Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block
-
摘要: 班公-怒江缝合带(班怒带)是青藏高原内部羌塘地块与拉萨地块之间的重要边界,研究该边界带上共轭走滑断裂第四纪晚期的几何结构与变形特性对于理解高原内部在印度-欧亚板块碰撞作用下形成的空间差异响应和构造模型具有重要意义。位于班怒带西段的布木错断裂系包括北东向布木错断裂和北西向纳屋错断裂,通过遥感解译和野外地质调查,明确了这两条断裂在第四纪晚期的构造特征和最新的地表变形特征。结果显示,两条断裂自第四纪晚期以来的活动特征明显,并且近期都经历过一次大地震,产生了地表破裂。据此推测班怒带西段北西、北东两组断裂的最新活动强度接近,羌塘地块南部边界现今变形可能受控于两组断裂的共同影响,并已延伸至块体内部。以上发现进一步证明,青藏高原内部物质受中—下地壳流的驱动作用,通过走滑断层和正断层持续向北扩展。Abstract:
Objective The Bangong-Nujiang Suture Zone (BNSZ) serves as a boundary between the Qiangtang and Lhasa terranes of the Tibetan Plateau. The geometric structure and deformation characteristics of the "V" -shaped conjugate strike-slip faults along this late Quaternary boundary are important for understanding the spatially variable responses and tectonic models formed within the plateau as a result of the India-Eurasia plate collision. However, previous studies have primarily focused on the kinematic properties and activity rates of strike-slip faults in the eastern segment of the suture zone. The scarcity of information on the activity characteristics of strike-slip faults and paleoseismic events in the western segment of the suture zone has hindered our understanding of regional tectonic deformation and seismic activity. The Bue Co fault system, located in the western section of the BNSZ, is a (conjugate) strike-slip fault system consisting of the NE-trending Bue Co and NW-trending Lamu Co faults. Methods This study employs a combination of remote sensing interpretation and field surveys, utilizing high-resolution Digital Surface Models (DSM) collected by unmanned aerial vehicles (UAV) to conduct a detailed analysis of surface ruptures and systematically decipher the geometric morphologies and late Quaternary deformation evidence of the NE-trending Bue Co Fault and the NW-trending Lamu Co Fault in the western section of the BNSZ. Results This study revealed significant fault activity since the late Quaternary period, with evidence of recent large earthquakes that caused surface ruptures extending >60 km along both faults. The Bue Co fault exhibits left-lateral strike-slip, with recent seismic displacements ranging from 3.7 to 4.2 m, whereas the Lamu Co fault shows right-lateral strike-slip with minimum displacements of 2.7 m. Both faults display normal faulting components in their surface rupture zones, and the vertical displacements are cumulative across landforms of various ages, indicating long-term fault activity. The latest activity intensities of the NW and NE faults in the western BNSZ were similar, suggesting that the deformation of the southern boundary of the Qiangtang block may be controlled by both fault sets, which extend into the interior of the block. Conclusion These findings reveal that (1) both the Bue Co and Lamu Co faults can generate strong earthquakes of magnitude ≥7, indicating active tectonic deformation and a high seismic hazard potential in the western section of the BNSZ; (2) the deformation in the western BNSZ is concentrated along the NW-trending strike-slip faults and active along the NE-trending strike-slip faults, which may jointly control the southern boundary of the eastward extrusion of the Qiangtang terrane and have extended into the interior of the terrane; and (3) the continuous deformation pattern is supported, revealing that material within the Tibetan Plateau is driven by mid-lower crustal flow extruding eastward, with the southern boundary of the extrusion potentially continuing northward through a series of strike-slip and normal faults. Significance These conclusions deepen our understanding of the activity and seismic potential of strike-slip faults in the western BNSZ and provide novel insights into the internal tectonic deformation patterns and dynamic background of the Tibetan Plateau. Furthermore, this study provides an essential theoretical foundation for regional stability assessments and disaster mitigation planning. -
