xizang(Tibet) (the meteorological data are from Yu et al., 2024)3.3 断裂活动与地震
藏东南输电走廊沿线断裂发育密集,运动强烈,断裂的蠕滑和黏滑作用会在断层的下盘形成大面积的带状塑性区,导致该范围内的灾害极其发育(张永双等,2016)。例如,鲜水河断裂带对崩塌、滑坡和泥石流灾害有明显的控制作用,约67.5%的灾害发育于距断裂带1.5 km范围内,且滑坡的滑动方向多垂直于断裂走向(郭长宝等,2015)。活动断裂的运动将会导致斜坡体形成密集的节理裂隙,在风化等作用下产生大量崩坡积物,一旦达到极限平衡状态时便会诱发山地灾害。另外,地震是诱发灾害的重要因素之一,如2008年汶川MS 8.0地震诱发了11308处地质灾害点(黄润秋和李为乐,2008),2014年鲁甸MS 6.5地震触发了1700多处地质灾害点(殷志强等,2016),2017年九寨沟MS 7.0地震诱发了1883处地质灾害点(戴岚欣等,2017)。藏东南输电走廊沿线地震活动频繁,且近直立和陡立的“V”形高山峡谷地貌,使高位的崩滑体巨大的重力势能更容易转化为运动动能,导致其致灾能力明显增大。因此,频繁的地震不仅会使得岩土体性质劣化,而且会成为斜坡体失稳的触发因素(Fan et al.,2019)。
3.4 内外动力耦合
藏东南地区在地壳运动、断层活动和地震等内动力作用和风化、剥蚀、搬运、沉积等外动力作用相互耦合下,高位远程崩塌、滑坡和泥石流等灾害表现出更为复杂且强烈的动力作用,使得该区的灾害在时间和空间上具有明显的链生性(Xu et al.,2014)。例如,受高位远程崩滑灾害、泥石流和冰湖溃决等一种或多种典型灾害事件的作用,崩滑体在移动路径上携带着铲刮的冰/雪/泥等碎屑物质,可能形成“高位岩(冰/雪)崩−滑坡−碎屑流”的过程(Zhou et al.,2022),甚至可能发展为“高位岩(冰/雪)崩−滑坡−碎屑流−冰湖溃决−洪水−泥石流”的链式致灾过程(图15)。灾害链使得受灾面积增大,输电塔发生倾覆的可能性增大,从而可能由输电线带动邻近输电塔发生破坏。因此,在如此复杂的地质条件下,藏东南输电走廊沿线由一种或多种典型灾害事件引发的灾害链极为发育,具有隐蔽性、突发性、链生性和巨大危害性的特点(Westoby et al.,2014)。
图 15 岩(冰/雪)崩−滑坡−碎屑流−冰湖溃决−洪水−泥石流灾害链演化过程(据Westoby et al.,2014修改)Figure 15. Evolution of the rock (ice/snow)-landslide-debris flow-glacial lake outburst-flood-mudslide hazard chain (modified from Westoby et al., 2014)4. 地质安全隐患对输电设施影响分析
地质安全隐患的防控措施通常可以划分为硬防控措施和软防控措施2大类。硬防控措施主要是指通过工程技术手段来防止或减轻灾害的影响,这些措施通常包括工程加固、修建防护工程和建立排水系统等(孙东等,2023)。软防控措施则更多地侧重于非工程性的监测、预警和灾害应急管理手段(林达明等,2020)。为了制定更为行之有效的防控方案,首先需要了解不同类型地质安全隐患对输电设施的不同影响。
根据藏东南输电走廊沿线的主要地质安全隐患和工程地质环境特征,可将影响概括为4种模式:①高位崩滑的高速运动和刮铲裹挟作用将直接影响输电塔基础的稳定性,崩滑抛射的巨大落石可击中塔身、塔头和输电线,造成周边输电塔连锁性弯曲和整体倾覆破坏(图16a);②滑坡和崩塌等可使建的输电塔一同失稳下滑(图16b);③雪崩、冰崩或滑坡可引发冰湖溃决,溃决洪水裹挟地表的碎屑物形成泥石流,直接掩埋和冲毁输电线路(图16c);④沿线广布的季节性冻土可能形成冻融滑塌、冻融泥流、地裂缝和冻胀丘等地质安全隐患,引起输电塔基础发生不均匀沉降,造成输电塔发生失稳破坏(图16d)。
5. 软防控检测技术
5.1 广域探测与监测
由于InSAR技术可以在大范围内不受云雾影响而全天候高精度的监测地表微小形变,目前已广泛应用于滑坡、崩塌和泥石流等灾害的识别和监测工作中,极大地完善了光学遥感在观测上的不足(Zhu et al.,2022; Li et al.,2023)。但是,藏东南地区峡谷深切、山势险峻、地形切割破碎和植被遮挡等不利观测条件,对InSAR技术识别该区的滑坡、泥石流和冰湖溃决等灾害的准确性提出了挑战(葛大庆等,2019;姚鑫等,2020)。无人机航测和机载LiDAR技术常作为辅助手段,为滑坡的精细化识别提供了有力的数据支撑(Valkaniotis et al.,2018)。随着无人机摄影测量和LiDAR技术的不断精进,利用这些技术生成的高精度三维实景模型,在滑坡、崩塌、泥石流和冰川跃动等灾害的调查工作中取得了显著的效果(Lucieer et al.,2014)。因此,针对藏东南输电走廊地质选线和长期安全运营工作,借助于无人机光学影像和机载LiDAR等技术进行遥感精细化识别具有巨大的潜力。
5.2 在线实地监测
光传感技术已成为输电塔滑坡、崩塌和雪崩等安全隐患实地监测领域的主要手段之一,这些传感器采用光纤光栅为传感单元,包括多点位移计、裂缝计、渗压计、雨量计和倾斜计等设备。在地质安全隐患严重又无法有效绕避的塔位处,可增设全球导航卫星系统(Global Navigation Satellite System,GNSS)监测站和地基SAR设备增强对隐患的监测预警能力。由于卫星重返周期和无人机巡检时间间隔的存在,现行的遥感手段难以进行连续监测。因此,现场实地监测的大量实时数据是地质安全隐患研究的关键资料,也是输电线路安全运营阶段防范山地灾害的最后屏障。
6. 软防控措施建议
综上所述,输电走廊沿线地质安全隐患类型多,发生频率高,破坏力强,使得硬防控措施难以有效开展。因此,软防控措施是保障藏东南输电走廊安全建设和运营的重要手段。近年来,光学卫星、星载SAR和无人机等遥感技术在山地灾害早期识别和监测等方面的应用发展十分迅速(Yao et al.,2021),但各种技术手段都因环境条件存在其缺陷(周振凯等,2020;Yao et al.,2022)。比如,云雾天气对光学卫星影像形成遮挡,导致较小规模的崩滑不易识别;InSAR技术在植被茂密和高差巨大的高山峡谷区,易受到干涉失相干、叠掩和阴影等因素的制约,影响识别和监测精度;无人机摄影技术无法对林下地质安全隐患进行有效识别和观测。因此,以光学卫星、星载SAR、无人机摄影测量和机载LiDAR等多源非接触式遥感技术为基础,构建天−空−地一体化隐患识别、监测与预警技术体系(图17),是贯穿藏东南输电走廊选线、建设和运营期全流程最有效的地质安全隐患防范方案。
图 17 天−空−地一体化灾害识别、监测与预警技术体系(据许强等,2019修改)Figure 17. Integrated sky-space-earth hazard identification, monitoring, and early warning technology system (modified from Xu et al., 2019)7. 结论
(1)藏东南输电走廊沿线具有构造活动强烈、活动断裂发育、强震频发、山体陡峻、河谷深切、岩土体结构破碎等独特的区域地质环境,极易诱发地质安全问题。
(2)影响藏东南输电走廊全生命周期安全需求的地质安全问题包括滑坡、崩塌、泥石流、雪(冰)崩、冰湖溃决和冻胀融沉等,在一种或多种地质安全问题的影响下产生的链生放大效应给藏东南输电线路的选线、建设和安全运营带来了巨大的挑战。
(3)沿线地质安全问题的发育受控于极高陡的地形和复杂的地貌条件、快速的升温融雪气候变化、强烈的断裂活动与频发的地震、内外动力耦合诱发的高位远程灾害链等因素。
(4)沿线地质安全隐患类型多,发生频率高,破坏力强,使得硬防控措施难以有效开展。因此,融合InSAR技术、光学遥感、无人机摄影测量、机载LiDAR技术和在线实地监测等软防控措施是藏东南输电走廊安全建设和运营的重要保障。
-
图 2 藏东南输电走廊沿线主要活动断裂与历史地震(MS≥6.0)分布
MTF—墨脱断裂;APLF—阿帕龙断裂;YZF—雅鲁藏布江断裂;CYF—察隅断裂;JLF—嘉黎断裂;BBLF—边坝−洛隆断裂;NJF—怒江断裂;LCF—澜沧江断裂;JSF—金沙江断裂;MSF—麦宿断裂;BQLF—巴青−类乌齐断裂;XSF—鲜水河断裂;LTF—理塘断裂;YNF—玉农希断裂;ANF—安宁河断裂;DLF—大凉山断裂;JPF—锦屏山断裂;ZDF—字嘎寺−德钦断裂
Figure 2. Distribution of major active faults and historical earthquakes (MS≥6.0) along the southeast Xizang (Tibet) power transmission corridor
MTF—Muotuo Fault; APLF—Apalong Fault; YZF—Yarlung Zangbo Jiang Fault; CYF—Chayu Fault; JLF—Jiali Fault; BLF—Bianba-Luolong Fault; NJF—Nujiang Fault; LCF—Lancang River Fault; JSF—Jinsha River Fault; MSF—Maisu Fault; BLF—Baqing-Leiwuqi Fault; XSF—Xianshuihe Fault; LTF—Litang Fault; YNF—Yunongxi Fault; ANF—Anninghe Fault; DLF—Daliangshan Fault; JPF—Jinpingshan Fault; ZDF—Zigasi-Deqin Fault
