Characteristics and slope structure of the Beishan landslide group in Tianshui City
-
摘要:
天水市北山地处秦岭北缘山地与黄土高原过渡地带, 受强烈的内外动力耦合作用影响, 诱发了呈带状分布的大型滑坡群, 严重制约现阶段天水市区规划建设和灾害风险防控。此次研究在系统总结已有地质灾害资料的基础上, 利用空-天-地一体化综合勘察手段, 查明了天水市北山自西向东黄土厚度渐变特征、典型的斜坡结构类型及关键控滑地层, 系统分析了地震滑坡的发育特征、分布规律和几何学、运动学特征。结果表明: 天水市北山滑坡群沿藉河河谷北岸集中呈带状分布, 滑坡类型主要为泥岩滑坡和黄土-泥岩接触面滑坡, 多具有深层多级旋转-平移、多期次滑动的特征; 地层结构为上覆第四系黄土和下伏新近系尧店组和甘泉组河湖相泥岩、黏土岩, 坡体结构类型为顺层岩土质斜坡; 天水市北山的坡体结构自西向东可分为3个典型区段, 黄土厚度自西向东逐渐增大, 海拔高程和表观摩擦角东西部低、中部高, 滑坡后壁高度东西部高、中部低; 天水市北山地震滑坡具有低角度启动和远程运动的特征, 其等效摩擦系数(f)在0.21~0.28之间, 且东、西区段地震滑坡的运动性更强。
Abstract:The Beishan area in Tianshui City is located in the transition zone between the mountainous area on the northern edge of the Qinling Mountains and the Loess Plateau. The solid internal and external dynamic coupling has induced large landslide groups with a zonal distribution, which seriously restricts urban planning and disaster risk prevention in Tianshui City. Based on the systematic summary of existing geological hazard data, this study used the space-sky-earth integrated survey method to identify the variations of loess thickness from west to east, typical slope structure types, and key slip-controlling strata. The seismic landslides' development characteristics, distribution rules, and geometric and kinematic features are systematically analyzed. The results show that the landslide groups in the Beishan area are concentrated along the north bank of the Jihe Valley in a zonal distribution. The landslide types are mainly mudstone landslide and loess-mudstone interface landslide, with multi-stage rotation, translation, and multi-stage sliding. The stratigraphic structure consists of the overlying Quaternary loess and the underlying lacustrine-fluvial mudstone and claystone of the Neoproterozoic Yaodian and Ganquan formations. The landslides belonging to the bedding rock slope have three typical slope structures from west to east. The loess thickness increases gradually from west to east, the elevation and apparent friction angle are lower in the east and west and higher in the middle, and the scarp height of the landslides is higher in the east and west and lower in the middle. In addition, the seismic landslides in this region have long-runout characteristics. The equivalent friction coefficients of these landslides are between 0.21 and 0.28, and the seismic landslides in the eastern and western sections have stronger movement.
-
Key words:
- Tianshui City /
- loess-mudstone landslides /
- slope structure /
- seismic landslide /
- kinematics features /
- geo-hazards
-
图 3 研究区地质图
a—地质简图;b—区域地层剖面图 (据Wang et al., 2012修改)
Figure 3. Geological setting of the study area
(a) Geological plan; (b) Regional stratigraphic profiles (modified from Wang et al., 2012)
图 9 天水市北山周家山滑坡
a—滑坡平面图;b—滑坡纵剖面图;c—滑坡后壁;d、e—中部黄土泥岩混杂堆积;f—下部次级陡坎;g—前缘黄土堆积
Figure 9. The Zhoujiashan landslide in Tianshui City
(a) Landslide plan; (b) Longitudinal profile of the landslide; (c) Main scarp; (d and e) Mixed accumulation of loess and mudstone in the central part; (f) Secondary scarp in the lower part; (g) Loess accumulation in the front
图 10 天水市北山肖庄村滑坡
a—平面图;b—剖面图;c—滑坡全景;d—后壁次级陡坎;e—滑坡上部黄土泥岩分界面;f—滑坡中部黄土泥岩混杂堆积;g、h—前缘强风化黏土岩堆积
Figure 10. The Xiaozhuangcun landslide in Tianshui City
(a) Landslide plan; (b) Profile of the landslide; (c) Full view of the landslide; (d) Secondary scarp of the main scarp; (e) Interface between loess and mudstone in the upper part; (f) Mixed accumulation of loess and mudstone in the central part; (g and h) Weathered clay-rock accumulation in the front
图 11 天水市北山水眼寨滑坡
a—平面图;b—剖面图;c—滑坡全景;d—滑坡上部黄土泥岩接触;e—滑坡上部巨厚黄土层;f—滑坡下部巨厚黄土层;g—前缘黄土堆积;h—渭河高阶地砾石层
