Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen
-
摘要: 东昆仑造山带印支期的碰撞造山过程目前尚存在争议,在东昆仑小南川地区新发现的三叠纪埃达克质花岗岩为约束碰撞造山演化提供了新的地质证据。研究通过对小南川地区出露的磨石沟和本头山2个花岗岩体开展岩石学、地球化学、锆石U-Pb和Lu-Hf同位素分析,探讨其岩石成因和构造环境,并结合以往东昆仑印支晚期岩浆作用和沉积作用的研究成果,初步讨论了东昆仑印支造山带的碰撞造山过程。磨石沟岩体岩性为花岗闪长岩和二长花岗岩,形成时代为209~208 Ma;本头山岩体岩性为花岗闪长岩,形成时代为201~200 Ma。2个岩体的花岗岩含较高的SiO2和Al2O3,富碱且相对富钠,同时含较高的Sr(398×10−6~613×10−6)和Sr/Y比值(50~97),亏损重稀土,无Eu异常,表现出埃达克质花岗岩的地球化学特征。磨石沟花岗岩具有负的全岩εNd(t)值(−3.60~−3.34)和变化的锆石εHf(t)值(−1.3~5.9),表明其来源于加厚下地壳的部分熔融。本头山花岗岩具有负的全岩εNd(t)值(−1.65~−1.55)和正的锆石εHf(t)值(+3.4~+7.3),表明其来源于变质基性岩组成的加厚下地壳,残留相为榴辉岩。磨石沟岩体和本头山岩体花岗岩形成于东昆仑印支造山带碰撞后伸展的构造环境。综合分析表明,东昆仑造山带在晚三叠世处于碰撞和碰撞后阶段,而碰撞后阶段的岩浆活动可以进一步划分为晚三叠世早期和晚三叠世晚期—早侏罗世初期2个阶段。Abstract:
Objective The Indosinian collision process of the East Kunlun Orogenic Belt remains a subject of debate. The newly discovered Triassic adakitic granites in the Xiaonanchuan area of East Kunlun provide new geological evidence that constrains the evolution of collisional orogenesis. Methods This study conducted petrological, geochemical, zircon U-Pb, and Lu-Hf isotopic analyses of the Moshigou and Bentoushan granitic intrusions in the Xiaonanchuan area to investigate their petrogenesis and tectonic settings. By integrating previous research on magmatism and sedimentation during the late Indosinian period within the East Kunlun Orogenic Belt, a preliminary discussion was conducted on collisional orogensis process. Results and Conclusion The Moshigou intrusion consists of granodiorite and monzogranite with zircon U-Pb ages of 209–208 Ma. The Bentoushan intrusion is composed of granodiorite with zircon U-Pb ages of 201–200 Ma. These granitoids have high SiO2 and Al2O3 contents and are rich in sodium. They also have high Sr contents (398×10−6–613×10−6) and Sr/Y ratios (50–97) and are depleted in heavy rare earth elements without Eu anomalies, exhibiting typical geochemical characteristics of adakitic rocks. The Moshigou granitoids have negative whole-rock εNd(t) (−3.60 to −3.34) and variable zircon εHf(t) (−1.3 to +5.9), indicating their derivation from the partial melting of the thickened lower crust. The Bentoushan granitoids have negative whole-rock εNd(t) (−1.65 to −1.55) and positive zircon εHf(t) (+3.4 to +7.3), suggesting their origin from meta-basic rock-dominated thickened lower crust with eclogite residue. Significance These results suggest that they were formed in a post-collisional extension setting. A comprehensive analysis indicates that the East Kunlun Orogenic Belt was in the collision and post-collision stages during the Late Triassic. The post-collision stage can be further divided into two phases of magmatic activity: early and late phases of the Late Triassic. -
Key words:
- collisional orogenesis /
- Late Indosinian /
- petrogenesis /
- adakitic granites /
- East Kunlun
-
图 1 研究区位置和小南川地区地质简图
1—侏罗系;2—三叠系;3—石炭系—二叠系;4—石炭系;5—泥盆系;6—寒武系—奥陶系;7—志留系;8—元古宇;9—二叠纪—三叠纪花岗岩;10—志留纪—泥盆纪花岗岩;11—寒武纪—奥陶纪花岗岩;12—镁铁—超镁铁质岩;13—区域性断裂及编号;14—一般断裂;15—湖泊;16—河流;17—采样地点和编号;F1—阿尔金断裂;F2—昆北断裂;F3—昆中断裂;F4—昆南断裂a—研究区位置(据王秉璋等,2021修改);b—小南川地区地质简图
Figure 1. The location of the study area and geological sketch of Xiaonanchuan area
(a) The location of the study area (modified after Wang et al.,2021); (b) Geological sketch of Xiaonanchuan area1—Jurassic; 2—Triassic; 3—Carboniferous-Permian; 4—Carboniferous; 5—Devonian; 6—Cambrian-Ordovician; 7—Silurian; 8—Proterozoic; 9—Permian-Triassic granite; 10—Silurian-Devonian granite; 11—Cambrian-Ordovician granite; 12—ultramafic-mafic rocks; 13—regional faults and numbers; 14—general faults; 15— lakes; 16—rivers; 17—Sampling location and number; F1—Altyn Fault; F2—North Kunlun Fault; F3—Central Kunlun Fault; F4—South Kunlun Fault.