图 1 研究区区域地质图
LGF—龙木错-郭扎错断裂;KF—喀喇昆仑断裂;BF—布木错断裂;LCF—纳屋错断裂;RPF—日干配错断裂;GCF—格仁错断裂;BCF—崩错断裂;JF —嘉黎断裂;KLF—昆仑断裂;QNT—柴达木北缘逆冲带;GZF—甘孜断裂;LBF—龙日坝断裂;XXF—鲜水河-小江断裂;LMF—龙门山断裂;HF—海源断裂;ATF—阿尔金断裂
a—青藏高原活动断裂构造纲要图(据Taylor and Yin, 2009修改);b—羌塘中西部地区布木错断裂系及邻区主要活动断裂分布图Figure 1. Regional geological map of the study area
(a) Schematic tectonic map of the active faults in the Tibetan Plateau (modified after Taylor and Yin, 2009); (b) Distribution map of major active faults in the Bue Co fault system and adjacent areas in the midwestern Qiangtang
LGF-Longmu-Guozha fault; KF-Karakoram fault; BF-Bue Co fault; LCF-Lamu Co fault; RPF-Riganpei Co fault; GCF-Gyaring Co fault; BCF-Ben Co fault; JF-Jiali fault; KLF-Kunlun fault; QNT-North Qaidam thrust belt; GZF-Ganzi fault; LBF-Longriba fault; XXF-Xianshuihe-Xiaojiang fault; LMF-Longmenshan fault; HF-Haiyuan fault; ATF-Altyn Tagh fault图 2 布木错断裂带的展布特征及不同部位跨断裂带高程剖面图
a—布木错断裂带分支断裂与次级断裂展布;b—e—不同部位跨断裂带高程剖面地貌特征(断层产状依据断层地貌和现今应力场环境)
Figure 2. Distribution characteristics of the Bue Co fault zone and elevation profiles of different parts crossing the fault zone
(a) Distribution of branch faults and secondary faults along the Bue Co fault zone; (b-e)Topographic features of elevation profile of different parts crossing the fault zone (The fault geometry is determined based on the fault topography and the current stress field environment)
图 3 纳屋错断裂带展布特征及不同部位跨断裂带高程剖面图
a—纳屋错断裂带分支断裂与次级断裂展布;b—e—不同部位跨断裂带高程剖面地貌特征(断层产状依据断层地貌和现今应力场环境)
Figure 3. Distribution characteristics of the Lamu Co fault zone and elevation profiles of different parts crossing the fault zone
(a) Distribution of branch faults and secondary faults along the Lamu Co fault zone; (b-e)Topographic features of elevation profile of different parts crossing the fault zone (The fault geometry is determined based on the fault topography and the current stress field environment)
图 4 布木错断裂带和地表破裂带典型遥感影像图
a—地表破裂带西段线性特征;b—Q3-4扇体上发育地表破裂带陡坎;c—断层左旋错动水系;d—断层陡坡分隔第四纪沉积与基岩;e—地表破裂带东段未错段水系;f—地表破裂带东段以正断活动为主
Figure 4. Typical remote sensing images of the Bue Co fault zone and surface ruptures
(a)Linear characteristics of the west section of the surface rupture zone; (b) Fault scarp of surface rupture developed on the Q3-4 fans; (c) Left-lateral drainage offset by fault; (d) Quaternary sediments and bedrock separated by fault slope; (e) Water systems not offset by the eastern section of the surface rupture; (f) Surface rupture zone dominated by positive fault activity in the eastern section
图 5 布木错断裂带地表破裂带构造地貌特征(位置见图 4b)
a—布木错断裂带西段拉分盆地与T3阶地上断坡(镜向北东东);b—布木错断裂带T2阶地上断坡(镜向南东);c—布木错断裂带地表破裂T1阶地上断坡(镜向北东东);d—布木错断裂带地表破裂T0阶地上冲沟左旋(镜向南东);e—布木错断裂带地表破裂T1阶地上冲沟左旋(镜向南东);f—布木错断裂带地表破裂T1阶地上地震鼓包(镜向南东)
Figure 5. Structural geomorphic features of the Bue Co fault coseismic surface rupture (The location refers to Fig. 4b)
