Zircon U-Pb dating of the Dizhuanggou Formation, Changjiaoba Group in the South Qinling Belt and its tectonic significance
-
摘要: 长角坝群出露于南秦岭佛坪地区,是该构造带内残留的少数研究程度较低的地层之一,其物质组成、形成时代一直缺乏准确的限定,进而制约了对南秦岭的构造归属和构造演化的深入研究。文章对长角坝群内低庄沟组变质沉积岩开展了岩石学和锆石U-Pb年代学研究,结果显示所取2个样品的碎屑锆石年龄主要峰值为810~835 Ma, 最年轻的年龄区间为600~700 Ma,最大沉积时代为新元古代。这与同为长角坝群、出露最广泛的泥盆纪黑龙潭组具有明显的时代差异,显示了长角坝群物质组成的复杂性。此外,低庄沟组的碎屑锆石年龄谱系特征与用于对比测试的另一个碎屑锆石最小年龄峰值为718 Ma、主要峰值为810 Ma的佛坪群样品高度相似,结合二者的岩石学及野外地质特征,认为二者共同构成了南秦岭西部的过渡性基底,与南秦岭带内宁陕断裂以东的过渡性基底−武当群、耀岭河群具有明显的可对比性。长角坝群新元古代物质的识别还为佛坪地区变质单元的划分提供了新的依据,进而梳理出成层性、变质程度不同的3个单元,为南秦岭中生代造山演化过程的恢复提供了佐证 。Abstract:
Objective The Changjiaoba Group, located in the Foping area of the South Qinling Belt, is one of the few poorly-studied strata in the belt. The lack of an accurate composition and formation age of these strata has restricted research on the tectonic affinity and evolution of the South Qinling Belt. Method This paper investigates the petrological characteristics and zircon U-Pb chronology of two metasedimentary rocks from the Dizhuanggou Formation of the Changjiaoba Group. Results The results show that the dominant peak detrital zircon dates of the two samples were approximately 810–835 Ma, with the youngest date range being approximately 600–700 Ma, indicating that the maximum depositional age was Neoproterozoic. This age spectrum differs significantly from that of the most exposed Devonian Heilongtan Formation of the Changjiaoba Group, but is highly similar to that of another sample from the Foping Group, which has a minimum age peak of 718 Ma and a major peak at 810 Ma. In addition, metamorphic zircons from the Dizhuanggou Formation and the Foping Group yielded ages of 207 Ma and 193 Ma, respectively. Conclusion The distinct depositional age of the Changjiaoba Group indicate the complexity of its composition. Combined with the petrological and field geological features, the Dizhuanggou Formation and a Neoproterozoic strata of the Foping Group are considered to form the transitional basement of the western South Qinling Belt. This is comparable to the transitional basement of the Wudang and Yaolinghe Groups east of the Ningshan Fault in the South Qinling Belt. Significance The identification of Neoproterozoic and Mesozoic materials in the Changjiaoba Group provides a new basis for the division of metamorphic units in the Foping area, identifying three units with different degrees of layering and metamorphism, which, in turn, facilitates understanding of the Mesozoic orogenic process in the South Qinling Belt. -
Key words:
- South Qinling Belt /
- Changjiaoba Group /
- detrital zircon /
- Neoproterozoic /
- unit division
-
0. 引言
遥感技术在基础地质工作中应用越来越广泛,但是由于植被等因素的干扰,难以将植被覆盖下的信息从图像中分离出来,植被是遥感对地表探查的一道天然屏障。在基岩被植被完全覆盖的地区,遥感所获得的信息主要是植被信息,给遥感地质勘查工作带来极大不便。因此,找到一种可行的植被剔除方法,还原植被覆盖下的基岩信息,可更好地发挥遥感技术在基础地质工作中的应用能力。
过去研究人员主要基于像元的植被指数对植被等干扰信息进行提取,但这种基于像元的模式不能有效地提高提取的精度。因为遥感图像中每个像元一般是多个地物的混合体,一个像元里记录了多类不同性质的地面目标,图像的光谱特征也是多个地物光谱特征的混合反映。混合像元的存在,产生了同物异谱、同谱异物现象,从而给地物的分类造成许多困难。因此,为了提高干扰信息提取的精度,就必须找到一种有效的进行混合像元分解的方法。线性光谱混合模型(Linear Spectrum Mixture Model,LSMM)是目前应用较多的混合像元分解方法[1~2],但LSMM因为要对整幅图像的每个像元都进行处理,所以处理速度较慢。
蚁群算法是由意大利学者Dorigo等人,通过模拟自然界蚂蚁寻径的行为提出的一种全新仿生进化算法[3~4],是具有离散性、并行性、鲁棒性、正反馈性等特点的一种随机搜索方法。由于其概念简明、实现方便,迅速得到认可,并在优化问题求解、电力系统、计算机、冶金自动化等领域都有成功的应用[5]。但目前很少有人将蚁群算法引入遥感地质领域,由于遥感地质领域的信息提取也可以看作是一个组合优化问题,蚁群算法的全局性、离散性和基于概率选择路径等特点对于遥感图像非常适用。
本文为了剔除植被干扰信息,综合考虑LSMM处理速度慢而蚁群算法识别目标速度快的特点,结合蚁群算法和线性光谱混合模型,建立基于蚁群搜索的光谱分解模型,剔除植被干扰信息,重构不含有植被信息的新的多波段图像,以期为后续基础地质工作提供基础影像。
1. 研究方法
1.1 蚁群算法基本原理
对于采用整数编码求解组合优化问题的蚁群系统,设求解问题因素有N个,蚁群中共有M只蚂蚁,τij(t)表示在t时刻i和j组合之间信息素的数量。蚂蚁m在运动过程中根据各个路径上信息素的数量决定下一步的路径。用pijm(t)表示在t时刻蚂蚁m由城市i转移到城市j的概率,则:
pmij(t)={ταij(t)⋅ηβij(t)∑r∈Tmταir(t)⋅ηβir(t)j∈Tm0otherwise (1) 其中:Tm表示蚂蚁m下尝试组合情况的集合,该集合随蚂蚁m的行进过程而动态改变。
信息量τij(t)随时间的推移会逐步衰减,用1-ρ表示它的衰减程度。经过n个时刻,要根据下式对各路径上的信息量作更新:
τij(t+1)=ρ⋅τij(t)+Δτij (2) Δτij=M∑s=1Δτkij (3) Δτijk表示蚂蚁m在本次循环中在组合i和j之间留下的信息量,其计算方法根据蚁群系统的计算模型而定。
1.2 蚂蚁移动规则
正如Chialvo[6]和Millonas[7]所描述的,单只蚂蚁的状态可以用位置参数r和方向参数θ来表示。蚂蚁的状态转移规则可用一个加权函数表示:
w(σ)=[1+σ1+δσ]β (4) 这个方程描述了移动到信息素浓度为σ(r)的像素r处的相对概率。参数β表示一种随机度。β大,则w(σ)值较大,蚂蚁以较大的权系数跟随外激素浓度大的路径;反之,对蚂蚁路径选择影响不大。1/δ表示了蚂蚁感知外激素的能力。
蚂蚁从像元k运动到像元i的归一化转移概率定义为:
pik=w(σi)w(Δi)∑j/kw(σj)w(Δj) (5) w(Δ)是一加权因子,Δj表示蚂蚁在t-1时刻运动时的方向改变量,它的取值为8个离散的w值,一般蚂蚁的来向w定为1/20,原路径方向定为1,邻近的8个像元顺时针依次为1/20,1/12,1/4,1/2,1,1/2,1/4,1/12。
蚂蚁爬行时,先计算8邻域每个像元的转移概率pik,然后根据轮赌算法选择移动到下一个像元。为了有利于全局搜索最优解,避免陷入局部最优解,设定了蚂蚁的兴奋阈值,当某支蚂蚁达到该值时,采用随机算法从8邻域中选择一个像元进行移动。
1.3 线性光谱混合模型
线性光谱混合模型(Linear Spectrum Mixture Model,LSMM)主要的目的是绘制特定像元内地面物质的相对丰度图。因此,它必须要满足几个假设:
① 在一个像元里端元的混合必须是线性的。这种线性关系下光子在从太阳到传感器的路径上仅仅与一种端元成分交互,这要求端元组分分布在足够大的面积上。
② 在图像上所有的地物类型必须要有足够多的对照光谱,以便对它们进行分离。
③ 在图像里存在的端元组分必须在最少一个像元里保持纯状态,这个像元必须能正确识别且可空间定位。
LSMM假定传感器测量的光谱是像元内所有成分光谱的线性组合[1]。LSMM模型描述如下:
Ri=n∑k=1fkRik+εi (6) 在这里i为光谱波段的数目;k是端元的数目;Ri是像元波段i的光谱反射率;fk是像元内端元k的面积比;Rik是波段i端元k的光谱反射率;εi是波段i的模拟误差。
fk受下式约束:
n∑k=1fk=1且0≤fk≤1 (7) 残差RMS用下式计算:
RMS=√(m∑i=1ε2i)/m (8) RMS残差要对所有图像像元都计算。RMS越大,模型的匹配就越差。所以残差图可以用来估计选择的端元是否适当,选择的端元数目是否足够。
因为在LSMM模型中,端元反射率和像元反射率都是已知的,只有端元在像元里的面积比未知,只要波段的数目大于端元数目,就可以求出端元的面积比,从而得到各分量图像和残差图像,进而得到地物的分类图像。
LSMM的优点在于它相对简单,并且是一种有物理意义的丰度测量方法;理论上有较好的科学性,对于解决像元内的混合现象有一定的效果。
2. 基于蚁群算法的光谱分解算法
本文中基于蚁群算法的光谱分解算法采用的是混合像元分解蚁群算法,输入经过反射率转换预处理后的影像,输出不含有植被信息的新的多波段图像。
【算法开始】
① 初始化
1) 蚁群及相关参数;
2) 信息素矩阵;
3) 访问标志矩阵P;
4) 残差矩阵RMS;
5) 丰度矩阵F;
② 迭代,直到达到停止条件
1) 评价每只蚂蚁,对每只蚂蚁做
如果没有访问过当前像元则完成下述工作
(1) 建立端元系数矩阵x;(矩阵x主要存储像元内各子端元的面积)
(2) 建立当前像元波段矩阵y;(矩阵y主要存储当前像元各波段的光谱反射率值)
(3) 调用最小二乘法计算各端元的比例系数矩阵a;(重新计算各子端元的面积)
(4) 对矩阵a进行负数漂移处理;
(5) 对矩阵a进行归一化处理;
(6) 计算该点残差存放到RMS矩阵;
(7) 记录丰度信息到F;
(8) 根据矩阵a调整该像元的各波段值;
(9) 设置当前像元访问标志;
(10) 如果剔除端元所占比例超过某阈值,调整(增加)信息素;
2) 每只蚂蚁爬行,做
如果 蚁群迭代到某兴奋阈值 则
蚂蚁采用随机算法从8邻域中选择一个像元进行移动
否则
(1) 根据公式(4)计算8邻域每个像元的w(σ)
(2) 根据进入方向分配8邻域每个像元的权值
(3) 根据公式(5)计算8邻域每个像元的转移概率pik
(4) 按照轮赌算法选择移动到下一个像元
③ 按照BSQ格式保存图像数据;
④ 按照BSQ格式保存残差矩阵;
⑤ 按照BSQ格式保存剔除专题的丰度矩阵;
【算法结束】
3. 试验及结果分析
选取青海黄南州吉地地区为试验区,该区为植被高度覆盖区。试验区遥感数据为Landsa7号卫星的ETM,景号为132-36,2000年7月18日获取的影像,太阳高度角为64.2°。试验区图像大小为408×402像素,经过反射率转换预处理后的影像作为输入图像。基于ENVI3.6及VC++6.0开发的蚁群光谱分解软件进行试验。
通过求取植被指数,可以发现该区植被覆盖度为85.7157%(见图 1,绿色部分为植被),高植被覆盖率严重影响了矿化弱信息的提取。选用ETM1,2,3,4,5,7等6个波段进行主成分变换,其中PC1和PC2占95.3%。通过主成分分析,选用PC1和PC2制作二维散点图(见图 2)。通过散点图分析,确定图像上主要有植被及3种未知类别共4个端元。运行蚁群光谱分解软件,最后得到剔除植被后影像(见图 3)及残差图(见图 4)。
从残差图上可以看出,最大残差为0.103,绝大部分残差在0.05以下。说明光谱分解的效果较好。对比图 2和图 3可以发现,进行植被剔除后,原来绿色部分的植被覆盖区被还原为该区本来的面目。
4. 结论
基于蚁群算法的光谱分解方法剔除植被信息,首次将蚁群这种全新的算法引入到遥感地质领域,综合考虑传统的光谱分解植被剔除方法处理速度慢和蚁群算法识别目标速度快的特点,通过残差图分析以及原图与剔除植被后影像对比分析,初步验证了基于蚁群算法的光谱分解方法来剔除植被信息的可行性。
由于蚁群算法的理论体系还有待进一步完善,所以用这种全新的算法来处理遥感地质领域的一些复杂问题,还有许多工作要做。如蚁群的初始参数怎样优化,才能取得理想的效果,有待于进一步深入研究。
-
图 1 研究区位置图
T—三叠纪;D—泥盆纪;Pt—元古宙a— 秦岭造山带大地构造略图(据张国伟等,2001;李三忠等,2003;Dong et al.,2011;Zhao and Cawood,2012;Hu et al.,2016修改); b— 佛坪地区地质简图 (据陕西省地质矿产局,1999修改)
Figure 1. Location of the study area
(a) Simplified tectonic map of the Qinling orogenic belt (modified after Zhang et al., 2001; Li et al., 2003; Dong et al., 2011; Zhao and Cawood, 2012; Hu et al., 2016); (b) Geological sketch map of the Foping area (modified after Brueau of Geology and Mineral Resources of Shaanxi Province, 1999)T—Triassic; D—Devonian; Pt—Proterozoic
图 2 佛坪地区新元古代岩石样品野外露头照片及显微镜单偏光照片
Grt—石榴石;Bt—黑云母;Sill—矽线石;Pl—斜长石;Q—石英a— 长角坝群低庄沟组样品FP105-3野外照片;b— FP105-3单偏光照片;c—长角坝群低庄沟组样品FP141-5野外照片;d— FP141-5单偏光照片;e— 佛坪群样品FP110-5野外照片;f— FP110-5单偏光照片
Figure 2. Photographs and photomicrographs of the Neoproterozoic samples in the Foping area
(a) Outcrop of sample FP105-3 from the Dizhuanggou Formation; (b) Photomicrograph of sample FP105-3; (c) Outcrop of sample FP141-5 from the Dizhuanggou Formation; (d) Photomicrograph of sample FP141-5; (e) Outcrop of sample FP110-5 from the Foping Group; (f) Photomicrograph of sample FP110-5 Grt—garnet; Bt—biotite; Sill—sillimanite; Pl—plagioclase; Q—quartz
图 3 佛坪地区新元古代样品碎屑锆石的阴极发光(CL)图像
红色圆圈为锆石测点位置,黄色年龄数据来自岩浆锆石,蓝色年龄数据来自变质锆石a— 长角坝群低庄沟组样品FP105-3的碎屑锆石特征;b— 长角坝群低庄沟组样品FP141-5的碎屑锆石特征;c—佛坪群样品FP110-5的碎屑锆石特征
Figure 3. Cathodoluminescence (CL) images of detrital zircons from the Neoproterozoic samples
(a) FP105-3 from the Dizhuanggou Formation, Changjiaoba Group; (b) FP141-5 from the Dizhuanggou Formation, Changjiaoba Group; (c) FP110-5 from the Foping Group Red circles are analytical spots, yellow dates numbers are from magmatic zircons, while blue dates numbers are from metamorphic zircons.
图 4 佛坪地区新元古代样品碎屑锆石U-Pb年龄谐和图与频率分布直方图
a—样品FP105-3的碎屑锆石U-Pb年龄谐和图;b—样品FP105-3的碎屑锆石U-Pb年龄频率分布直方图;c—样品FP141-5的碎屑锆石U-Pb年龄谐和图;d—样品FP141-5的碎屑锆石U-Pb年龄频率分布直方图;e—样品FP110-5的碎屑锆石U-Pb年龄谐和图;f—样品FP110-5的碎屑锆石U-Pb年龄频率分布直方图
Figure 4. U-Pb concordia and age probability density diagrams of detrital zircons from the Neoproterozoic rock samples in the Foping area
(a) Zircon U-Pb concordia diagrams of sample FP105-3; (b) Zircon U-Pb age histogram probability density diagrams of sample FP105-3; (c) Zircon U-Pb concordia diagrams of sample FP141-5; (d) Zircon U-Pb age histogram probability density diagrams of sample FP141-5; (e) Zircon U-Pb concordia diagrams of sample FP110-5; (f) Zircon U-Pb age histogram probability density diagrams of sample FP110-5
图 5 研究区及其相邻区域年代学数据频谱对比图
a—佛坪地区新元古代地层变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于刘志慧等,2018及文中);b— 南秦岭东段新元古代地体变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于李怀坤等,2003、 凌文黎等,2007,2010; 祝禧艳等,2008; 张永清等,2013;王嘉玮等,2021);c— 扬子地区火成岩结晶年龄(频率直方图及数据引自Zhang et al.,2023a)
Figure 5. Age probability density diagrams of the samples from the study area and its adjacent regions