图 2 东昆仑印支晚期埃达克质花岗岩的野外和显微特征
Qz—石英;Pl—斜长石;Kf—钾长石;Bit—黑云母a—本头山岩体侵入于下古生界;b—磨石沟岩体野外特征;c—磨石沟岩体二长花岗岩镜下结构和主要矿物特征(正交偏光);d—磨石沟岩体二长花岗岩镜下钾长石条纹结构(正交偏光);e—磨石沟岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光);f—本头山岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光)
Figure 2. Field characteristics and photomicrographs of Late Indosinian adakitic granite in East Kunlun
(a) Bentoushan rock mass intruded into the Lower Paleozoic; (b) Field characteristics of Moshigou rock mass; (c) Microstructure and main mineral characteristics of monzogranite in Moshigou rock mass (cross-polarized light); (d) Potassium feldspar perthitic microstructure of monzogranite in Moshigou rock mass (cross-polarized light); (e) Microstructure and main mineral characteristics of granodiorite in Moshigou rock mass (cross-polarized light); (f) Microstructure and main mineral characteristics of granodiorite in Bentoushan rock mass (cross-polarized light) Notes:Qz—quartz; Pl—plagioclase; Kf—potassium-feldspar; Bit—biotite.
图 3 东昆仑印支晚期埃达克质岩的SiO2−(K2O+Na2O)与SiO2−K2O图解
a—SiO2−(K2O+Na2O)图解(底图据Middlemost,1994);b —SiO2−K2O图解(底图据Peccerillo and Taylor,1976)
Figure 3. SiO2−(K2O+Na2O) and SiO2−K2O diagrams of Late Indosinian adakitic rocks in East Kunlun
(a) SiO2−(K2O+Na2O) diagram (according to Middlemost,1994); (b) SiO2−K2O diagram(according to Peccerillo and Taylor,1976)
图 4 东昆仑印支晚期埃达克质岩的稀土元素球粒陨石标准化图解与微量元素原始地幔标准化蛛网图(标准化数据据Sun and McDonough,1989)
a—c—稀土元素球粒陨石标准化图解;d—f—微量元素原始地幔标准化蛛网图
Figure 4. Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace-element spider diagrams of Late Indosinian adakitic rocks in East Kunlun (data normalized according to Sun and McDonough, 1989)
(a)–(c) Chondrite-normalized REE distribution patterns; (d)–(f) Primitive mantle-normalized trace-element spider diagrams
图 5 东昆仑磨石沟和本头山埃达克质花岗岩锆石和独居石U-Pb测年结果与典型锆石、独居石的阴极发光图像
图a、b中白色实线圆圈与数字代表锆石LA-ICP-MS U-Pb定年测点位和编号;图中数值表示年龄和εHf(t)值a—d虚线圆圈表示锆石Hf同位素测试点位;c—e中白色方框代表LA-ICP-MS U-Pb定年点位
Figure 5. Cathodoluminescence images and U-Pb diagrams of zircon and monazite of adakitic granites from Moshigou and Bentoushan in East Kunlun
Notes:In (a) and (b), the white solid circles with numbers represent the zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating sampling locations and their corresponding identifiers. Dashed circles from (a)–(d) indicate the zircon Hf isotope testing points. The white squares in (c)––(e) denote the LA-ICP-MS U-Pb dating locations. The numbers in the figure indicate the ages and εHf(t) values of these sites.
图 6 东昆仑印支晚期埃达克质岩SiO2−Nb/Ta、SiO2−Al2O3、SiO2−MgO、SiO2−TiO2、SiO2−Mg#、SiO2−P2O5、SiO2−Yb、SiO2−Fe2O3、SiO2−Ca、SiO2−Na2O、SiO2−Ni和SiO2−Cr图解(俯冲洋壳熔融形成的埃达克质岩、加厚下地壳熔融形成的埃达克质岩和拆沉下地壳熔融形成的埃达克质岩分类据Wang et al.,2006)
Figure 6. SiO2 vs. Nb/Ta, SiO2 vs. Al2O3 , SiO2 vs. MgO, SiO2 vs. TiO2, SiO2 vs. Mg, SiO2 vs. P2O5, SiO2 vs. Yb, SiO2 vs. Fe2O3, SiO2 vs. Ca, SiO2 vs. Na2O, SiO2 vs. Ni, and SiO2 vs. Cr plots of Late Indosinian adakitic rocks in East Kunlun(The fields of adakitic rocks derived from the partial melting of the subducted oceanic crust, thickened crust, and delaminated lower crust were compiled according to Wang et al.,2006)
图 7 东昆仑印支晚期埃达克质花岗岩Th−Th/Y、La−La/Sm、SiO2−Sr/Y、SiO2−Dy/Yb、SiO2−La和SiO2−La/Y协变图
高压分离结晶趋势线据Macpherson et al.,2006;低压分离结晶趋势线据Castillo et al.,1999
Figure 7. Th vs. Th/Y, La vs. La/Sm, SiO2 vs. Sr/Y, SiO2 vs. Dy/Yb, SiO2 vs. La, and SiO2 vs. La/Y plots of Late Indosinian adakitic granite in East Kunlun
High-pressure fractional crystallization lines according to Macpherson et al.,2006;Low-pressure fractional crystallization lines according to Castillo et al., 1999.