(a)Pull-apart basin in the western part of the Bue Co fault zone and fault slope on the T3 terrace (towards NEE); (b) Fault slope on the T2 terrace of the Bue Co fault zone (towards SE); (c) Fault slope on the T1 terrace of the Bue Co fault surface rupture (towards NEE); (d) Sinistral displacement of the gully on the T0 terrace of the Bue Co fault surface rupture (towards SE); (e) Sinistral displacement of the gully on the T1 terrace of the Bue Co fault surface rupture (towards SE); (f) Earthquake bulge on the T1 terrace of the Bue Co fault surface rupture (towards SE)
图 6 布木错地表破裂带无人机测图
a—布木错地表破裂带无人机高分辨率DSM影像;b、c—无人机高分辨率DSM影像上测量冲沟左旋位移
Figure 6. UAV photogrammetry of the Bue Co fault coseismic surface rupture
(a)High-resolution DSM image of the Bue Co fault surface rupture obtained by UAV; (b, c) Sinistral displacements of gullies measured on high-resolution DSM images obtained by UAV
图 7 纳屋错断裂带和地表破裂带典型遥感影像图
a—纳屋错走滑断裂带北支穿过第四纪晚期冲洪积扇及其上同震地表破裂;b—沿断裂北支地表破裂展布的晚更新世以来的冲洪积扇群;c—错不杂东南基岩与第四纪沉积以断层为界;d—多条水系沿纳屋错断层南支发生偏转;e—纳屋错断裂带东南段在第四纪湖区发育;f—纳屋错断裂带东南尾端活动痕迹变弱
Figure 7. Typical remote sensing image of the Lamu Co fault zone and surface rupture zone
(a)Late Quaternary alluvial fan offset by the northern branch of the Lamu Co strike-slip fault zone and co-seismic surface rupture on the fan; (b) The alluvial fan group since the late Pleistocene distributed along the surface rupture of the northern fault branch; (c) Bedrock and Quaternary deposits bounded by fault to the southeast of Cobuza; (d) Several drainage systems deflected along the southern branch of the Lamu Co fault; (e) The southeast section of the Lamu Co fault zone developed in the Quaternary lake region; (f) Diminishing activity traces at the southeast end of the Lamu Co fault zone
图 8 纳屋错断裂带地表破裂带野外构造地貌特征(位置见图 7a)
a—纳屋错断裂带地表破裂陡坎(镜向南东);b—纳屋错断裂带断层角砾岩(镜向北东);c—纳屋错断裂带位于山麓的断层陡坎(镜向北);d—纳屋错断裂带地表破裂造成冲沟右旋(镜向北东)
Figure 8. Structural geomorphic features of the Lamu Co fault zone coseismic surface rupture in the field (The location refers to Fig. 7a)
(a)Fault scarp of the Lamu Co fault surface rupture (towards SE); (b) Fault breccia of the Lamu Co fault zone (towards NE); (c) Fault scarp of the Lamu Co fault surface rupture located at the foothills The Lamu Co (towards N); (d) Dextral displacement of the gully induced by the Lamu Co fault surface rupture (towards NE)
图 9 纳屋错地表破裂带无人机测图
a—纳屋错地表破裂带无人机高分辨率DSM影像;b—d—无人机高分辨率DSM影像上测量冲沟右旋位移
Figure 9. UAV photogrammetry of the Lamu Co fault coseismic surface rupture
(a)High-resolution DSM image of the Lamu Co fault surface rupture obtained by UAV; (b-d) Dextral displacements of gullies measured on high-resolution DSM images obtained by UAV
表 1 布木错断裂系位移量分布表
Table 1. Statistic table of displacement in the Bue Co fault system
断裂名称 经度 纬度 断错标志 位移量/m 误差/m 布木错断裂 81°29′55.14″ 33°15′50.10″ 冲沟左旋 11.0 0.5 81°29′52.02″ 33°15′40.44″ 冲沟左旋 3.7 0.2 81°29′35.71″ 33°14′59.25″ 沟壁左旋 43.0 3.0 81°29′51.82″ 33°15′40.52″ 小沟左旋 4.2 0.3 81°29′54.82″ 33°15′50.25″ 小沟左旋 4.5 0.4 81°29′54.58″ 33°15′50.25″ 小沟左旋 6.4 0.6 纳屋错断裂 81°43′41.52″ 33°13′16.02″ 深沟右旋 7.3 1.2 81°43′31.62″ 33°13′20.10″ 小溪右旋 4.5 0.5 81°43′32.78″ 33°13′19.41″ 小溪右旋 2.7 0.3 81°43′33.49″ 33°13′19.10″ 冲沟右旋 13.7 1.1 81°43′40.51″ 33°13′16.28″ 小溪右旋 8.3 2.0 81°43′41.61″ 33°13′15.70″ 沟壁右旋 10.3 2.4 81°43′44.41″ 33°13′14.21″ 沟壁右旋 27.0 3.0 81°43′45.32″ 33°13′13.85″ 沟壁右旋 15.0 1.5 81°43′45.66″ 33°13′13.58″ 深沟右旋 14.0 1.5 -