(a) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the Foping area (data are from this paper and Liu et al., 2018); (b) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the eastern South Qinling area (data are from Li et al., 2003; Ling et al., 2007, 2010; Zhu et al., 2008 and Zhang et al., 2013); (c) Igneous ages from Yangtze block (diagram and data quoted from Zhang et al., 2023a)
-
[1] BADER T, RATSCHBACHER L, FRANZ L, et al., 2013. The heart of China revisited, I. Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia[J]. Tectonics, 32(3): 661-687. doi: 10.1002/tect.20024 [2] Bureau of Geology and Mineral Resources of Shaanxi Province, 1989. Regional geology of Shaanxi province[M]. Beijing: Geological Publishing House. (in Chinese) [3] Bureau of Geology and Mineral Resources of Shaanxi Province, 1999. The People’s Republic of China regional geological survey report of Foping (I48E015024), 1: 50000[R]. National Geological Archives. (in Chinese) [4] CAI Z Y, XIONG X L, LUO H, et al., 2007. Forming age of the volcanic rocks of the Yaolinghe group from Wudang block, southern Qinling mountain: constraint from Grain-Zircon U-Pb dating[J]. Acta Geologica Sinica, 81(5): 620-625. (in Chinese with English abstract [5] CHANG H, WANG X L, XIONG W, 1998. The composition of the basement of the Foping vault of South Qinling[J]. Northwestern Geology, 19(3): 6-11. (in Chinese) [6] CHEN H, HU J M, WU G L, et al., 2010. Study on the intracontinental deformation of the Mian-Lue suture belt, western Qinling[J]. Acta Petrologica Sinica, 26(4): 1277-1288. (in Chinese with English abstract [7] CHEN L G, DAI X Y, LI N, et al., 1999. The geological characteristic of bedded metamorphite series in middle Proterozoic in Foping area[J]. Journal of Xi’an Engineering University, 21(2): 19-23. (in Chinese with English abstract [8] CHEN L Y, LIU Z H, LIU X C, et al., 2019. Metamorphism and its relation of Magmatism of the Foping gneiss dome in the South Qinling tectonic belt[J]. Earth Science, 44(12): 4178-4185. (in Chinese with English abstract [9] CHEN L Y, LIU X C, QU W, et al., 2020. Metamorphic evolution and 40Ar/39Ar geochronology of the Wuguan complex, eastern Qinling area, China: implications for the late Paleozoic tectonic evolution of the Qinling orogen[J]. Lithos, 358-359: 105415. doi: 10.1016/j.lithos.2020.105415 [10] DENG H, PENG S B, POLAT A., et al., 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75-94. doi: 10.1016/j.precamres.2016.12.003 [11] DENG Q Z, YANG Q X, MAO X W, et al., 2016. Study of Lithostratigraphic sequences and chronology of Middle-late Nanhua in Wudang-Suizhou area[J]. Resources Environment & Engineering, 30(2): 132-142. (in Chinese with English abstract [12] DONG Y P, ZHANG G W, FRANZ N, LIU X M, JOHANN G, CHRISTOPH H, 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002 [13] DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005 [14] DONG Y P, SANTOSH M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009 [15] DONG Y P, SUN S S, YANG Z, et al., 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 293: 73-90. doi: 10.1016/j.precamres.2017.02.015 [16] DONG Y P, SUN S S, SANTOSH M, et al., 2021. Central China Orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 100: 131-194. doi: 10.1016/j.gr.2021.03.006 [17] HAN Q S, PENG S B, POLAT A, et al., 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton[J]. Lithos, 342-343: 513-529. doi: 10.1016/j.lithos.2019.05.015 [18] HAN Q S, PENG S B, JIAO S J, 2020. Discovery and tectonic implications of Paleoproterozoic cold Subduction low-temperature/high-pressure Eclogitic Metapelites, Yangtze Craton[J]. Earth Science, 45(6): 1986-1998. (in Chinese with English abstract [19] HSÜ K J, WANG Q C, LI J L, et al., 1987. Tectonic evolution of Qinling Mountains, China[J]. Eclogae Geologicae Helvetiae, 80: 735-752. [20] HU Z C, GAO S, LIU Y S, et al., 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. doi: 10.1039/b804760j [21] HU F Y, LIU S W, SANTOSH M, et al, 2016. Chronology and tectonic implications of Neoproterozoic blocks in the south Qinling Orogenic Belt, central China[J]. Gondwana Research, 30: 24-47. doi: 10.1016/j.gr.2015.01.006 [22] HU F Y, LIU S W, DUCEA M N, et al, 2017. The geochemical evolution of the granitoid rocks in the South Qinling Belt: insights from the Dongjiangkou and Zhashui intrusions, central China[J]. Lithos, 278-281: 195-214. doi: 10.1016/j.lithos.2017.01.021 [23] HU F Y, LIU S W, DUCEA M N, et al, 2018. Interaction among magmas from various sources and crustal melting processes during continental collision: insights from the Huayang intrusive complex of the South Qinling Belt, China[J]. Journal of Petrology, 59(4): 735-770. doi: 10.1093/petrology/egy042 [24] HU F Y, LIU S W, DUCEA M N, et al, 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: implications for oblique continental collision[J]. Gondwana Research, 88: 296-332. doi: 10.1016/j.gr.2020.07.006 [25] HU J, LIU X C, CHEN L Y, et al., 2013. A~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58(28): 3564-3579. [26] HU J, LIU X C, QU W, et al., 2019. Mid-neoproterozoic amphibolite facies metamorphism at the northern margin of the Yangtze craton[J]. Precambrian Research, 326: 333-343. doi: 10.1016/j.precamres.2017.10.010 [27] HU J M, MENG Q R, CHEN H, et al., 2011. Tectonic evolution and implication of Ningshan Fault in the central part of Qinling Orogen[J]. Acta Petrologica Sinica, 27(3): 657-671. (in Chinese with English abstract [28] HU Z C, ZHANG W, LIU Y S, et al., 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation Quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 87(2): 1152-1157. doi: 10.1021/ac503749k [29] JIANG X F, PENG S B, POLAT A, et al., 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan ophiolite complex, Yangtze craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37-56. doi: 10.1016/j.precamres.2016.04.004 [30] JIANG Y Y, XIANG H, ZHANG Z M, 2017. Metamorphic P-T path and tectonic implication of garnet-biotite schist of the Wuguan complex, Qinling orogen[J]. Acta Petrologica Sinica, 33(8): 2563-2574. (in Chinese with English abstract [31] LI H P, 1998. Discovery of Archean crystal complex in the Foping, Shaanxi Province[J]. Regional Geology of China, 17(3): 329-330. (in Chinese with English abstract [32] LI H K, LU S N, CHEN Z H, et al., 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in th South Qinling orogen[J]. , Geological Bulletin of China, 22(10): 755-781. [33] LI H Q, ZHOU W X, WEI Y X, et al., 2020. Two extensional events in the early evolution of the Yangtze Block, South China: Geochemical and isotopic evidence from two sets of Paleoproterozoic alkali porphyry in the northern Kongling Terrane[J]. Geological Journal, 55(9): 6296-6324. doi: 10.1002/gj.3802 [34] LI L M, LIN S F, DAVIS D W, et al., 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block[J]. Precambrian Research, 255: 30-47. doi: 10.1016/j.precamres.2014.09.009 [35] LI N, CHEN Y J, SANTOSH M, et al., 2015. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017 [36] LI Q W, ZHAO J H, 2016. Petrogenesis of the Wudang mafic dikes: implications of changing tectonic settings in South China during the Neoproterozoic[J]. Precambrian Research, 272: 101-114. doi: 10.1016/j.precamres.2015.10.019 [37] LI S K, ZHANG Y Q, JI J Q, et al, 2022. Orogen-parallel mid-lower crustal ductile flow during the late Triassic Qinling orogeny: structural geology and geochronology[J]. International Geology Review, 64(11): 1611-1634. doi: 10.1080/00206814.2021.1949639 [38] LI S Z, ZHANG G W, LI Y L, YANG Y Y, 2000. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 16(2): 220-226 (in Chinese with English abstract). [39] LI S Z, LAI S C, ZHANG G W, et al., 2003. Metamorphic dynamics of the Mian-Lüe suture zone of Qinling Orogenic belt and the southern Qinling Block[J]. Chinese Journal of Geology, 38(2): 137-154. (in Chinese with English abstract [40] LI X H, LI X W, HE B, 2012. Building of the South China block and its relevance to assembly and breakup of Rodinia supercontinent: observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559. (in Chinese with English abstract [41] LI Y L, WANG G B, WANG C S, et al., 2000. Zircon U-Pb isotopic geochronology of the Longcaoping crystal complex in Southern Qinling[J]. Acta Mineralogica Sinica, 20(1): 50-54. (in Chinese with English abstract [42] LIANG S, LIU L, ZHANG C L, et al., 2013. Metamorphism and zircon U-Pb age of high-pressure mafic granulites in in Mian-Lüe suture zone, South Qinling orogen[J]. Acta Petrologica Sinica, 29(5): 1657-1674. (in Chinese with English abstract [43] LIAO X Y, LIU L, ZHAI M G, et al., 2021. Metamorphic evolution and Petrogenesis of garnet-corundum silica-undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 392-393: 106154. doi: 10.1016/j.lithos.2021.106154 [44] LING W L, GAO S, ZHANG B R, et al., 2001. The recognizing of ca. 1.95 Ga tectono-thermal eventin Kongling nucleus and its significance for the evolution of Yangtze Block, South China[J]. Chinese Science Bulletin, 46(4): 326-329. doi: 10.1007/BF03187196 [45] LING W L, REN B F, DUAN R C, et al., 2007. Zircon U-Pb isotopic geochronology of Wudangshan Group, Yaolinghe Group and basic intrusions and its geological significance[J]. Chinese Science Bulletin, 52(12): 1445-1456(in Chinese) doi: 10.1360/csb2007-52-12-1445 [46] LING W L, REN