图 8 东昆仑印支晚期埃达克质岩源岩组成判别图解
a—(CaO)/(MgO+FeOT)−(Al2O3)/(MgO+FeOT)图解(Altherr et al., 2000;以物质的量(mol)计算单位);b—(Na2O+K2O+FeOT+MgO+TiO2)−(Na2O+K2O)/(FeOT+MgO+TiO2) 图解(Patiño Douce,1999)
Figure 8. Diagram for discrimination of source rock composition of Late Indosinian adakitic rocks in East Kunlun
(a) (CaO)/(MgO+FeOT) vs. (Al2O3)/(MgO+FeOT) plot (in molar concentrations, according to Altherr et al., 2000); (b) (Na2O+K2O+FeOT+TiO2) vs. (Na2O+K2O)/(FeOT+MgO+TiO2) plot (according to Patiño Douce,1999)
图 9 东昆仑印支晚期埃达克质岩全岩(87Sr/86Sr)i−εNd(t)、锆石定年−εHf(t)关系图解
a—(87Sr/86Sr)i−εNd(t)图解(底图据Li et al.,2018);b—锆石定年−εHf(t)图解
Figure 9. Diagram of whole-rock (87Sr/86Sr) i-εNd(t) relationship and zircon t t-εHf (t) for Late Indosinian adakitic rocks in East Kunlun
(a) (87Sr/86Sr)i-εNd(t) plot (modified after Li et al.,2018);(b) Zircon t t-εHf (t) plot
图 10 东昆仑印支期岩浆活动、沉积序列、成矿作用与构造演化关系图
J1-2yq—羊曲组;J1-2d—大煤沟组;T3bb—八宝山组;T3e—鄂拉山组;T2x—希里可特组;T1-2n—闹仓坚沟组;T1h—洪水川组;P3g—格曲组;P1-2dc—打柴沟组;PB—布青山群弧花岗岩年龄据孙雨等,2009;Zhang et al.,2012;Ding et al.,2014;Huang et al.,2014;Xiong et al.,2014;陈功等,2016;菅坤坤等,2017;李瑞保等,2018;国显正等,2018,2019;张雨莲等,2018;岳维好和周家喜,2019;封铿等,2020;Kong et al.,2020;徐博等,2020;王巍等,2021;陈国超等,2022;王凤林等,2022;Yan et al.,2024。A型花岗岩和具A型花岗岩地球化学成分的火山岩年龄据陈丹玲等,2001;刘云华等,2006;丁烁等,2011;高永宝等,2014;钱兵等,2015;张明玉等,2018;Zhu et al.,2022。埃达克质岩年龄据陈国超等,2013a,2013b;Ding et al.,2014;Xiong et al.,2014;刘金龙等,2015;孔会磊等,2016;Xin et al.,2019,黄啸坤等,2021;刘建栋等,2023。矽卡岩型矿床年龄据丰成友等,2009,2011;高永宝等,2012;田承盛等,2013;王富春等,2013;Xia et al.,2015;于淼等,2015;刘建楠等,2017;Fang et al.,2018;Qu et al.,2019;Gao et al.,2020;Liang et al.,2021;黄啸坤,2021。金矿床年龄据肖晔等,2014;Zhang et al.,2017;李金超,2017;Cao et al.,2021;Liang et al.,2021。镁铁质—超镁铁质岩年龄据罗照华等,2002;中国地质大学(武汉),2006;熊富浩等,2011;奥琮等,2015;Hu et al.,2016;陈国超等,2017;Liu et al.,2017;王亚磊等,2017;顾雪祥等,2017;赵旭等,2018;Yan et al.,2024。地层柱状图中年龄据丁烁等,2011;邵凤丽,2017;封铿等,2022;青海省地质调查院,2023;张耀玲等,2024;地层柱状图资料据青海省地质调查院,2023
Figure 10. Relationship between Indosinian magmatic activity, sedimentary sequence, mineralization and tectonic evolution in East Kunlun
J1-2yq—Yangqu Formation; J1-2d—Dameigou Formation; T3bb—Babaoshan Formation; T3e—Elashan Formation; T2x—Xilikete Formation; T1-2n—Naocangjiangou Formation; T1h—Hongshuichuan Formation; P3g—Gequ Formation; P1-2dc—Dachaigou Formation; PB—Buqingshan Group. Arc granite ages according to Sun et al., 2009; Zhang et al., 2012; Ding et al., 2014; Huang et al., 2014; Xiong et al., 2014; Chen et al., 2016; Jian et al., 2017; Li et al., 2018; Guo et al., 2018, 2019; Zhang et al., 2018; Yue and Zhou, 2019; Kong et al., 2020; Xu et al., 2020; Feng et al., 2020; Wang et al., 2021; Chen et al., 2022; Wang et al., 2022; and Yan et al., 2024. Age data of A-type granites and volcanic rocks with geochemical composition of A-type granites according to Chen et al., 2001; Liu et al., 2006, Ding et