Figure 11. The Shuiyanzhai landslide in Tianshui City
(a) Landslide plan; (b) Profile of the landslide; (c) Full view of the landslide; (d) Interface between loess and mudstone in the upper part; (e) Thick loess layer in the upper part; (f) Thick loess layer in the lower part; (g) Frontal loess accumulation; (h) Gravel bed of the Weihe high terrace
图 13 滑坡运动特征参数示意图 (据Cruden and Varnes.,1996)
Figure 13. Characteristic parameters for the landslide movement (modified from Cruden and Varnes, 1996)
表 1 天水市北山滑坡统计表
Table 1. The Beishan landslides in Tianshui City
滑坡名称 编号 类型 体积/×104 m3 规模 厚度分类 诱因 新四沟滑坡 L01(L,M) 黄土滑坡 710 大型 中层滑坡 降雨 王家山滑坡 L02(V,M) 黄土-泥岩滑坡 3070 特大型 中层滑坡 地震 周家山滑坡 L03(V,D) 黄土-泥岩滑坡 3610 特大型 深层滑坡 地震 红旗山滑坡 L04(V,D) 黄土-泥岩滑坡 3450 特大型 中层滑坡 地震 闫家河1号滑坡 L05(V,D) 黄土-泥岩滑坡 1710 特大型 深层滑坡 地震 闫家河2号滑坡 L06(V,D) 黄土-泥岩滑坡 3060 特大型 深层滑坡 地震 上河村滑坡 L07(L,M) 黄土-泥岩滑坡 843 大型 中层滑坡 地震 孙家坪滑坡 L08(V,M) 黄土-泥岩滑坡 1660 特大型 中层滑坡 地震 县家路滑坡 L09(V,M) 黄土-泥岩滑坡 2150 特大型 中层滑坡 地震 肖庄村滑坡 L10(V,D) 黄土-泥岩滑坡 6590 特大型 深层滑坡 地震 赵集寨滑坡 L11(V,D) 黄土-泥岩滑坡 2760 特大型 深层滑坡 地震 水眼寨滑坡 L12(V,D) 黄土-泥岩滑坡 5700 特大型 深层滑坡 地震 靳家庄滑坡 L13(V,D) 黄土-泥岩滑坡 3980 特大型 深层滑坡 地震 峡口沙场滑坡 L14(L,M) 黄土滑坡 890 大型 中层滑坡 人工 锻压机床厂滑坡 L15(L,D) 黄土滑坡 284 大型 深层滑坡 人工 表 2 天水市北山滑坡等效摩擦角及后壁临空厚度
Table 2. Equivalent friction angle and trailing wall thickness of the Beishan landslides in Tianshui City
滑坡编号 水平距离/m 高差/m 等效摩擦角/(°) 后壁临空厚度/m 平均等效摩擦角/(°) 平均后壁临空厚度/m L02 1272.0 257.9 11.46 30 11.6 58 L03 1602.0 304.0 10.74 50 L04 1811.0 377.3 11.77 80 L05 1586.0 356.8 12.68 70 L06 1892.0 425.9 12.69 35 13.8 41 L07 1374.0 385.0 15.65 50 L08 1357.0 363.0 14.98 40 L09 1633.0 412.0 14.16 40 L10 1783.0 403.5 12.75 45 L10-1 1908.0 429.3 12.68 40 L11 1665.0 382.0 12.92 90 12.4 103 L12-1 1609.5 377.6 13.20 100 L12-2 1699.0 354.0 11.77 90 L13 1634.0 338.0 11.69 130 -
BURCHFIEL B C, ZhANG P Z, WANG Y P, et al., 1991. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau[J]. Tectonics, 10(6): 1091-1110. doi: 10.1029/90TC02685 CHEN P, LIN A M, 2019. Tectonic topography and Late Pleistocene activity of the West Qinling Fault, northeastern Tibetan Plateau. Journal of Asian Earth Sciences [J], 176: 68-78. CRUDEN D M, VARNES D J, 1996. Landslide types and processes. Special Report-National Research Council, Transportation Research Board 247: 36-75. DENG L S, FAN W, 2013. Deformation Breakage Characteristics and Development Mechanism of Loess Landslide Triggered by Haiyuan M8.5 Earthquake in Ningxia [J]. Journal of Catastrophology, 28(3): 30-37. (in Chinese with English abstract) General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2015. Seismic ground motion parameters zonation map of China: GB 18306-2015[S]. Beijing: China Building Industry Press. (in Chinese) LI H, YANG W M, HUANG X, et al., 2016. Characteristics and deformation mechanism of Shuiwan seismic loess landslide in Maiji, Tianshui [J]. Journal of Geomechanics, 22(1): 12-24. (in Chinese with English abstract) LIU J M, WANG T, SHI J S, et al., 2018. The influence of different newmark displacement models on seismic landslide hazard assessment: a case study of Tianshui area, China [J]. Journal of Geomechanics, 24 (1): 87-95. (in Chinese with English abstract) MA S X, LI H L, ZHANG Y Q, et al., 2016. The Neogene extension of the Tianshui basin: Evidence from sedimentary and structural records [J]. Geological Bulletin of China, 35(8): 1314-1323. (in Chinese with English abstract) MU H D, SUN P, LI R J, et al., 2017. Dynamic damping characteristics and evolution law of Pan'an structural loess [J]. Journal of Geomechanics, 23 (6): 935-942. (in Chinese with English abstract) MENG X M, QI T J, ZHAO Y, et al., 2021. Deformation of the Zhangjiazhuang high-speed railway tunnel: an analysis of causal mechanisms using geomorphological surveys and D-InSAR monitoring [J]. Journal of Mountain Science, 18(7): 1920-1936. doi: 10.1007/s11629-020-6493-5 PENG J B, FAN Z J, WU D, et al., 2015. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China [J]. Engineering Geology, 186: 79-90. doi: 10.1016/j.enggeo.2014.08.015 PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone [J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8 PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau [J]. Journal of Geomechanics, 26 (5): 714-730. (in Chinese with English abstract) SCHEIDEGGER A E, 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 5(4): 231-236. doi: 10.1007/BF01301796 SUN P, LI R J, JIANG H, et al., 2017. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province, northwest China [J]. Bulletin of Engineering Geology and the Environment, 76(4): 1281-1295. doi: 10.1007/s10064-016-0949-4 TIAN Y, YANG W M, HUANG X, et al., 2016. Distribution characteristics and inducing factors of loess landslide in Maiji mappable unit, Tianshui [J]. Journal of Geomechanics, 22 (1): 25-38. (in Chinese with English abstract) WANG H J, SUN P, ZHANG S, et al., 2020a. Rainfall-induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, 2019, in Gansu Province[J]. Landslides, 17(9): 2145-2160. doi: 10.1007/s10346-020-01460-0 WANG H J, 2021. Potential hazard and quantitative risk assessment of landslides under earthquake in Tianshui north mountain [D]. Beijing: Chinese Academy of Geological Sciences (in Chinese t). WANG J D, BAI M X, XIAO S F, 2001. A study on compound mechanism of earthquake-related sliding displacements on gently inclined loess slope[J]. Chinese Journal of Geotechnical Engineering, 22(4): 445-449. (in Chinese with English abstract) WANG T, LIU J M, SHI J S, et al., 2020b. Probabilistic seismic landslide hazard assessment: a case study in Tianshui, Northwest China[J]. Journal of Mountain Science, 17(1): 173-190. doi: 10.1007/s11629-019-5618-1 WANG X X, LI J J, SONG C H, et al., 2012. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui basin, northeastern margin of Tibetan Plateau [J]. International Journal of Earth Sciences, 101(5): 1345-1356. doi: 10.1007/s00531-011-0724-5 WU W J, SU X, LIU W, et al., 2014. Loess-mudstone interface landslides: Characteristics and causes [J]. Journal of Glaciology and Geocryology, 36(5): 1167-1175. (in Chinese with English abstract). XIN P, WU S R, ZHANG Z L, et al., 2017. Distribution characteristics and formation mechanism of landslides triggered by activities of Baoji-Wushan segment at the northern margin of western Qinling fault zone [J]. Journal of Geomechanics, 23 (5): 723-733. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.05.009 XU C, XU X W, Shyu J B H, et al., 2014. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: Inventory compiling and spatial distribution analysis [J]. Journal of Asian Earth Sciences, 92: 125-142. doi: 10.1016/j.jseaes.2014.06.014 YAO C C, YAO X, GU Z K, et al., 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083.