APPLICATION OF PALEOMAGNETISM IN ORE DEPOSIT STUDY
-
摘要: 古地磁学是研究地质历史上地球磁场强度及其变化的一门学科,其核心是岩石中富含若干的磁性矿物。通过测定其保存的剩磁强度和方向等,可计算获得岩石形成时的初始磁性强度和方向,从而为约束岩石形成时的古磁极位置、形成时代和地球动力学背景等研究提供证据。矿石作为地球演化过程中形成的一类特殊的岩石,对其进行古地磁研究可为矿床的"源—运—储—保—变"等过程提供强有力的证据。现有关于矿床古地磁学的研究主要集中在两方面,一是通过矿物的退磁参数限定其形成时的磁化年龄(矿床定年),二是通过磁组构信息获取矿床形成后的构造应力场变化(矿床保存变化)。需要指出的是,矿床古地磁学的研究一定要立足于地质事实。由于地质产状和围岩蚀变对磁性参数的影响极大,在进行矿床地磁数据处理时一定要慎重,并与磁性地层学互相印证,才有可能获得有价值的磁性参数,从而为约束矿床成因提供有效证据。Abstract: Paleomagnetism is a geological methodology focusing on the magnetic parameters and their variation regulation of geomagnetic field during the Earth history. The core is several magnetic minerals in rocks. By measuring preserved remanence and direction, the initial magnetic strength and direction in rock-forming process can be calculated. It constrains paleomagnetic pole position, rock-forming age and geodynamics background. Ore, a special kind of rock in earth evolution, determines source-transport-storage-preserve-change in deposit-forming process by paleomagnetism study. The present study on paleomagnetism of ore deposits mainly focuses on two aspects: (1) Demagnetization parameters of minerals are used to determine the age of magnetization at the time of formation (dating of the ore deposit) (2) Tectonic stress field changes after the formation of the ore deposit are obtained through magnetic fabric data(Ore deposit preservation changes).More importantly, geological facts are the foundation of paleomagnetism of ore deposits. Due to the great influence of geological occurrence and wall-rock alteration on magnetic parameters, caution must be taken in the processing of geomagnetic data of mineral deposits, and the mutual verification with magnetic stratigraphy can make it possible to obtain valuable magnetic parameters, thus providing effective evidence for restricting the genesis of mineral deposits.
-
Key words:
- paleomagnetism /
- ore deposit /
- magnetic fabric /
- magnetostratigraphy
-
表 1 区域平均特征剩余磁化强度
Table 1. Group mean characteristic remanent magnetization (ChRM) directions
采样位置 采样点 特征剩磁方向平均值 数量 磁偏角/(°) 磁倾角/(°) α95 k Note1 Black Cloud矿区 8-10 3 173.1 -56.8 16.2 58.7 u, R 3 185.2 -57.9 16.2 58.7 c, R Pando斑岩接触带 11, 12, 26 3 309.4 51.5 13.1 89.5 u, M 3 326.2 65.6 17.0 53.8 c, M 大陆主要矿区 1, 2, 4, 5 4 340.0 68.9 15.3 37.0 u, N 4 335.5 73.6 27.5 12.1 c, N 注:Note1未校正(u)或校正(c)的顺层倾斜,正常极性(N),反向极性(R),极性混乱(M),数字为采样点 表 2 各矿区古地磁极位置
Table 2. Pole positions
采样位置 采样点 经度E/(°) 纬度N/(°) dp/(°) dm/(°) Black Cloud矿区 1 147.4 84.3 17.1 23.5 大陆主要矿区 5 214.0 71.0 22.0 26.0 第三纪(所有位置) 11 190.6 78.7 10.2 13.1 -
[1] 亚夏尔·亚力坤.沉积岩容矿铅锌矿床的古地磁研究[D].北京: 中国地质大学(北京), 2017.Yachar Yalikun. Paleomagnetic study of Pb-Zn deposits hosted by sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2017. (in Chinese with English abstract) [2] SYMONS D T A, SMETHURST M T, ASHTON J H. Paleomagnetism of the Navan Zn-Pb Deposit, Ireland[J]. Economic Geology, 2002, 97(5): 997-1012. doi: 10.2113/gsecongeo.97.5.997 [3] PIGNOTTA G S, BENN K. Magnetic fabric of the Barrington Passage pluton, Meguma Terrane, Nova Scotia: a two-stage fabric history of syntectonic emplacement[J]. Tectonophysics, 1999, 307(1-2): 75-92. doi: 10.1016/S0040-1951(99)00119-5 [4] TRENCH A, 郭友钊.古地磁测定矿床年代:简要评述及在西澳大利亚应用的展望[J].物探化探译丛, 1994, (2): 16-21.TRENCH A, GUO Youzhao. Paleomagnetic dating of ore deposits: a brief review and prospects for its application in Western Australia[J]. Geophysical and Geochemical Interpretation Series, 1994, (2): 16-21. (in Chinese) [5] 李金超, 孔会磊, 栗亚芝, 等.