al., 2011; Gao et al., 2014; Qian et al., 2015; Zhang et al., 2018; and Zhu et al., 2022. Age of adakitic rocks according to Chen et al., 2013a, 2013b; Xiong et al., 2014; Ding et al., 2014; Liu et al., 2015; Kong et al., 2016; Xin et al., 2019; Huang et al., 2021 and Liu et al., 2023. Age of skarn type deposit according to Feng et al., 2009, 2011; Gao et al., 2012; Tian et al., 2013; Wang et al., 2013; Yu et al., 2015; Xia et al., 2015; Liu et al., 2017; Fang et al., 2018; Qu et al., 2019; Gao et al., 2020; Liang et al., 2021; Huang et al., 2021 and Cao et al., 2021. The gold deposit age data according to Xiao et al., 2014; Zhang et al., 2017; Li et al., 2017; and Liang et al., 2021. The mafic–ultramafic rock age data according to Luo et al., 2002; China University of Geosciences (Wuhan), 2006; Xiong et al., 2011; Ao et al., 2015; Hu et al., 2016; Liu et al., 2017; Chen et al., 2017; Wang et al., 2017; Gu et al., 2017; Zhao et al., 2018; and Yan et al., 2024. Age data in the stratigraphic column charts according to Ding et al., 2011; Shao et al., 2017; Feng et al., 2022; Qinghai Geological Survey Institute, 2023; and Zhang et al., 2024. Stratigraphic column data according to Qinghai Geological Survey Institute, 2023.
表 1 东昆仑印支晚期埃达克质花岗岩的主量元素(%)、微量元素(×10−6)和稀土元素(×10−6)含量特征
Table 1. Major (%), trace(×10−6), and REE element (×10−6) abundances of the Late Indosinian adakitic granite in East Kunlun
样品名称 2MSG-1-2 2MSG-1-3 2MSG-2-2 2MSG-2-3 2MSG-3-2 2MSG-3-3 2MSG-4-2 2MSG-4-3 2BTS-1 2BTS-1-2 2BTS-1-3 2BTS-3 2BTS-3-2 2BTS-3-3 2BTS-4-1 2BTS-4-2 2BTS-4-3 磨石沟岩体 本头山岩体 二长花岗岩 二长花岗岩 二长花岗岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 样品坐标 94°34′30.8″E;35°48′33.3″N 94°33′3.2″E;35°49′20.9″N 94°31′27.6″E;35°49′59.4″N 94°29′28.1″E;35°51′0.7″N 94°18′39″E;35°50′35.9″N 94°16′18.8″E;35°51′42.4″N 94°15′0.8″E;35°51′18.3″N SiO2 70.12 70.37 71.04 69.68 68.92 69.14 66.35 65.73 66.18 65.65 67.31 66.64 67.90 67.42 67.16 68.30 66.29 TiO2 0.27 0.26 0.25 0.26 0.29 0.29 0.42 0.43 0.47 0.47 0.44 0.48 0.46 0.45 0.48 0.42 0.47 Al2O3 15.91 15.68 15.69 16.39 16.79 16.66 17.52 17.09 16.79 17.18 16.70 16.45 16.25 16.19 16.16 15.53 16.41 Fe2O3T 1.71 1.65 1.70 1.73 1.92 1.94 2.60 2.65 3.17 3.19 2.85 3.11 3.12 3.00 3.09 2.84 3.27 MnO 0.036 0.034 0.030 0.031 0.038 0.037 0.040 0.040 0.057 0.056 0.042 0.057 0.056 0.055 0.055 0.051 0.057 MgO 0.73 0.70 0.67 0.70 0.73 0.74 1.26 1.27 1.28 1.29 1.19 1.26 1.29 1.24 1.24 1.17 1.39 CaO 2.35 2.35 2.75 2.92 2.77 2.76 3.74 3.51 3.23 3.12 3.46 3.05 3.11 3.07 3.28 3.14 3.28 Na2O 4.36 4.32 4.43 4.74 4.77 4.73 4.26 4.35 4.39 4.31 4.49 4.19 4.25 4.23 4.27 4.19 4.30 K2O 3.86 3.92 3.04 3.06 3.56 3.50 3.31 3.24 3.36 4.02 2.62 3.58 3.25 3.30 2.93 2.75 3.17 P2O5 0.10 0.10 0.10 0.10 0.11 0.11 0.15 0.16 0.21 0.21 0.19 0.21 0.21 0.20 0.21 0.20 0.22 LOI 0.45 0.45 0.39 0.47 