B F, DUAN R C, et al., 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 53(14): 2192-2199. doi: 10.1007/s11434-008-0269-6 [47] LING W L, DUAN R C, LIU X M, et al., 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J]. Chinese Science Bulletin, 55(22): 2440-2448. doi: 10.1007/s11434-010-3095-6 [48] LIU J B, ZHANG L M, 2013. Neoproterozoic low to negative δ18O volcanic and intrusive rocks in the Qinling Mountains and their geological significance[J]. Precambrian Research, 230: 138-167. doi: 10.1016/j.precamres.2013.02.006 [49] LIU R Y, NIU B G, HE Z J, et al., 2011. LA-ICP-MS zircon U-Pb geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shaanxi, China[J]. Geological Bulletin of China, 30(2-3): 448-460. (in Chinese with English abstract [50] LIU S W, YANG P T, LI Q G, et al., 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling Orogen, China[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943. (in Chinese with English abstract [51] LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [52] LIU Y S, HU Z C, ZONG K Q, et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [53] LIU Z H, LUO M, CHEN L Y, et al., 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: Constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 34(5): 1484-1502. (in Chinese with English abstract [54] LIU Z H, CHEN L Y, QU W, et al., 2019. Early mesozoic metamorphism, Anataxis and deformation of Foping area in South Qinling belt: constrains from U-Pb Zircon dating[J]. Acta Geoscientica Sinica, 40(4): 545-562. (in Chinese with English abstract [55] LIU Z H, CHEN L Y, LIU X C, et al, 2025. Petrological and geochronological constraints on the genesis of the Foping gneiss dome, South Qinling Belt, central China[J]. Journal of Asian Earth Sciences, 277: 106406. doi: 10.1016/j.jseaes.2024.106406 [56] LU K, LI X H, ZHOU J L, et al., 2020. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan Complex[J]. Precambrian Research, 346: 105787. doi: 10.1016/j.precamres.2020.105787 [57] LUDWIG K R, 2003. User's manual for ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center. [58] MATTAUER M, MATTE P, MALAVIEILLE J, et al., 1985. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 317(6037): 496-500. doi: 10.1038/317496a0 [59] MENG E, LIU F L, DU L L, et al., 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China: evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry[J]. Gondwana Research, 28(2): 800-815. doi: 10.1016/j.gr.2014.07.003 [60] MENG Q R, 2017. Origin of the Qinling mountains[J]. Scientia Sinica Terrae, 47(4): 412-420. (in Chinese) doi: 10.1360/N072016-00422 [61] NIE H, YAO J, WAN X, et al., 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks[J]. Precambrian Research, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005 [62] PENG M, WU Y B, GAO S, et al., 2012a. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140-151. doi: 10.1016/j.gr.2011.08.012 [63] PENG S B, KUSKY T M, JIANG X F, et al., 2012b. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China’s amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 21(2-3): 577-594. doi: 10.1016/j.gr.2011.07.010 [64] QIN K L, SONG S S, HE S P, 1992. The geological characteristics of the Yudongzi granite-greenstone terrain and its gold-bearing property in Mianluening area Shaanxi[J]. Northwest Geoscience, 13(1): 65-74. (in Chinese with English abstract [65] QIU X F, ZHAO X M, YANG H M, et al., 2018. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J]. Geological Magazine, 155(6): 1263-1276. doi: 10.1017/S0016756817000048 [66] RATSCHBACHER L, HACKER B R, CALVERT A, et al, 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. doi: 10.1016/S0040-1951(03)00053-2 [67] Shaanxi Institute of Geological Survey, 2017. The regional geology of China, Shaanxi province[M]. Beijing: Geological Publishing House: 1-1120. (in Chinese) [68] SHI Y, YU J H, SANTOSH M, 2013. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U-Pb geochronology and Hf isotopes[J]. Precambrian Research, 231: 19-60. doi: 10.1016/j.precamres.2013.03.001 [69] WANG D S, WANG Z Q, ZHANG Y L, et al., 2014. Deformation structures of the Madao gneiss in South Qinling: structural analysis, geochronological constraints, and tectonic implications[J]. Acta Geologica Sinica-English Edition, 88(4): 1102-1119. doi: 10.1111/1755-6724.12276 [70] WANG D S, WANG Z Q, ZHANG Y L, et al., 2016. Metamorphism of Metasedimentary rocks in Madao area, South Qinling Accretionary complex belt[J]. Geoscience, 30(6): 1254-1266. (in Chinese with English abstract [71] WANG D S, WANG Z Q, WANG T, et al., 2024. Unraveling the early Paleozoic tectonic history of the South Qinling Belt: evidence from geochronology, geochemistry, and Sm-Nd isotopes of meta-sedimentary rocks[J]. Journal of Geochemical Exploration, 257: 107362. doi: 10.1016/j.gexplo.2023.107362 [72] WANG G B, 1997. Isotope chronology and its significances of Foping Gneiss System, South Qinling[J]. Northwest Geoscience, 18(2): 21-25. (in Chinese with English abstract [73] WANG J W, WANG G, WANG Z Q, et al., 2021. Genesis and tectonic significance of Mesozoic mafic rocks in the Wudang Mountain-Shiyan Belt, South Qinling Orogen: Constraints from geochemistry and zircon U-Pb, Hf isotopes[J]. Geological Review, 67(4): 869-885. (in Chinese with English abstract [74] WANG Q C, SUN S, LI J L, et al., 1989. The tectonic evolution of the Qinling Mountain Belt[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 24(2): 129-142. (in Chinese with English abstract [75] WANG R R, XU Z Q, SANTOSH M, et al., 2016. Late Neoproterozoic magmatism in South Qinling, Central China: geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications[J]. Tectonophysics, 683: 43-61. doi: 10.1016/j.tecto.2016.05.050 [76] WANG X C, LI X H, LI W X, et al., 2009. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: a review[J]. Gondwana Research, 15(3-4): 381-395. doi: 10.1016/j.gr.2008.08.003 [77] WANG X X, WANG T, ZHANG, C. L. , 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 72, 129-151. [78] WANG X X, WANG T, ZHANG C L, 2015. Granitoid Magmatism in the Qinling Orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 58(9): 1497-1512. doi: 10.1007/s11430-015-5150-2 [79] WANG Z Q, YAN Q R, YAN Z, et al., 2009. New division of the main tectonic units of the Qinling Orogenic Belt, central China[J]. Acta Geologica Sinica, 83(11): 1527-1546. (in Chinese with English abstract [80] WEI C J, YANG C H, ZHANG S G, 1999. Metamorphism of the east sector of the southern Qinling orogenic belt and its geological significance[J]. Acta Geologica Sinica‐English Edition, 73(1): 65-77. doi: 10.1111/j.1755-6724.1999.tb00812.x [81] WEI C J, ZHANG C G. 2002. PT path of medium-pressure metamorphism of continental collision orogenic belt-Exemplified by the southern Qinling orogenic belt[J]. Acta Petrol Mineral, 21: 356-362. (in Chinese with English abstract [82] WU Y B, GAO S, GONG H J, et al., 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism[J]. Journal of Metamorphic Geology, 27(6): 461-477. doi: 10.1111/j.1525-1314.2009.00826.x [83] WU Y B, ZHOU G Y, GAO S, et al., 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73-86. doi: 10.1016/j.precamres.2014.08.004 [84] XIA L Q, XIA Z C, LI X M, et al., 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains[J]. Northwestern Geology, 41(3): 1-29. (in Chinese with English abstract [85] XIONG Q, ZHENG J P, YU C M, et al., 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54(3): 436-446. doi: 10.1007/s11434-008-0401-7 [86] XU Z Q, LU Y L, TANG Y Q, et al. , 1988. The Formation of the East Qinling Moutian Chain—deformation, evolution and plate dynamics[M]. Beijing: China Environmental Science Press: 1-193. (in Chinese) [87] YAN Z, WANG Z Q, YAN Q R, et al., 2006. Devonian sedimentary environments and provenance of the Qinling orogen: constraints on late Paleozoic southward accretionary tectonics of the north China craton[J]. International Geology Review, 48(7): 585-618. doi: 10.2747/0020-6814.48.7.585 [88] YAN Z, WANG Z Q, YAN Q R, et al., 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, central China: implications for the Tectonic evolution of the Qinling orogenic belt[J]. Journal of Sedimentary Research, 82(1): 9-20. doi: 10.2110/jsr.2012.4 [89] YANG C H, WEI C J, ZHANG S G, et al., 1999. U-Pb zircon dating of granulite facies rocks from the Foping area in the southern Qinling Mountains[J]. Geological Review, 45(2): 173-179. (in Chinese with English abstract [90] YANG Z B, PEI X Z, LI R B, et al., 2023. Provenance tracing of Detrital zircons from Nanhua system in Bikou Microblock, northwestern margin of Yangtze and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 43(1): 226-248. (in Chinese with English abstract [91] YIN C Q, LIN S F, DAVIS D W, et al., 2013. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012 [92] ZHA X F, DONG Y P, LI W, et al., 2010. Uplifting process of Foping dome in southern Qinling: constrained by structural analysis[J]. Geotectonica et Metallogenia, 34(3): 331-339. (in Chinese with English abstract [93] ZHANG G W, ZHANG B R, YUAN X C, et al. , 2001. Qinling Orogenic belt and continental dynamics[M]. Beijing: Science Press: 1-885. (in Chinese) [94] ZHANG G W, et al. , 2015. The Mianlue tectonic zone of the Qinling orogen and China continental tectonics[M]. Beijing: Science Press. (in Chinese) [95] ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract [96] ZHANG H, YE R S, LIU B X, et al., 2016a. Partial melting of the South Qinling orogenic crust, China: evidence from Triassic migmatites and diorites of the Foping dome[J]. Lithos, 260: 44-57. doi: 10.1016/j.lithos.2016.05.007 [97] ZHANG H, LI S Q, FANG B W, et al., 2018. Zircon U-Pb ages and geochemistry of migmatites and granites in the Foping dome: evidence for Late Triassic crustal evolution in South Qinling, China[J]. Lithos, 296-299: 129-141. doi: 10.1016/j.lithos.2017.10.024 [98] ZHANG H, HE J, LI Y C, et al., 2023a. Neoproterozoic crustal growth and reworking in South Qinling, central China: Evidence from zircon U-Pb age and Hf isotopic composition of paragneiss in the Foping dome[J]. Journal of Asian Earth Sciences, 256: 105784. doi: 10.1016/j.jseaes.2023.105784 [99] ZHANG R Y, AO W H, SUN Y, 2013. The formation age, material composition and geological significance of intrusive rocks in the western part of South Qinling (Foping-Liuba area)[C]//National Symposium on Petrology and Geodynamics (Abstract). Guangzhou: Geological Society of China. (in Chinese) [100] ZHANG R Y, SUN Y, ZHANG X, et al., 2016b. Neoproterozoic magmatic events in the South Qinling Belt, China: implications for amalgamation and breakup of the Rodinia supercontinent[J]. Gondwana Research, 30: 6-23. doi: 10.1016/j.gr.2015.06.015 [101] ZHANG R Y, AO W H, ZHAO Y, 2023b. U-Pb zircon ages and geochemistry of the Metasedimentary rocks from the Foping area in the South Qinling belt: evidence for early Devonian amalgamation between North China and South China blocks[J]. Journal of Earth Science, 34(4): 1112-1127. doi: 10.1007/s12583-022-1608-2 [102] ZHANG S, LIU J X, ZUO M, et al., 2022. Analysis on geological characteristics and metallogenic conditions of Yuanjiazhuang crystalline graphite deposit in the Foping area[J]. West-China Exploration Engineering, 34(4): 137-141. (in Chinese with English abstract [103] ZHANG X, XU X Y, SONG G S, et al., 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China[J]. Geological Bulletin of China, 29(4): 510-517. (in Chinese with English abstract [104] ZHANG Y Q, ZHANG J, LI H K, et al., 2013. Zircon U-Pb geochronology of the meta-acidic volcanic rocks from the Wudangshan Group, southern Qinling mountains, central China[J]. Acta Geologica Sinica, 87(7): 922-930. (in Chinese with English abstract [105] ZHANG Z Q, ZHANG G W, TANG S H, et al., 2001. On the age of metamorphic rocks of the Yudongzi group and the Archean crystalline basement of the Qinling Orogen[J]. Acta Geologica Sinica, 75(2): 198-204. (in Chinese with English abstract [106] ZHANG Z Q, SONG B, TANG S H, et al., 2004. Age and material composition of the Foping metamorphic crystalline complex in the Qinling Mountians: SHRIMP zircon U-Pb and whole-rock Sm-Nd geochronology[J]. Geology in China, 31(2): 161-168. (in Chinese with English abstract [107] ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017 [108] ZHAO J H, ZHOU M F, ZHENG J P, 2010. Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China[J]. Lithos, 115(1-4): 177-189. doi: 10.1016/j.lithos.2009.12.001 [109] ZHAO J H, ASIMOW P D, ZHOU M F, et al., 2017. An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China[J]. Precambrian Research, 296: 93-111. doi: 10.1016/j.precamres.2017.04.017 [110] ZHENG Y F, ZHANG S B, ZHAO Z F, et al., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust[J]. Lithos, 96(1-2): 127-150. doi: 10.1016/j.lithos.2006.10.003 [111] ZHENG Y F, WU R X, WU Y B, et al., 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163(3-4): 351-383. doi: 10.1016/j.precamres.2008.01.004 [112] ZHOU D W, ZHANG C L, HUA H, et al., 1998. New knowledge about division and correlation of the Mid-and Neo-Proterozoic strata in the South Qinling[J]. Geological Journal of China Universities, 4(3): 350-357. (in Chinese with English abstract [113] ZHOU D W, ZHANG C L, ZHOU X H, et al., 1999. 40Ar-39Ar dating of basic dykes from Wudang block and their geology significance[J]. Acta Petrologica Sinica, 15(1): 14-20. (in Chinese with English abstract [114] ZHU X Y, CHEN F K, WANG W, et al., 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang group in the Qinling Orogenic belt within western Henan province[J]. Acta Geoscientia Sinica, 29(6): 817-829. [115] ZHU X Y, CHEN F K, NIE H, et al., 2014. Neoproterozoic tectonic evolution of South Qinling, China: evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks[J]. Precambrian Research, 245: 115-130. doi: 10.1016/j.precamres.2014.02.005 [116] 蔡志勇,熊小林,罗洪,等,2007. 武当地块耀岭河群火山岩的时代归属:单锆石U-Pb年龄的制约[J]. 