图 6 藏东南输电走廊沿线滑坡和崩塌灾害的分布(滑坡和崩塌的分布数据来源于王盈等,2019)
Figure 6. Distribution of landslide and collapse hazards along the power transmission corridor in southeast Xizang(Tibet) (the source of the landslide and collapse distribution data is Wang et al., 2019)
图 7 藏东南输电走廊沿线典型高位远程滑坡
Ⅰ—高位起滑区;Ⅱ—高速流通区;Ⅲ—堆积区a—易贡滑坡;b—烂泥沟滑坡;c—察达滑坡;d—乱石包滑坡
Figure 7. Typical long run-out landslides along the power transmission corridor in southeast Xizang(Tibet)
(a) Yigong landslide; (b) Lannigou landslide; (c) Chada landslide; (d) Luanshibao landslideⅠ—High-altitude uplift area; Ⅱ—High-speed movement area; Ⅲ—Accumulation area
图 8 藏东南输电走廊沿线泥石流灾害的分布(泥石流分布数据来源于王盈等,2019)
Figure 8. Distribution of debris flow hazard along the power transmission corridor in southeast Xizang(Tibet) (the source of the debris flow distribution data is Wang et al., 2019)
图 9 藏东南输电走廊沿线典型泥石流的光学影像
a—古乡沟泥石流;b—天摩沟泥石流;c—色东普泥石流;d—培龙沟泥石流;e—米堆沟泥石流;f—直白沟泥石流
Figure 9. Optical images of typical debris flows along the power transmission corridor in southeast Xizang(Tibet)
(a) Guxiang gully debris flow; (b) Tianmo gully debris flow; (c) Sedongpu debris flow; (d) Peilong gully debris flow; (e) Midui gully debris flow; (f) Zhibai gully debris flow
图 10 青藏高原高山区不同因素诱发雪崩的占比(据郝建盛等,2021修改)
Figure 10. Percentage of avalanches induced by different factors in the high mountainous areas of the Qinghai-Tibet Plateau (modified from Hao et al., 2021)
图 11 藏东南输电走廊沿线及邻区冰湖和冰湖溃决分布(冰湖分布数据来源于陈宁生等,2019)
Figure 11. Distribution of glacial lakes and glacial lake outbursts along the southeast Xizang(Tibet) power transmission corridor and neighboring areas (the glacial lake distribution data are from Chen et al., 2019)
图 12 藏东南输电走廊沿线冻土分布(冻土分布数据来源于冉有华和李新,2018)
Figure 12. Distribution of frozen soil along the southeast Xizang(Tibet) power transmission corridor (the frozen soil distribution data are from Ran and Li, 2018)
图 13 高山峡谷地貌中滑坡、崩塌和泥石流等灾害的演化机制(据Zhao et al.,2023修改)
Figure 13. Evolution mechanisms of disasters such as landslides, collapses, and debris flows in alpine canyon landforms (modified from Zhao et al., 2023)
图 14 近60年藏东南地区典型气象站点年降雨/年均温变化(气象数据来源于余国安等,2024)
Figure 14. Variations in annual precipitation and mean annual air temperature over the past six decades at typical meteorological stations in southeast Xizang(Tibet) (the meteorological data are from Yu et al., 2024)
图 15 岩(冰/雪)崩−滑坡−碎屑流−冰湖溃决−洪水−泥石流灾害链演化过程(据Westoby et al.,2014修改)
Figure 15. Evolution of the rock (ice/snow)-landslide-debris flow-glacial lake outburst-flood-mudslide hazard chain (modified from Westoby et al., 2014)
图 17 天−空−地一体化灾害识别、监测与预警技术体系(据许强等,2019修改)
Figure 17. Integrated sky-space-earth hazard identification, monitoring, and early warning technology system (modified from Xu et al., 2019)
表 1 藏东南输电走廊主要活动断裂一览表
Table 1. List of major active faults in the southeast Xizang(Tibet) power transmission corridor
序号 断裂名称 断裂性质 活动时代 与地震的关系 水平速度/
(mm/a)垂直速度/
(mm/a)参考资料 1 雅鲁藏布江断裂东段 右旋走滑 全新世 引起墨脱及邻区多次发生强震 6.0~7.0 1.0~4.0 唐方头等,2010 2 墨脱断裂 右旋走滑/逆冲 全新世 1950年察隅8.6级地震 — — 王晓楠等,2018 3 嘉黎断裂东段 右旋走滑 全新世 2017年米林6.9级地震 1.3 2.9 李鸿儒等,2021;赵远方等,2021 4 察隅断裂 左旋走滑 全新世 第四纪晚期至少发生了5次古地震事件 2.0~4.0 5.1~6.2 钟宁等,2021 5 边坝−洛隆断裂 左旋走滑 全新世 1642年洛隆7.0级地震和1791年边坝 63/4级地震 — — 韩明明等,2022 6 怒江断裂 右旋走滑 晚更新世 1930年腾冲6.0级地震;1950年益庆5.5级地震 3.2~6.4 3.9~5.7 钟宁等,2022 7 巴青−类乌齐断裂 走滑/逆冲推覆 全新世 2020年丁青5.1级地震 0.9~1.7 1.0~1.6 Ren et al., 2022 8 澜沧江断裂 逆断 全新世 尚无6级以上的地震记录 2.7~4.6 1.7~2.0 Ren et al., 2022 9 金沙江断裂 右旋走滑/逆倾滑 晚更新世 1950年扎西8.6级地震;1976年陆良7.2级地震 3.3~4.1 0.2 Ren et al., 2022 10 巴塘断裂 右旋走滑 全新世 1870年巴塘71/4级地震 3.0~4.0 — 徐正宣等,2021;杨志华等,2021 11 理塘断裂德巫段 左旋走滑兼逆冲 全新世 1948年理塘7.3级地震 3.2~4.4 0.1 徐锡伟等,2005 12 安宁河断裂北段 左旋走滑兼逆断 全新世 1952年冕宁石龙6.8级地震 3.1~3.3 1.5~1.7 周荣军等,2001 13 大凉山断裂 左旋走滑 全新世 1944年昭觉51/4级地震 3.0~4.0 — 孙浩越等,2015 14 玉农希断裂 左旋走滑 全新世 1975年康定6.2级地震 1.0~2.0 <1.0 马超,2013 15 锦屏山断裂 逆断 晚更新世 历史上无6.0级以上地震 — <1.0 吴俊杰,2022 -