0.45 0.40 0.80 1.77 0.64 0.79 0.84 0.54 0.52 0.63 0.66 0.62 0.60 SUM 99.88 99.82 100.08 100.07 100.34 100.29 100.45 100.24 99.79 100.29 100.14 99.57 100.40 99.77 99.55 99.22 99.47 FeO 1.10 0.82 0.98 0.98 1.10 1.20 1.64 1.58 1.74 1.74 1.48 1.38 1.78 1.60 1.44 1.54 1.88 Mg# 46 46 44 45 43 43 49 49 45 45 45 45 45 45 45 45 46 Na2O/K2O 1.13 1.10 1.45 1.55 1.34 1.35 1.29 1.34 1.30 1.07 1.71 1.17 1.31 1.28 1.46 1.53 1.36 Na2O+K2O 8.22 8.23 7.47 7.80 8.33 8.23 7.58 7.59 7.76 8.33 7.12 7.77 7.50 7.53 7.20 6.94 7.47 A/CNK 1.02 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00 Li 57.4 56.6 37.8 40.7 45.8 45.2 21.3 26.0 33.9 38.3 35.3 39.7 41.6 35.6 46.2 43.4 44.9 Be 2.53 2.54 2.14 2.29 2.42 2.36 2.19 2.16 1.83 1.69 1.84 1.82 2.00 1.73 1.99 1.73 1.79 Sc 2.45 2.54 2.06 2.16 2.43 2.17 5.93 6.13 4.04 4.25 2.38 4.14 4.17 4.02 4.18 3.96 4.01 V 17.9 18.3 17.1 17.8 18.8 18.1 32.2 32.4 32.8 35.2 31.2 34.5 33.6 32.6 34.0 31.7 35.5 Cr 8.50 8.35 7.89 8.40 8.21 8.13 19.70 18.80 10.60 10.70 9.05 10.60 10.40 10.00 10.60 9.82 11.10 Co 3.05 3.14 3.12 3.23 3.38 3.28 5.55 5.55 5.92 5.91 5.22 5.90 6.02 5.72 5.60 5.52 6.28 Ni 3.78 3.69 3.67 3.67 3.49 4.00 6.33 6.97 5.95 6.59 5.69 5.95 6.24 6.55 5.90 5.84 6.68 Cu 7.66 6.25 5.42 5.86 6.16 5.93 6.93 7.38 20.8 7.10 7.31 10.50 9.55 9.78 7.27 7.15 10.60 Zn 43.8 43.6 39.3 41.0 45.2 45.8 51.4 49.5 68.5 70.6 64.0 68.5 68.1 65.0 66.8 62.5 71.1 Ga 21.9 21.8 20.4 21.9 22.4 21.7 22.5 22.2 21.2 22.8 21.9 21.4 21.5 21.7 20.9 21.0 21.9 Rb 135.0 149.0 94.8 97.9 120.0 115.0 117.0 116.0 98.9 120.0 88.4 112.0 113.0 106.0 95.3 94.6 105.0 Sr 399 398 529 566 559 544 502 516 534 550 613 517 525 520 544 535 554 Y 6.91 7.21 5.47 5.85 6.57 6.54 6.50 7.23 8.73 8.82 6.97 9.37 8.50 8.41 10.8 8.46 8.02 Zr 144 156 143 155 170 170 160 167 204 197 163 187 193 189 201 183 203 Nb 11.4 12.0 8.69 9.07 11.5 11.5 7.14 7.56 14.1 14.3 12.2 15.7 14.7 13.8 17.4 13.6 13.7 Sn 1.98 2.05 1.03 1.11 1.53 1.53 1.41 1.46 1.81 1.80 1.53 2.07 1.75 1.65 2.09 1.70 1.62 Cs 1.70 1.86 1.99 2.00 3.08 3.10 2.53 1.30 2.75 2.90 2.18 3.54 3.35 3.28 3.31 3.32 2.39 Ba 824 809 1052 1099 1137 1070 935 1022 814 1020 931 872 840 807 920 823 866 La 23.6 27.4 26.3 30.7 33.9 36.2 24.9 27.5 39.4 49.2 34.6 33.6 35.9 50.8 48.1 37.3 34.4 Ce 42.7 48.3 45.4 52.1 58.0 62.3 46.1 50.4 68.4 88.6 63.7 61.8 66.3 91.9 84.8 68.3 63.4 Pr 4.22 4.89 4.44 5.16 5.73 6.10 4.78 5.37 7.22 8.98 6.33 6.57 6.79 9.20 8.91 7.09 6.65 Nd 14.1 16.6 14.7 16.9 18.8 20.0 17.0 18.8 24.0 30.3 21.7 22.4 23.0 30.7 30.3 23.9 22.4 Sm 2.34 2.74 2.29 2.50 2.88 3.10 2.83 3.03 3.85 4.36 3.47 3.76 3.65 4.17 4.81 3.64 3.45 Eu 0.73 0.82 0.85 0.91 0.90 0.91 1.16 1.11 1.01 1.09 1.05 1.04 0.99 1.03 1.19 0.96 1.04 Gd 1.70 1.69 1.56 1.59 1.77 1.81 1.79 1.99 2.45 2.62 2.12 2.70 2.50 2.63 3.08 2.54 2.28 Tb 0.22 0.23 0.18 0.21 0.23 0.23 0.24 0.26 0.34 0.34 0.28 