地质学报,81(5):620-625. doi: 10.3321/j.issn:0001-5717.2007.05.005 [117] 常宏,王向利,熊伟,1998. 南秦岭佛坪穹窿基底组成[J]. 西北地质,19(3):6-11. [118] 陈虹,胡健民,武国利,等,2010. 西秦岭勉略带陆内构造变形研究[J]. 岩石学报,26(4):1277-1288. [119] 陈陇刚,代新宇,李宁,等,1999. 佛坪地区中元古代孔兹岩系地质特征[J]. 西安工程学院学报,21(2):19-23. [120] 陈龙耀,刘志慧,刘晓春,等,2019. 南秦岭佛坪片麻岩穹隆变质作用及与岩浆作用的关系[J]. 地球科学,44(12):4178-4185. [121] 邓乾忠,杨青雄,毛新武,等,2016. 湖北武当—随枣地区中—晚南华世岩石地层序列与年代学研究[J]. 资源环境与工程,30(2):132-142. [122] 韩庆森,彭松柏,焦淑娟,2020. 扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义[J]. 地球科学,45(6):1986-1998. [123] 胡健民,孟庆任,陈虹,等,2011. 秦岭造山带内宁陕断裂带构造演化及其意义[J]. 岩石学报,27(3):657-671. [124] 江媛媛,向华,张泽明,2017. 秦岭造山带武关杂岩石榴黑云片岩的变质作用P-T轨迹与构造意义[J]. 岩石学报,33(8):2563-2574. [125] 李海平,1998. 陕西省佛坪发现太古宇结晶杂岩[J]. 中国区域地质,17(3):329-330. [126] 李怀坤,陆松年,陈志宏,等,2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J]. 地质通报,22(10):775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005 [127] 李三忠,张国伟,李亚林,等,2000. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报,16(2):220-226. doi: 10.3321/j.issn:1000-0569.2000.02.011 [128] 李三忠,赖绍聪,张国伟,等,2003. 秦岭勉(县-)略(阳)缝合带及南秦岭地块的变质动力学研究[J]. 地质科学,38(2):137-154. doi: 10.3321/j.issn:0563-5020.2003.02.001 [129] 李献华,李武显,何斌,2012. 华南陆块的形成与Rodinia超大陆聚合-裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,31(6):543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002 [130] 李亚林,王根宝,王成善,等,2000. 南秦岭龙草坪结晶杂岩锆石U-Pb同位素地质年代学研究[J]. 矿物学报,20(1):50-54. doi: 10.3321/j.issn:1000-4734.2000.01.009 [131] 梁莎,刘良,张成立,等,2013. 南秦岭勉略构造带高压基性麻粒岩变质作用及其锆石U-Pb年龄[J]. 岩石学报,29(5):1657-1674. [132] 凌文黎,任邦方,段瑞春,等,2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J]. 科学通报,52(12):1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015 [133] 凌文黎,段瑞春,柳小明,等,2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报,55(12):1153-1161. [134] 刘仁燕,牛宝贵,和政军,等,2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年[J]. 地质通报,30(2-3):448-460. [135] 刘树文,杨朋涛,李秋根,等,2011. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),41(6):1928-1943. [136] 刘志慧,罗敏,陈龙耀,等,2018. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约[J]. 岩石学报,34(5):1484-1502. [137] 刘志慧,陈龙耀,曲玮,等,2019. 南秦岭佛坪地区早中生代变质-深熔-变形作用的锆石U-Pb年代学制约[J]. 地球学报,40(4):545-562. [138] 孟庆任,2017. 秦岭的由来[J]. 中国科学:地球科学,47(4):412-420. [139] 秦克令,宋述光,何世平,1992. 陕西勉略宁区鱼洞子花岗岩-绿岩地体地质特征及其含金性[J]. 西北地质科学,13(1):65-74. [140] 陕西省地质调查院,2017. 中国区域地质志-陕西志[M]. 北京:地质出版社:1-1120. [141] 陕西省地质矿产局,1989. 陕西省区域地质志[M]. 北京:地质出版社. [142] 陕西省地质矿产局,1999. 中华人民共和国区域地质调查报告:1:50000 佛坪县幅(I48E015024)[R]. 全国地质资料馆. [143] 王东升,王宗起,张英利,等,2016. 南秦岭增生杂岩带马道地区变泥质岩的变质作用[J]. 现代地质,30(6):1254-1266. [144] 王根宝,1997. 南秦岭佛坪片麻岩系同位素年代学及其地质意义[J]. 西北地质科学,18(2):21-25. [145] 王嘉玮,王刚,王宗起,等,2021. 南秦岭武当山十堰地区中生代镁铁质岩石成因与构造意义:岩石地球化学、锆石U-Pb年龄和Hf同位素制约[J]. 地质论评,67(4):869-885. [146] 王清晨,孙枢,李继亮,等,1989. 秦岭的大地构造演化[J]. 地质科学,24(2):129-142. [147] 王宗起,闫全人,闫臻,等,2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报,83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001 [148] 魏春景,张翠光,2002. 陆-陆碰撞造山带中压型变质作用的pT轨迹:以南秦岭佛坪地区为例[J]. 岩石矿物学杂志,21(4):356-362. doi: 10.3969/j.issn.1000-6524.2002.04.007 [149] 夏林圻,夏祖春,李向民,等,2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质,41(3):1-29. [150] 许志琴,卢一伦,汤耀庆,等,1988. 东秦岭复合山链的形成-变形、演化及板块动力学[M]. 北京:中国环境科学出版社:1-193. [151] 杨崇辉,魏春景,张寿广,等,1999. 南秦岭佛坪地区麻粒岩相岩石锆石U-Pb年龄[J]. 地质论评,45(2):173-179. [152] 杨再兵,裴先治,李瑞保,等,2023. 扬子西北缘碧口微地块南华系碎屑锆石物源示踪及其地质意义[J]. 沉积与特提斯地质,43(1):226-248. [153] 查显锋,董云鹏,李玮,等,2010. 南秦岭佛坪隆起的成因探讨:构造解析的证据[J]. 大地构造与成矿学,34(3):331-339. [154] 张国伟,张本仁,袁学诚,等,2001. 秦岭造山带与大陆动力学[M]. 北京:科学出版社:1-885. [155] 张国伟,等,2015. 秦岭勉略构造带与中国大陆构造[M]. 北京:科学出版社. [156] 张国伟,郭安林,董云鹏,等,2019. 关于秦岭造山带[J]. 地质力学学报,25(5):746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064 [157] 张瑞英,敖文昊,孙勇,2013. 南秦岭西段(佛坪-留坝地区)侵入岩系的形成时代、物质组成及其地质意义[C]//全国岩石学与地球动力学研讨会论文集. 广州:中国地质学会. [158] 张诜,刘锦兴,左猫,等,2022. 佛坪袁家庄晶质石墨矿区地质特征及成矿条件浅析[J]. 西部探矿工程,34(4):137-141. doi: 10.3969/j.issn.1004-5716.2022.04.049 [159] 张欣,徐学义,宋公社,等,2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义[J]. 地质通报,29(4):510-517. doi: 10.3969/j.issn.1671-2552.2010.04.004 [160] 张永清,张健,李怀坤,等,2013. 南秦岭武当山群变质酸性火山岩锆石U-Pb年代学[J]. 地质学报,87(7):922-930. doi: 10.3969/j.issn.0001-5717.2013.07.002 [161] 张宗清,张国伟,唐索寒,等,2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底[J]. 地质学报,75(2):198-204. doi: 10.3321/j.issn:0001-5717.2001.02.008 [162] 张宗清,宋彪,唐索寒,等,2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征-SHRIMP锆英石U-Pb年代学和全岩Sm-Nd年代学数据[J]. 中国地质,31(2):161-168. doi: 10.3969/j.issn.1000-3657.2004.02.007 [163] 周鼎武,张成立,华洪,等,1998. 南秦岭中、新元古代地层划分对比新认识[J]. 高校地质学报,4(3):350-357. [164] 周鼎武,张成立,周小虎,等,1999. 武当地块基性岩墙群40Ar-39Ar定年及其地质意义[J]. 岩石学报,15(1):14-20. doi: 10.3321/j.issn:1000-0569.1999.01.002 [165] 祝禧艳,陈福坤,王伟,等,2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报,29(6):817-829. doi: 10.3321/j.issn:1006-3021.2008.06.025 -