[1] BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract [2] BHARDWAJ A, SAM L, 2022. Reconstruction and characterisation of past and the most recent slope failure events at the 2021 rock-ice avalanche site in Chamoli, Indian Himalaya[J]. Remote Sensing, 14(4): 949. doi: 10.3390/rs14040949 [3] CHEN N S, DING H T, DENG M F, 2019. 2014-2016 Ice lake observation data of Midui glacier in Southeast Tibet[R]. Lanzhou: National Cryosphere Desert Data Center. (in Chinese) [4] CHEN X F, ZHU C B, QI W F, et al., 2015. Formation conditions, development tendency and preventive measures of Pufu landslide in Luquan of Yunnan[J]. Mineral Resources and Geology, 29(3): 395-401. (in Chinese with English abstract [5] CUI P, MA D T, CHEN N S, et al., 2003. The initiation, motion and mitigation of debris flow caused by glacial lake outburst[J]. Quaternary Sciences, 23(6): 621-628. (in Chinese with English abstract [6] CUI P, GE Y G, LI S J, et al., 2022. Scientific challenges in disaster risk reduction for the Sichuan-Tibet Railway[J]. Engineering Geology, 309: 106837. doi: 10.1016/j.enggeo.2022.106837 [7] DAI L X, XU Q, FAN X M, et al., 2017. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 25(4): 1151-1164. (in Chinese with English abstract [8] DAI X R, ZHAO J J, LAI Q Y, et al., 2022. Movement process and formation mechanism of rock avalanche in Chada, Tibet Plateau[J]. Earth Science, 47(6): 1932-1944. (in Chinese with English abstract [9] DING L, KAPP P, CAI F L, et al., 2022. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 652-667. [10] DU R H, ZHANG S C, 1981. Characteristics of glacial mud-flows in south-eastern Qinghai-Xizang plateau[J]. Journal of Glaciology and Geocryology(3): 10-16. (in Chinese with English abstract [11] FAN J H, WU C Y, CHENG G W, 2006. Distribution characteristics and influencing factors of geological hazards in Tibet[J]. Wuhan University Journal of Natural Sciences, 11(4): 806-812. doi: 10.1007/BF02830168 [12] FAN X M, SCARINGI G, KORUP O, et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57(2): 421-503. doi: 10.1029/2018RG000626 [13] FRIGO B, BARTELT P, CHIAIA B, et al., 2021. A reverse dynamical investigation of the catastrophic wood-snow avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy[J]. International Journal of Disaster Risk Science, 12: 40-55. doi: 10.1007/s13753-020-00306-6 [14] GE D Q, DAI K R, GUO Z C, et al., 2019. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 44(7): 949-956. (in Chinese with English abstract [15] GOSWAMI U P, GOYAL M K, 2021. Assessment of glacial lake development and downstream flood impacts of critical glacial lake[J]. Natural Hazards, 109(1): 1027-1046. doi: 10.1007/s11069-021-04866-8 [16] GUO C B, DU Y B, ZHANG Y S, et al., 2015. Geohazard effects of the Xianshuihe fault and characteristics of typical landslides in western Sichuan[J]. Geological Bulletin of China, 34(1): 121-134. (in Chinese with English abstract [17] GUO C B, DU Y B, TONG Y Q, et al., 2016. Huge long-runout landslide characteristics and formation mechanism: a case study of the Luanshibao landslide, Litang County, Tibetan Plateau[J]. Geological Bulletin of China, 35(8): 1332-1345. (in Chinese with English abstract [18] GUO D L, YANG M X, WANG H J, 2011. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J]. Hydrological Processes, 25(16): 2531-2541. doi: 10.1002/hyp.8025 [19] HAN M M, CHEN L C, LI Y B, et al., 2022. Geological and geomorphic evidence for Late Quaternary activity of the Bianba-Luolong Fault on the western boundary of the Bangong-Nujiang suture[J]. Earth Science, 47(3): 757-765. (in Chinese with English abstract [20] HAO J S, HUANG F R, FENG T, et al., 2021. Analysis of spatio-temporal distribution characteristics of snow avalanche disaster and its triggering factors in the high mountain Asia[J]. Mountain Research, 39(2): 304-312. (in Chinese with English abstract [21] HUANG R Q, LI W L, 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592. (in Chinese with English abstract [22] LI B, YIN Y P, TAN C X, et al., 2022. Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area[J]. Journal of Geomechanics, 28(6): 907-918. (in Chinese with English abstract [23] LI H B, PAN J W, SUN Z M, et al., 2021. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau[J]. Acta Geologica Sinica, 95(1): 194-213. (in Chinese with English abstract [24] LI H R, BAI L, ZHAN H L, 2021. Research progress of Jiali Fault activity[J]. Reviews of Geophysics and Planetary Physics, 52(2): 182-193. (in Chinese with English abstract [25] LI L J, WEN B P, YAO X, et al., 2023. InSAR-based method for monitoring the long-time evolutions and spatial-temporal distributions of unstable slopes with the impact of water-level fluctuation: a case study in the Xiluodu reservoir[J]. Remote Sensing of Environment, 295: 113686. doi: 10.1016/j.rse.2023.113686 [26] LI T D, PAN G T, XIAO X C, et al. , 2013. Geological records and mechanism of the uplift of the Qinghai-Tibet plateau[M]. Guangzhou: Guangdong Science & Technology Press. (in Chinese) [27] LI Y, CUI Y F, LI Z H, et al., 2022. Evolution of glacier debris flow and its monitoring system along sichuan-tibet traffic corridor[J]. Earth Science, 47(6): 1969-1984. (in Chinese with English abstract [28] LI Y L, LIU J K, ZHANG J J, et al., 2021. Characteristics and potential hazard of the Chada collapse in eastern Tibet[J]. Geoscience, 35(1): 74-82. (in Chinese with English abstract [29] LI Y Y, FENG X Y, YAO A J, et al., 2022. Progressive evolution and failure behavior of a Holocene river-damming landslide in the SE Tibetan Plateau, China[J]. Landslides, 19(5): 1069-1086. doi: 10.1007/s10346-021-01835-x [30] LI Z Z, YANG W C, ZHANG P, et al., 2023. In-situ stress measurement and inversion analysis of a large hydropower project in southeast Tibet[J]. Journal of Geomechanics, 29(3): 442-452. (in Chinese with English abstract [31] LIN D M, BAO W X, REN Y H, et al. , 2020. Stereoscopic monitoring and integrated risk management of geohazards along highways in the central asian alpine region[M]. Beijing: Science Press. (in Chinese) [32] LIU J K, CHENG Z L, GUO F F, et al., 2011. Analysis on risk of glacier-lake outburst in southeastern Tibet[J]. Journal of Catastrophology, 26(2): 45-49. (in Chinese with English abstract [33] LIU J K, ZHANG J J, GAO B, et al., 2019. An overview of glacial lake outburst flood in Tibet, China[J]. Journal of Glaciology and Geocryology, 41(6): 1335-1347. (in Chinese with English abstract [34] LU A X, DENG X F, ZHAO S X, et al., 2006. Cause of debris flow in Guxiang valley in Bomi, Tibet autonomous region, 2005[J]. Journal of Glaciology and Geocryology, 28(6): 956-960. (in Chinese with English abstract [35] LU X, QI S W, ZHENG B W, et al., 2023. Distribution and hazard assessment of collapses and landslides in Sichuan-Tibet traffic corridor[J]. Journal of Engineering Geology, 31(3): 718-735. (in Chinese with English abstract [36] LUCIEER A, JONG S M D, TURNER D, 2014. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography: Earth and Environment, 38(1): 97-116. doi: 10.1177/0309133313515293 [37] MA C, 2013. A study of fault activity and microtopography within the Chuandian active blocks's major fault[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract [38] MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 [39] NIE Y, DENG Q, PRITCHARD H D, et al., 2023. Glacial lake outburst floods threaten Asia’s infrastructure[J]. Science Bulletin, 68(13): 1361-1365. doi: 10.1016/j.scib.2023.05.035 [40] PENG D L, ZHANG L M, JIANG R C, et al., 2022. Initiation mechanisms and dynamics of a debris flow originated from debris-ice mixture slope failure in southeast Tibet, China[J]. Engineering Geology, 307: 106783. doi: 10.1016/j.enggeo.2022.106783 [41] PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract [42] PENG J B, XU N X, ZHANG Y S, et al., 2022. The framework system for geosafety research[J]. Journal of Engineering Geology, 30(6): 1798-1810. (in Chinese with English abstract [43] QI W W, ZHANG B P, PANG Y, et al., 2013. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 33(8): 999-1005. (in Chinese with English abstract [44] QIN C Y, FU B, ZHU X K, et al., 2023. Spatial and temporal patterns of hydropower development on the Qinghai–Tibet Plateau[J]. Sustainability, 15(8): 6688. doi: 10.3390/su15086688 [45] RAN Y H, LI X, 2018. Frozen soil map of China (2000)[R]. Beijing: National Qinghai Tibet Plateau Science Data Center. (in Chinese) [46] REN J J, XU X W, LV Y W, et al., 2022. Late Quaternary slip rate of the northern Lancangjiang fault zone in eastern Tibet: Seismic hazards for the Sichuan-Tibet Railway and regional tectonic implications[J]. Engineering Geology, 306: 106748. doi: 10.1016/j.enggeo.2022.106748 [47] SCHNEIDER D, HUGGEL C, HAEBERLI W, et al., 2011. Unraveling driving factors for large rock–ice avalanche mobility[J]. Earth Surface Processes and Landforms, 36(14): 1948-1966. doi: 10.1002/esp.2218 [48] SHUGAR D H, BURR A, HARITASHYA U K, et al., 2020. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 10(10): 939-945. doi: 10.1038/s41558-020-0855-4 [49] SONG Z, ZHANG G Z, JIANG L W, et al., 2016. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet Railway[J]. Railway Standard Design, 60(1): 14-19. (in Chinese with English abstract [50] STUART-SMITH R F, ROE G H, LI S, et al., 2021. Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat[J]. Nature Geoscience, 14(2): 85-90. doi: 10.1038/s41561-021-00686-4 [51] SUN D, YANG T, CAO N, et al., 2023. Characteristics and mitigation of coseismic geohazards associated with the Luding Ms6.8 earthquake[J]. Earth Science Frontiers, 30(3): 476-493. (in Chinese with English abstract [52] SUN H Y, HE H L, WEI Z Y, et al., 2015. Late Quaternary activity of Zhuma fault on the north segment of Daliangshan fault zone[J]. Seismology and Geology, 37(2): 440-454. (in Chinese with English abstract [53] SUN Y Q, GE Y G, CHEN X Z, et al., 2024. Analysis of the trigger conditions and activity trend in debris flow along Sichuan-Tibet traffic corridor (Xinduqiao-Changdu section) under environmental changes[J]. Bulletin of Engineering Geology and the Environment, 83(5): 189. doi: 10.1007/s10064-024-03689-8 [54] TANG C, VAN ASCH T W J, CHANG M, et al., 2012. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms[J]. Geomorphology, 139-140: 559-576. doi: 10.1016/j.geomorph.2011.12.021 [55] TANG F T, SONG J, CAO Z Q, et al., 2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 53(9): 2119-2128. (in Chinese with English abstract [56] TIAN X W, 2023. Experimental study on nonlinear creep characteristics and long-term strength of microbially improved expansive soil[D]. Changsha: Central South University of Forestry and Technology. (in Chinese with English abstract [57] VALKANIOTIS S, PAPATHANASSIOU G, GANAS A, 2018. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece[J]. Engineering Geology, 245: 141-152. doi: 10.1016/j.enggeo.2018.08.010 [58] WANG F W, CHEN Y, LIU W C, et al., 2022. Characteristics and challenges to dynamics of long-runout landslides with high-altitude in southeast Tibet[J]. Journal of Engineering Geology, 30(6): 1831-1841. (in Chinese with English abstract [59] WANG S J, REN J W, 2012. A review of the progresses of avalanche hazards research[J]. Progress in Geography, 31(11): 1529-1536. (in Chinese with English abstract [60] WANG X N, TANG F T, SHAO C R, 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis[J]. Technology for Earthquake Disaster Prevention, 13(2): 267-275. (in Chinese with English abstract [61] WANG Y, JIN J L, YUAN R M, 2019. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research, 42(3): 428-437. (in Chinese with English abstract [62] WESTOBY M J, GLASSER N F, BRASINGTON J, et al., 2014. Modelling outburst floods from moraine-dammed glacial lakes[J]. Earth-Science Reviews, 134: 137-159. doi: 10.1016/j.earscirev.2014.03.009 [63] WU G Q, XIE Y L, WEI J, et al., 2022. Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 19(6): 1767-1781. doi: 10.1007/s11629-021-7270-9 [64] WU J J, 2022. Study on the activity of the Jinpingshan-Xiaojinhe fault zone in Late Quaternary[D]. Guilin: Guilin University of Technology. (in Chinese with English abstract [65] WU Y, WANG Y X, HAIM W, et al., 2020. Fracture of rocks in the mountains of Southeast Tibet under hydrothermal conditions at different elevations[J]. Bulletin of Engineering Geology and the Environment, 79(8): 4291-4308. doi: 10.1007/s10064-020-01806-x [66] XIN P, WANG T, LIU J M, et al., 2022. The geological structure and sliding mode of the slopes in the Yigong landslide source area, Tibet[J]. Journal of Geomechanics, 28(6): 1012-1023. (in Chinese with English abstract [67] XU L F, MENG X W, XU X G, 2014. Natural hazard chain research in China: a review[J]. Natural Hazards, 70(2): 1631-1659. doi: 10.1007/s11069-013-0881-x [68] XU Q, SHANG Y J, VAN ASCH T, et al., 2012. Observations from the large, rapid Yigong rock slide-debris avalanche, Southeast Tibet[J]. Canadian Geotechnical Journal, 49(5): 589-606. doi: 10.1139/t2012-021 [69] XU Q, DONG X J, LI W L, 2019. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44(7): 957-966. (in Chinese with English abstract [70] XU X W, WEN X Z, YU G H, et al., 2005. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan Province, China[J]. Science in China Series D: Earth Sciences, 48(8): 1183-1196. doi: 10.1360/04yd0072 [71] XU Z Q, LI H B, YANG J S, 2006. An orogenic plateau: the orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 13(4): 54-58. (in Chinese with English abstract [72] XU Z Q, YANG J S, LI H B, et al. , 2007. Orogenic plateaux: terrane amalgamation, collision and uplift in the Qinghai-Tibet plateau[M]. Beijing: Geological Publishing House. (in Chinese) [73] XU Z X, ZHANG L G, JIANG L W, et al., 2021. Engineering geological environment and main engineering geological problems of Ya'an—Linzhi Section of the Sichuan—Tibet Railway[J]. Advanced Engineering Sciences, 53(3): 29-42. (in Chinese with English abstract [74] YANG Z H, GUO C B, WU R A, et al., 2021. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 48(5): 91-101. (in Chinese with English abstract [75] YANG Z J, DONG W F, LIU J F, et al., 2021. Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet[J]. Geological Bulletin of China, 40(12): 2071-2079. (in Chinese with English abstract [76] YAO J M, YAO X, LIU X H, 2022. Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: a case study in Gongjue County, Tibet, China[J]. Remote Sensing, 14(19): 4728. doi: 10.3390/rs14194728 [77] YAO X, LI L J, ZHANG Y S, et al., 2017. Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau[J]. Natural Hazards, 88(3): 1727-1740. doi: 10.1007/s11069-017-2943-y [78] YAO X, DENG J H, LIU X H, et al., 2020. Primary recognition of active landslides and development rule analysis for pan Three-river-parallel Territory of Tibet Plateau[J]. Advanced Engineering Sciences, 52(5): 16-37. (in Chinese with English abstract [79] YAO X, CHEN Y P, LIU D L, et al., 2021. Average-DInSAR method for unstable escarpments detection induced by underground coal mining[J]. International Journal of Applied Earth Observation and Geoinformation, 103: 102489. doi: 10.1016/j.jag.2021.102489 [80] YIN Y P, XING A G, 2012. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 71(1): 149-160. doi: 10.1007/s10064-011-0348-9 [81] YIN Z Q, XU Y Q, CHEN H Q, et al., 2016. The development and distribution characteristics of geohazards induced by August 3, 2014 Ludian earthquake and comparison with Jinggu and Yingjiang earthquakes[J]. Acta Geologica Sinica, 90(6): 1086-1097. (in Chinese with English abstract [82] YU G A, LU J Y, LI Z W, et al., 2022. Geomorphic effects of debris flows in high mountain areas of the Parlung Zangbo Basin, Southeast Tibet under the influence of climate change[J]. Acta Geographica Sinica, 77(3): 619-634. (in Chinese with English abstract [83] YU G A, YUE P S, ZHANG C D, et al., 2024. River hydrology studies in Southeast Xizang: progress and challenges[J]. Chinese Science Bulletin, 69(3): 394-413. (in Chinese with English abstract doi: 10.1360/TB-2023-0075 [84] YUAN H, GUO C B, WU R A, et al., 2023. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China[J]. Geological Bulletin of China, 42(10): 1757-1773. (in Chinese with English abstract [85] ZHANG L X, PANG M Y, BAHAJ A S, et al., 2021. Small hydropower development in China: growing challenges and transition strategy[J]. Renewable and Sustainable Energy Reviews, 137: 110653. doi: 10.1016/j.rser.2020.110653 [86] ZHANG P Z, WANG W T, GAN W J, et al., 2022. Present-day deformation and Geodynamic processes of the Tibetan Plateau[J]. Acta Geologica Sinica, 96(10): 3297-3313. (in Chinese with English abstract [87] ZHANG Y H, LIU C M, LIANG K, et al., 2022. Spatio-temporal variation of precipitation in the Yarlung Zangbo river basin[J]. Acta Geographica Sinica, 77(3): 603-618. (in Chinese with English abstract [88] ZHANG Y S, GUO C B, YAO X, et