0.36 0.31 0.33 0.44 0.32 0.30 Dy 1.19 1.29 1.01 1.14 1.25 1.27 1.17 1.36 1.64 1.76 1.42 1.87 1.65 1.68 2.21 1.77 1.53 Ho 0.21 0.21 0.18 0.17 0.21 0.21 0.20 0.23 0.30 0.27 0.23 0.32 0.28 0.28 0.34 0.26 0.26 Er 0.54 0.58 0.47 0.48 0.52 0.56 0.59 0.64 0.81 0.76 0.56 0.81 0.77 0.80 0.96 0.82 0.72 Tm 0.08 0.09 0.07 0.07 0.08 0.09 0.08 0.09 0.11 0.11 0.08 0.12 0.10 0.10 0.13 0.10 0.10 Yb 0.53 0.56 0.42 0.47 0.52 0.55 0.50 0.56 0.68 0.65 0.50 0.73 0.68 0.65 0.82 0.63 0.65 Lu 0.08 0.09 0.06 0.07 0.09 0.08 0.08 0.09 0.10 0.10 0.08 0.11 0.10 0.09 0.11 0.09 0.09 Hf 3.81 4.05 3.27 3.79 4.16 4.20 3.87 4.02 5.11 4.60 3.82 4.61 4.73 4.44 4.76 4.24 4.69 Ta 0.71 0.74 0.51 0.55 0.68 0.70 0.28 0.31 0.84 0.82 0.62 0.95 0.84 0.79 1.10 0.76 0.74 Tl 0.68 0.81 0.53 0.55 0.70 0.64 0.66 0.66 0.60 0.70 0.50 0.65 0.64 0.58 0.55 0.53 0.61 Pb 24.9 26.4 28.9 30.1 30.4 30.4 24.5 23.1 18.9 18.5 16.3 19.3 18.5 18.2 17.4 18.0 19.4 Th 8.69 10.20 6.96 7.78 9.54 9.99 8.67 10.20 8.55 11.30 7.74 8.96 9.05 11.40 10.20 8.52 8.79 U 1.29 1.48 1.04 1.10 1.43 1.44 1.26 1.44 1.39 1.34 1.16 1.47 1.33 1.31 1.31 1.23 1.37 Sr/Y 58 55 97 97 85 83 77 71 61 62 88 55 62 62 50 63 69 ∑REE 92 106 98 112 125 133 101 111 150 189 136 136 143 194 186 148 137 LREE/HREE 19 21 24 26 26 27 21 20 22 28 25 18 21 29 22 22 22 La/Yb 45 49 62 66 65 66 49 49 58 76 70 46 53 78 59 59 53 (La/Yb)N 32.0 34.9 44.6 47.3 46.9 47.3 35.3 35.0 41.9 54.7 50.0 32.8 38.1 56.3 42.1 42.6 38.0 (La/Sm)N 6.5 6.5 7.4 7.9 7.6 7.5 5.7 5.8 6.6 7.3 6.5 5.8 6.4 7.9 6.5 6.6 6.4 (Gd/Yb)N 2.7 2.5 3.0 2.8 2.8 2.7 2.9 2.9 3.0 3.4 3.5 3.0 3.1 3.4 3.1 3.3 2.9 δEu 1.06 1.08 1.30 1.31 1.13 1.08 1.48 1.29 0.94 0.91 1.09 0.95 0.94 0.89 0.89 0.91 1.06 Nb/La 0.48 0.44 0.33 0.30 0.34 0.32 0.29 0.28 0.36 0.29 0.35 0.47 0.41 0.27 0.36 0.37 0.40 Rb/Sr 0.34 0.38 0.18 0.17 0.21 0.21 0.23 0.22 0.19 0.22 0.14 0.22 0.21 0.20 0.18 0.18 0.19 Nb/U 8.91 8.13 8.32 8.26 8.07 7.98 5.64 5.24 10.16 10.65 10.57 10.65 11.05 10.51 13.32 11.08 9.99 Ce/Pb 1.71 1.83 1.57 1.73 1.91 2.05 1.88 2.18 3.63 4.79 3.91 3.20 3.58 5.05 4.87 3.80 3.27 Y/Yb 13.0 12.8 12.9 12.6 12.7 11.9 12.9 12.9 12.9 13.7 14.0 12.8 12.6 13.0 13.2 13.5 12.4 (Ho/Yb)N 1.21 1.12 1.30 1.11 1.21 1.12 1.21 1.21 1.35 1.27 1.39 1.30 1.25 1.29 1.26 1.24 1.20 Nb/Ta 16.1 16.3 17.0 16.6 17.1 16.3 25.2 24.3 16.9 17.4 19.8 16.5 17.4 17.5 15.8 17.9 18.6 表 2 东昆仑印支晚期埃达克质花岗岩LA-ICP-MS 锆石 U-Pb 同位素测年结果
Table 2. Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb data of Late Indosinian adakitic granite in East Kunlun