青海东昆仑西藏大沟金矿床花岗闪长斑岩锆石U-Pb年龄、地球化学及其成矿意义[J].地质力学学报, 2018, 24(2): 188-198. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180205&journal_id=dzlxxbLI Jinchao, SUN Huilei, LI Yazhi, et al. Zircon U-Pb dating, geochemical characteristics and metallogenic significance of gronodiorite porphyry from the Xizangdagou gold deposit in east Kunlun, Qinghai province[J]. Journal of Geomechanics, 2018, 24(2): 188-198. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180205&journal_id=dzlxxb [6] QIU W J, ZHOU M F, LIU Z R. Late Paleozoic SEDEX deposits in South China formed in a carbonate platform at the northern margin of Gondwana[J]. Journal of Asian Earth Sciences, 2018, 156: 41-58. doi: 10.1016/j.jseaes.2018.01.006 [7] PANNALAL S J, SYMONS D T A, SANGSTER D F. Paleomagnetic evidence for an Early Permian age of the Lisheen Zn-Pb deposit, Ireland[J]. Economic Geology, 2008, 103(8): 1641-1655. doi: 10.2113/gsecongeo.103.8.1641 [8] ZHENG W, MAO J W, PIRAJNO F, et al. Geochronology and geochemistry of the Shilu Cu-Mo deposit in the Yunkai area, Guangdong Province, South China and its implication[J]. Ore Geology Reviews, 2015, 67: 382-398. doi: 10.1016/j.oregeorev.2014.12.009 [9] SYMONS D T A, LEWCHUK M T, TAYLOR C D, et al. Age of the Sherman-Type Zn-Pb-Ag Deposits, Mosquito Range, Colorado[J]. Economic Geology, 2000, 95(7): 1489-1504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1096071da613220ca9f9081e1074b533 [10] TORSVIK T H, SMETHURST M T, MEERT J G, et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic-a tale of Baltica and Laurentia[J]. Earth Science Reviews, 1996, 40(3-4): 229-258. doi: 10.1016/0012-8252(96)00008-6 [11] TORSVIK T H, VAN DER VOO R, MEERT J G, et al. Reconstructions of the continents around the North Atlantic at about the 60th parallel[J]. Earth and Planetary Science Letters, 2001, 187(1-2): 55-69. doi: 10.1016/S0012-821X(01)00284-9 [12] SYMONS D T A, PANNALAL S J, KAWASAKI K, et al. Paleomagnetic age of the Magcobar Ba deposit, Silvermines, Ireland[A]. Mineral Exploration and Research: Digging Deeper[C]. Dublin: Irish Association for Economic Geology, 2007, 377-380. [13] PANNALAL S J, SYMONS D T A, SANGSTER D F. Paleomagnetic dating of Upper Mississippi Valley zinc-lead mineralization, WI, USA[J]. Journal of Applied Geophysics, 2004, 56(2): 135-153. doi: 10.1016/j.jappgeo.2004.04.006 [14] 阎桂林, 魏燕平.安徽庐江龙桥铁矿含矿地层的古地磁学研究[J].地球科学:中国地质大学学报, 1994, 19(5): 695-700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803380YAN Guilin, WEI Yanping. Study on paleomagnetism of iron bed of Longqiao iron ore mine in Lujiang, Anhui Province[J]. Earth Science: Journal of China University of Geosciences, 1994, 19(5): 695-700. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803380 [15] SIZARET S, CHEN Y, CHAUVET A, et al. Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)[J]. Earth and Planetary Science Letters, 2003, 206(3-4): 555-570. doi: 10.1016/S0012-821X(02)01112-3 [16] 马天林, 王连庆, 孙立倩, 等.磁组构分析在韧性变形带研究中的应用[J].地球学报, 2003, 24(5): 449-452. doi: 10.3321/j.issn:1006-3021.2003.05.010MA Tianlin, WANG Lianqing, SUN Liqian, et al. Application of magnetic fabric analysis to the ductile deformation belt in the Tuwu Copper Deposit, East Tianshan, Xinjiang[J]. Acta Geoscientica Sinica, 2003, 24(5): 449-452. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2003.05.010 [17] SYMONS D T A. Paleomagnetism of the HYC Zn-Pb SEDEX Deposit, Australia: Evidence of an epigenetic origin[J]. Economic Geology, 2007, 102(7): 1295-1310. doi: 10.2113/gsecongeo.102.7.1295