al., 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277-286. (in Chinese with English abstract [89] ZHANG Y S, WU R A, GUO C B, et al., 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: ideas and methods[J]. Acta Geologica Sinica, 96(5): 1736-1751. (in Chinese with English abstract [90] ZHAO B, SU L J, WANG Y S, et al., 2023. Insights into some large-scale landslides in southeastern margin of Qinghai-Tibet Plateau[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1960-1985. doi: 10.1016/j.jrmge.2022.09.005 [91] ZHAO Y F, GONG W B, JIANG W, et al., 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, South Tibet[J]. Geoscience, 35(1): 220-233. (in Chinese with English abstract [92] ZHONG N, GUO C B, HUANG X L, et al., 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault[J]. Acta Geologica Sinica, 95(12): 3642-3659. (in Chinese with English abstract [93] ZHONG N, YANG Z, ZHANG X B, et al., 2022. Evidence of Holocene activity and paleoseismic records in the central section of Bangda fault in Nujiang fault zone[J]. Geological Review, 68(6): 2021-2032. (in Chinese with English abstract [94] ZHOU R J, HE Y L, YANG T, et al., 2001. Slip rate and strong earthquake rupture on the Moxi-Mianning segment along the Xianshuihe-Anninghe fault zone[J]. Earthquake Research in China, 17(3): 253-262. (in Chinese with English abstract [95] ZHOU Y Q, SHENG Q, CHEN J, et al., 2022. The failure mode of transmission tower foundation on the landslide under heavy rainfall: a case study on a 500-kV transmission tower foundation on the Yanzi landslide in Badong, China[J]. Bulletin of Engineering Geology and the Environment, 81(3): 125. doi: 10.1007/s10064-022-02628-9 [96] ZHOU Z K, YAO X, LIU H Y, et al., 2020. Accurate identification of active landslides in region composed with glacier, forest, steep valley: a case study in the Lantsang Meili snow mountain section[J]. Advanced Engineering Sciences, 52(6): 61-74. (in Chinese with English abstract [97] ZHU Y F, YAO X, YAO L H, et al., 2022. Detection and characterization of active landslides with multisource SAR data and remote sensing in western Guizhou, China[J]. Natural Hazards, 111(1): 973-994. doi: 10.1007/s11069-021-05087-9 [98] 白永健,倪化勇,葛华,2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报,25(6):1116-1128. doi: 10.12090/j.issn.1006-6616.2019.25.06.095 [99] 陈宁生,丁海涛,邓明枫,2019. 2014-2016年藏东南米堆冰川冰湖观测数据[R]. 兰州:国家冰川冻土沙漠科学数据中心. [100] 程先锋,祝传兵,齐武福,等,2015. 云南省禄劝县普福滑坡形成条件、发展趋势与防治对策[J]. 矿产与地质,29(3):395-401. doi: 10.3969/j.issn.1001-5663.2015.03.021 [101] 崔鹏,马东涛,陈宁生,等,2003. 冰湖溃决泥石流的形成、演化与减灾对策[J]. 第四纪研究,23(6):621-628. doi: 10.3321/j.issn:1001-7410.2003.06.005 [102] 戴岚欣,许强,范宣梅,等,2017. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报,25(4):1151-1164. [103] 代欣然,赵建军,赖琪毅,等,2022. 青藏高原察达高速远程滑坡运动过程与形成机理[J]. 地球科学,47(6):1932-1944. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206003 [104] 杜榕桓,章书成,1981. 西藏高原东南部冰川泥石流的特征[J]. 冰川冻土(3):10-16. [105] 葛大庆,戴可人,郭兆成,等,2019. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),44(7):949-956. [106] 郭长宝,杜宇本,张永双,等,2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报,34(1):121-134. doi: 10.3969/j.issn.1671-2552.2015.01.010 [107] 郭长宝,杜宇本,佟元清,等,2016. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理[J]. 地质通报,35(8):1332-1345. doi: 10.3969/j.issn.1671-2552.2016.08.014 [108] 韩明明,陈立春,李彦宝,等,2022. 班公湖-怒江缝合带西界边坝-洛隆断裂全新世活动的地质地貌证据[J]. 地球科学,47(3):757-765. doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203001 [109] 郝建盛,黄法融,冯挺,等,2021. 亚洲高山区雪崩灾害时空分布特点及其诱发因素分析[J]. 山地学报,39(2):304-312. [110] 黄润秋,李为乐,2008. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,27(12):2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028 [111] 李滨,殷跃平,谭成轩,等,2022. 喜马拉雅东构造结工程选址面临的地质安全挑战[J]. 地质力学学报,28(6):907-918. doi: 10.12090/j.issn.1006-6616.20222819 [112] 李海兵,潘家伟,孙知明,等,2021. 大陆构造变形与地震活动:以青藏高原为例[J]. 地质学报,95(1):194-213. [113] 李鸿儒,白玲,詹慧丽,2021. 嘉黎断裂带活动性研究进展[J]. 地球与行星物理论评,52(2):182-193. [114] 李廷栋,潘桂棠,肖序常,等,2013. 青藏高原隆升的地质记录及机制[M]. 广州:广东科技出版社. [115] 李尧,崔一飞,李振洪,等,2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案[J]. 地球科学,47(6):1969-1984. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206006 [116] 李元灵,刘建康,张佳佳,等,2021. 藏东察达高位崩塌发育特征及潜在危险[J]. 