ARMIJO R, TAPPONNIER P, MERCIER J L, et al., 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. BAI M K, CHEVALIER M L, PAN J W, et al., 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 485: 19-31. CHEN Q Z, FREYMUELLER J T, WANG Q, et al., 2004. A deforming block model for the present-day tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 109(B1): B01403, doi: 10.1029/2002JB002151. CHEVALIER M L, TAPPONNIER P, VAN DER WOERD J, et al., 2012. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka[J]. Tectonophysics, 530-531: 152-179. CHEVALIER M L, VAN DER WOERD J, TAPPONNIER P, et al., 2016. Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum fault, western Tibet[J]. GSA Bulletin, 128(1-2): 284-314. CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 ELLIOTT J R, WALTERS R J, ENGLAND P C, et al., 2010. Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. doi: 10.1029/JB094iB12p17561 GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract) GARTHWAITE M C, Wang H and Wright T J, 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR. Journal of Geophysical Research: Solid Earth 118: 5071-5083. HAN M M, CHEN L C, ZENG D, et al., 2022. Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone[J]. Journal of Geomechanics, 28(6): 969-980. (in Chinese with English abstract) HAN S, LI H B, PAN J W, et al., 2019. Co-seismic surface ruptures in Qiangtang Terrane: Insight into Late Cenozoic deformation of central Tibet[J]. Tectonophysics, 750: 359-378. HARRISON T M, COPELAND P, KIDD W S F, et al., 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670. LIU F C, PAN J W, LI H B, et al., 2022. Characteristics of Quaternary Activities along the Riganpei Co Fault and Seismogenic Structure of the July 23, 2020 Mw6.4 Nima Earthquake, Central Tibet [J]. Acta Geoscientica Sinica, 43(2): 173-188. (in Chinese with English abstract) MÉRIAUX S A, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. MEADE B J L, 2007. Present-day kinematics at the India-Asia collision zone[J]. Geology, 35(1): 81-84. MERCIER J L, ARMIJO R, TAPPONNIER P, et al., 1987. Change from late tertiary compression to quaternary extension in southern Tibet during the India-Asia Collision[J]. Tectonics, 6(3): 275-304. MOLNAR P, DAYEM K E, 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 6(4): 444-467. MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: Effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426. MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. PAN G T, DING J, YAO D S, et al., 2004. The Qinghai-Tibet Plateau and its adjacent areas geological map 1 ∶ 150 million[M]. Chengdu: Chengdu Cartographic Publishing House: 1-140 (in Chinese). RATSCHBACHER L, KRUMREI I, BLUMENWITZ M, et al., 2011. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 353(1): 127-163. SHI X H, KIRBY E, LU H J, et al., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 5829-5837. STYRON R, TAYLOR M, SUNDELL K, 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 8(2): 131-134. SUNDELL K E, TAYLOR M H, STYRON R H, et al., 2013. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 32(5): 1454-1479. TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324. TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. TAPPONNIER P, RYERSON F J, VAN DER WOERD J, et al., 2001a. Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard[J]. Comptes Rendus de l' Academie des Sciences-Series IIA-Earth and Planetary Science, 333(9): 483-494. TAPPONNIER P, XU Z Q, ROGER F, et al., 2001b. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044. TAYLOR M, PELTZER G, 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111(B12): B12402. TAYLOR M, YIN A, 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214. TAYLOR M H, KAPP P A, HORTON B K, 2011. Basin response to active extension and strike‐slip deformation in the hinterland of the Tibetan Plateau[M]//BUSBY C, AZOR A. Tectonics of sedimentary basins: recent advances. Oxford: Blackwell Publishing Ltd: 445-460. VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 1998. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)[J]. Geology, 26(26): 695-698. VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al., 2000. Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics[J]. Geophysical Research Letters, 27(16): 2353-2356. WANG D, YIN G M, WANG X L, et al., 2016. OSL dating of the late Quaternary slip rate on the Gyaring Co Fault in central Tibet[J]. Geochronometria, 43(1): 162-173. WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002. WU Z H, ZHAO X T, WU Z H, et al., 2006. Quaternary geology and faulting in the Damxung-Yangbajain Basin, Southern Tibet[J]. Journal of Geomechanics, 12(3): 305-316. (in Chinese with English abstract) WU Z H, ZHANG X D, HAN S, et al., 2022. Quaternary faulting and deformation mechanism of the western Qiangtang block in northern Ngari, Tibet[J]. Acta Geologica Sinica, 96(11): 3760-3783. (in Chinese with English abstract) YANG P X, CHEN Z W, ZHANG J, et al., 2012. The tension-shear of Gyaring Co Fault and the implication for dynamic model in South-central Tibet[J]. Chinese Journal of Geophysics, 55(10): 3285-3295. (in Chinese with English abstract) YIN A, KAPP P A, MURPHY M A, et al., 1999. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787-790. YIN A, 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. YIN A, HARRISON T M, 2003. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. YIN A, TAYLOR M H, 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. GSA Bulletin, 123(9-10): 1798-1821. ZHANG J J, DING L, 2003. East-west extension in Tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189. (in Chinese with English abstract) ZHANG J J, WANG J M, WANG X X, et al., 2013. A new model for the Himalayan orogeny[J]. Chinese Journal of Geology, 48(2): 362-383. (in Chinese with English abstract) ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract) 高云鹏, 刘静, 韩龙飞, 等, 2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报, 29(5): 704-719. doi: 10.12090/j.issn.1006-6616.2023034 韩明明, 陈立春, 曾蒂, 等, 2022. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论[J]. 地质力学学报, 28(6): 969-980. doi: 10.12090/j.issn.1006-6616.20222824 刘富财, 潘家伟, 李海兵, 等, 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛MW 6.4地震发震构造分析[J]. 地球学报, 43(2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202202004.htm 潘桂棠, 丁俊, 姚东生, 等, 2004. 青藏高原及邻区地质图(1 ∶ 1500000)说明书[M]. 成都: 成都地图出版社: 1-140. 吴中海, 赵希涛, 吴珍汉, 等, 2006. 西藏当雄-羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报, 12(3): 305-316. https://journal.geomech.ac.cn/article/id/3ec85626-b773-448f-a430-a308b533aadd 吴中海, 张旭东, 韩帅, 等, 2022. 西藏阿里北部羌塘地块内部的第四纪活动断层及其变形机制[J]. 地质学报, 96(11): 3760-3783. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211008.htm 杨攀新, 陈正位, 张俊, 等, 2012. 西藏中南部格仁错断裂张剪性质及其区域动力学意义[J]. 地球物理学报, 55(10): 3285-3295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210012.htm 张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200302005.htm 张进江, 王佳敏, 王晓先, 等, 2013. 喜马拉雅造山带造山模式探讨[J]. 地质科学, 48(2): 362-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302006.htm 赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型, 特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002