(in Chinese with English abstract) YUAN B Y, GUO Z T, HAO Q Z, et al., 2007. Cenozoic evolution of geomorphic and sedimentary environments in the Tianshui-Qin'an regions [J]. Quaternary Sciences, 27(2): 161-171. (in Chinese with English abstract) YUAN D Y, LEI Z S, WANG A G, 2017. Additional Textual Criticism of Southern Tianshui M8 Earthquake in Gansu Province in 1654 [J]. China Earthquake Engineering Journal, 39(3): 509-520. (in Chinese with English abstract) ZHANG F Y, PENG J B, WU X G, et al., 2021. A catastrophic flowslide that overrides a liquefied substrate: the 1983 Saleshan landslide in China [J]. Earth Surface Processes and Landforms, 46(10): 2060-2078. doi: 10.1002/esp.5144 ZHANG M S, LIU J, 2010. Controlling factors of loess landslides in western China [J]. Environmental Earth Sciences, 59 (8): 1671-1680. doi: 10.1007/s12665-009-0149-7 ZHANG S X, YANG W M, CHENG X J, et al., 2017. Genetic mechanism and stability analysis of loess landslides group in Tianshui Hongqishan, Gansu Province[J]. Geology in China, 44(5): 924-937. (in Chinese with English abstract) ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau[J]. Journal of Geomechanics, 27 (2): 159-177. DOI: 10.12090/j.issn.1006-6616.2021.27.02.017.(in Chinese with English abstract) ZHANG Z L, 2016. The initating mechanism and runout pattern of typical seismic loess landslides[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract) ZHANG Z L, WANG T, WU S R, 2020. Distribution and features of landslides in the Tianshui Basin, Northwest China [J]. Journal of Mountain Science, 17(3): 686-708. doi: 10.1007/s11629-019-5595-4 ZHONG X M, WANG Q, ZHANG G X, et al., 2014. Characteristics and Stability Analysis of Shuiyanzhai Landslide in Tianshui City [J]. China Earthquake Engineering Journal, 36(4): 887-891. (in Chinese with English abstract) 邓龙胜, 范文, 2013. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J]. 灾害学, 28(3): 30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007 李浩, 杨为民, 黄晓, 等, 2016. 天水市麦积区税湾地震黄土滑坡特征及其形成机制[J]. 地质力学学报, 22(1): 12-24. https://journal.geomech.ac.cn/article/id/aa875030-7a20-478a-9df0-6aa5d8a24be3 刘甲美, 王涛, 石菊松, 等, 2018. 基于不同位移预测模型的地震滑坡危险性评估研究: 以天水地区为例[J]. 地质力学学报, 24 (1): 87-95. doi: 10.12090/j.issn.1006-6616.2018.24.01.010 马收先, 李海龙, 张岳桥, 等, 2016. 天水盆地新近纪伸展构造: 来自沉积与构造变形方面的证据[J]. 地质通报, 35(8): 1314-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201608012.htm 慕焕东, 孙萍, 李荣建, 等, 2017. 磐安结构性黄土动阻尼特征及其演化规律研究[J]. 地质力学学报, 23 (6): 935-942. https://journal.geomech.ac.cn/article/id/343cc102-95b5-42c7-859b-2ce7276cf6ff 彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26 (5): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059 田尤, 杨为民, 黄晓, 等, 2016. 天水市麦积区幅黄土滑坡发育分布特征及其孕灾因素分析[J]. 地质力学学报, 22 (1): 25-38. https://journal.geomech.ac.cn/article/id/34a08b58-ad41-402d-84df-2987193001ba 王浩杰, 2021. 天水北山地震滑坡危险性及风险定量评估[D]. 北京: 中国地质科学院. 王家鼎, 白铭学, 肖树芳, 2001. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 22(4): 445-449. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104014.htm 吴玮江, 宿星, 刘伟, 等, 2014. 黄土-泥岩接触面滑坡的特征与成因[J]. 冰川冻土, 36(5): 1167-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201405013.htm 辛鹏, 吴树仁, 张泽林, 等, 2017. 西秦岭北缘断裂宝鸡—武山段活动触发滑坡分布规律与成因机制[J]. 地质力学学报, 23 (5): 723-733. https://journal.geomech.ac.cn/article/id/7fa11a66-0569-4950-b531-b19b835bb298 姚闯闯, 姚鑫, 顾畛逵, 等, 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报, 28 (2): 257-267. DOI: 10.12090/j.issn.1006-6616.2021083. 袁宝印, 郭正堂, 郝青振, 等, 2007. 天水-秦安一带中新世黄土堆积区沉积-地貌演化[J]. 第四纪研究, 27(2): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200702000.htm 袁道阳, 雷中生, 王爱国, 2017. 1654年甘肃天水南8级地震补充考证[J]. 地震工程学报, 39(3): 509-520. 张树轩, 杨为民, 程小杰, 等, 2017. 甘肃天水红旗山黄土滑坡群成因及稳定性分析[J]. 中国地质, 44(5): 924-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705008.htm 张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报, 27(2): 159-177. DOI: 10.12090/j.issn.1006-6616.2021.27.02.017. 张泽林, 2016. 典型黄土滑坡启动机制及成灾模式研究[D]. 武汉: 中国地质大学. 中华人民共和国国家盒子里监督检验检疫总局, 中国国家标准化管理委员会, 2015. 中国地震动参数区划图: . GB 18306-2015 [S]. 北京: 中国建筑工业出版社. 钟秀梅, 王谦, 张国信, 等, 2014. 天水市水眼寨滑坡特征及稳定性分析[J]. 地震工程学报, 36(4): 887-891.