现代地质,35(1):74-82. [117] 李征征,杨文超,张鹏,等,2023. 藏东南某大型水电站工程区地应力状态及反演分析[J]. 地质力学学报,29(3):442-452. doi: 10.12090/j.issn.1006-6616.20232912 [118] 林达明,包卫星,任玉环,等,2020. 中亚高寒山区公路地质灾害立体监测与综合防控技术[M]. 北京:科学出版社. [119] 刘建康,程尊兰,郭芬芬,等,2011. 藏东南典型冰湖溃决危险性分析[J]. 灾害学,26(2):45-49. doi: 10.3969/j.issn.1000-811X.2011.02.009 [120] 刘建康,张佳佳,高波,等,2019. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土,41(6):1335-1347. [121] 鲁安新,邓晓峰,赵尚学,等,2006. 2005年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土,28(6):956-960. [122] 鲁晓,祁生文,郑博文,等,2023. 川藏交通廊道崩滑灾害分布及其危险性评价[J]. 工程地质学报,31(3):718-735. [123] 马超,2013. 川滇块体内主干断裂活动性及微地貌研究[D]. 成都:成都理工大学. [124] 彭建兵,崔鹏,庄建琦,2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,39(12):2377-2389. [125] 彭建兵,徐能雄,张永双,等,2022. 论地质安全研究的框架体系[J]. 工程地质学报,30(6):1798-1810. [126] 齐文文,张百平,庞宇,等,2013. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学,33(8):999-1005. [127] 冉有华,李新,2018. 中国冻土分布图(2000)[R]. 北京:国家青藏高原科学数据中心. [128] 宋章,张广泽,蒋良文,等,2016. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,60(1):14-19. [129] 孙东,杨涛,曹楠,等,2023. 泸定MS6. 8地震同震地质灾害特点及防控建议[J]. 地学前缘,30(3):476-493. [130] 孙浩越,何宏林,魏占玉,等,2015. 大凉山断裂带北段东支:竹马断裂晚第四纪活动性[J]. 地震地质,37(2):440-454. doi: 10.3969/j.issn.0253-4967.2015.02.008 [131] 唐方头,宋键,曹忠权,等,2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报,53(9):2119-2128. doi: 10.3969/j.issn.0001-5733.2010.09.012 [132] 田旭文,2023. 微生物改良膨胀土的非线性蠕变特性及长期强度研究[D]. 长沙:中南林业科技大学. [133] 汪发武,陈也,刘伟超,等,2022. 藏东南高位远程滑坡动力学特征及研究难点[J]. 工程地质学报,30(6):1831-1841. [134] 王世金,任贾文,2012. 国内外雪崩灾害研究综述[J]. 地理科学进展,31(11):1529-1536. doi: 10.11820/dlkxjz.2012.11.014 [135] 王晓楠,唐方头,邵翠茹,2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征[J]. 震灾防御技术,13(2):267-275. doi: 10.11899/zzfy20180202 [136] 王盈,金家梁,袁仁茂,2019. 藏东南地区地质灾害空间分布及影响因素分析[J]. 地震研究,42(3):428-437. doi: 10.3969/j.issn.1000-0666.2019.03.017 [137] 吴俊杰,2022. 锦屏山-小金河断裂带晚第四纪活动性研究[D]. 桂林:桂林理工大学. [138] 辛鹏,王涛,刘甲美,等,2022. 西藏易贡滑坡源区坡体赋存的地质结构及其滑动模式[J]. 地质力学学报,28(6):1012-1023. doi: 10.12090/j.issn.1006-6616.2022072 [139] 许强,董秀军,李为乐,2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),44(7):957-966. [140] 徐锡伟,闻学泽,于贵华,等,2005. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学 D辑 地球科学,35(6):540-551. [141] 许志琴,李海兵,杨经绥,2006. 造山的高原:青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘,13(4):1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002 [142] 许志琴,杨经绥,李海兵,等,2007. 造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京:地质出版社. [143] 徐正宣,张利国,蒋良文,等,2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术,53(3):29-42. [144] 杨志华,郭长宝,吴瑞安,等,2021. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,48(5):91-101. [145] 杨宗佶,董悟凡,柳金峰,等,2021. 川西藏东地区冰湖主要成因类型与分布规律[J]. 地质通报,40(12):2071-2079. doi: 10.12097/j.issn.1671-2552.2021.12.010 [146] 姚鑫,邓建辉,刘星洪,等,2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术,52(5):16-37. [147] 殷志强,徐永强,陈红旗,等,2016. 2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究[J]. 地质学报,90(6):1086-1097. doi: 10.3969/j.issn.0001-5717.2016.06.003 [148] 余国安,鲁建莹,李志威,等,2022. 气候变化影响下藏东南帕隆藏布流域高山区泥石流的地貌效应[J]. 地理学报,77(3):619-634. doi: 10.11821/dlxb202203009 [149] 余国安,岳蓬胜,张晨笛,等,2024. 藏东南地区的河流水文研究:进展与挑战[J]. 科学通报,69(3):394-413. [150] 袁浩,郭长宝,吴瑞安,等,2023. 西藏易贡高位远程滑坡研究进展与展望[J]. 地质通报,42(10):1757-1773. doi: 10.12097/j.issn.1671-2552.2023.10.012 [151] 张培震,王伟涛,甘卫军,等,2022. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报,96(10):3297-3313. doi: 10.3969/j.issn.0001-5717.2022.10.003 [152] 张仪辉,刘昌明,梁康,等,2022. 雅鲁藏布江流域降水时空变化特征[J]. 地理学报,77(3):603-618. [153] 张永双,郭长宝,姚鑫,等,2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报,37(3):277-286. doi: 10.3975/cagsb.2016.03.03 [154] 张永双,吴瑞安,郭长宝,等,2022. 高原山区铁路工程建设地质安全评价:思路与方法[J]. 地质学报,96(5):1736-1751. [155] 赵远方,公王斌,江万,等,2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义[J]. 现代地质,35(1):220-233. [156] 钟宁,郭长宝,黄小龙,等,2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录[J]. 地质学报,95(12):3642-3659. doi: 10.3969/j.issn.0001-5717.2021.12.005 [157] 钟宁,杨镇,张献兵,等,2022. 怒江断裂带邦达断裂中段全新世活动证据及其古地震记录[J]. 地质论评,68(6):2021-2032. [158] 周荣军,何玉林,杨涛,等,2001. 鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错[J]. 中国地震,17(3):253-262. doi: 10.3969/j.issn.1001-4683.2001.03.003 [159] 周振凯,姚鑫,刘红岩,等,2020. 冰川密林陡谷区活动性滑坡InSAR精细识别:以澜沧江梅里雪山段为例[J]. 工程科学与技术,52(6):61-74. -