测点 元素含量/×10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄/Ma 谐和度/% Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 花岗闪长岩(2BTS-1样品) 1 12.99 170 380 0.45 0.05457 0.00274 0.21539 0.01045 0.02886 0.00036 394 111 198 9 183 2 92 2 13.07 213 348 0.61 0.05246 0.00222 0.22852 0.00955 0.03162 0.00039 306 96 209 8 201 2 95 3 32.25 344 889 0.39 0.05102 0.00158 0.22458 0.00691 0.03186 0.00028 243 77 206 6 202 2 98 4 19.59 276 507 0.54 0.05084 0.00180 0.22839 0.00794 0.03258 0.00037 235 86 209 7 207 2 98 5 36.32 492 949 0.52 0.05216 0.00146 0.23344 0.00653 0.03239 0.00025 300 63 213 5 206 2 96 6 22.96 311 616 0.50 0.05536 0.00184 0.24598 0.00874 0.03221 0.00049 428 74 223 7 204 3 91 7 19.91 188 548 0.34 0.05263 0.00200 0.23531 0.00905 0.03254 0.00038 322 82 215 7 206 2 96 8 14.63 145 410 0.35 0.0539 0.0028 0.2283 0.0099 0.0309 0.0005 365 119 209 8 196 3 93 9 23.71 293 634 0.46 0.05365 0.00195 0.23578 0.00839 0.03193 0.00035 367 81 215 7 203 2 94 10 7.45 89.8 201 0.45 0.05079 0.00306 0.22434 0.01250 0.03264 0.00055 232 139 206 10 207 3 99 11 17.23 175 481 0.36 0.05120 0.00208 0.22245 0.00859 0.03161 0.00034 250 93 204 7 201 2 98 12 40.5 979 948 1.03 0.05162 0.00159 0.22533 0.00674 0.03159 0.00031 333 72 206 6 201 2 97 13 21.06 278 578 0.48 0.05115 0.00190 0.21882 0.00787 0.03099 0.00031 256 82 201 7 197 2 97 14 33.56 374 931 0.40 0.05004 0.00152 0.21692 0.00671 0.03130 0.00029 198 70 199 6 199 2 99 15 14.76 196 403 0.49 0.05013 0.00206 0.21588 0.00904 0.03120 0.00041 211 96 198 8 198 3 99 16 18.49 231 503 0.46 0.04931 0.00213 0.21317 0.00886 0.03151 0.00034 161 102 196 7 200 2 98 17 16.49 176 452 0.39 0.05197 0.00208 0.22104 0.00898 0.03108 0.00031 283 91 203 7 197 2 97 18 35.11 458 963 0.48 0.04959 0.00162 0.21094 0.00682 0.03084 0.00028 176 76 194 6 196 2 99 19 13.29 184 344 0.53 0.05084 0.00222 0.22813 0.01033 0.03241 0.00047 235 100 209 9 206 3 98 20 21.23 188 579 0.32 0.05358 0.00204 0.23519 0.00865 0.03193 0.00031 354 87 214 7 203 2 94 21 34.28 348 958 0.36 0.05115 0.00141 0.21799 0.00604 0.03083 0.00028 256 63 200 5 196 2 97 22 24.58 227 683 0.33 0.04902 0.00172 0.21223 0.00737 0.03131 0.00028 150 81 195 6 199 2 98 23 10.32 114 278 0.41 0.05097 0.00258 0.23080 0.01235 0.03244 0.00056 239 117 211 10 206 4 97 24 20.40 275 544 0.51 0.04747 0.00197 0.20234 0.00828 0.03096 0.00034 72.3 96 187 7 197 2 95 花岗闪长岩(2BTS-3样品) 1 11.86 69.0 341 0.20 0.04743 0.00240 0.20490 0.01010 0.03142 0.00042 77.9 109 189 9 199 3 94 2 52.2 1554 1056 1.47 0.05372 0.00145 0.23444 0.00638 0.03148 0.00032 367 61 214 5 200 2 93 3 20.67 179 564 0.32 0.05333 0.00190 0.23493 0.00815 0.03186 0.00035 343 80 214 7 202 2 94 4 19.24 243 503 0.48 0.04736 0.00175 0.21111 0.00750 0.03234 0.00038 77.9 76 194 6 205 2 94 5 26.92 314 726 0.43 0.04669 0.00182 0.20672 0.00777 0.03209 0.00035 35.3 89 191 7 204 2 93 6 21.87 375 557 0.67 0.04910 0.00201 0.21302 0.00876 0.03115 0.00033 154 101 196 7 198 2 99 7 18.85 196 527 0.37 0.05216 0.00187 0.22223 0.00768 0.03083 0.00033 300 81 204 6 196 2 95 8 116.1 4178 2094 2.00 0.05083 0.00127 0.22708 0.00582 0.03214 0.00033 232 62 208 5 204 2 98 9 10.33 65.7 300 0.22 0.05186 0.00285 0.22274 0.01212 0.03118 0.00044 280 158 204 10 198 3 96 10 14.79 190 407 0.47 0.05184 0.00299 0.21848 0.01114 0.03076 0.00038 280 133 201 9 195 2 97 11 19.68 322 521 0.62 0.05348 0.00202 0.23019 0.00905 0.03100 0.00041 350 85 210 7 197 3 93 12 32.84 389 859 0.45 0.04901 0.00167 0.21986 0.00747 0.03230 0.00037 150 84 202 6 205 2 98 13 20.87 321 547 0.59 0.04825 0.00194 0.20648 0.00791 0.03101 0.00040 122 99 191 7 197 2 96 14 7.45 111 193 0.57 0.04997 0.00326 0.21629 0.01299 0.03192 0.00051 195 152 199 11 203 3 98 15 38.4 704 1004 0.70 0.05099 0.00200 0.22287 0.00848 0.03161 0.00042 239 91 204 7 201 3 98 16 17.16 181 478 0.38 0.04659 0.00181 0.20201 0.00753 0.03125 0.00041 27.9 89 187 6 198 3 94 17 23.06 364 591 0.62 0.04907 0.00188 0.21763 0.00780 0.03201 0.00037 150 91 200 7 203 2 98 18 38.8 798 969 0.82 0.05177 0.00160 0.22217 0.00673 0.03076 0.00031 276 68 204 6 195 2 95 19 13.72 280 343 0.82 0.05209 0.00261 0.22840 0.01076 0.03173 0.00044 300 147 209 9 201 3 96 20 14.72 262 385 0.68 0.04838 0.00202 0.20778 0.00824 0.03105 0.00035 117 98 192 7 197 2 97 21 9.51 37.0 284 0.13 0.05454 0.00407 0.23655 0.01825 0.03151 0.00047 394 169 216 15 200 3 92 22 18.53 274 490 0.56 0.04944 0.00198 0.21764 0.00827 0.03183 0.00037 169 94 200 7 202 2 98 23 3.14 44.8 78.9 0.57 0.05708 0.00433 0.26273 0.01761 0.03394 0.00081 494 168 237 14 215 5 90 24 23.4 531 538 0.99 0.05404 0.00238 0.25718 0.01179 0.03432 0.00056 372 72 232 10 218 3 93 二长花岗岩(2MSG-1样品) 1 46 418 1200 0.35 0.05016 0.00057 0.22815 0.00329 0.03296 0.00031 202 26 209 3 209 2 100 2 68 768 1720 0.45 0.05005 0.0005 0.22767 0.00303 0.03302 0.00038 197 23 208 3 209 2 99 3 34 257 871 0.30 0.05074 0.00098 0.2284 0.00413 0.03277 0.00044 229 45 209 3 208 3 100 4 81 773 1960 0.39 0.05032 0.00071 0.2313 0.00362 0.03334 0.00036 210 33 211 3 211 2 100 5 35 315 934 0.34 0.05189 0.00076 0.2359 0.00445 0.03287 0.00047 281 34 215 4 209 3 97 6 42 478 1090 0.44 0.05072 0.00089 0.23258 0.00474 0.03327 0.00052 228 41 212 4 211 3 99 7 31 383 782 0.49 0.05111 0.00083 0.23041 0.00462 0.03269 0.00047 246 37 211 4 207 3 98 8 44 279 1230 0.23 0.05038 0.00081 0.22826 0.00349 0.03278 0.00043 213 37 209 3 208 3 100 9 29 248 738 0.34 0.05069 0.00064 0.23239 0.00408 0.03321 0.00044 227 29 212 3 211 3 99 10 44 575 1110 0.52 0.05022 0.00054 0.22885 0.00243 0.033 0.00031 205 25 209 2 209 2 100 11 85 914 2150 0.43 0.05041 0.00041 0.22975 0.00297 0.033 0.00035 214 19 210 3 209 2 100 12 105 1020 2620 0.39 0.05037 0.00053 0.22821 0.00296 0.03282 0.00028 212 25 209 2 208 2 100 13 48 500 1220 0.41 0.04981 0.00056 0.22644 0.00314 0.03293 0.00028 186 26 207 3 209 2 99 14 62 781 1450 0.54 0.05048 0.00084 0.23263 0.0037 0.03344 0.00036 217 39 212 3 212 2 100 15 41 483 1030 0.47 0.05005 0.00053 0.22915 0.00303 0.03321 0.00036 198 25 210 3 211 2 99 16 28 250 766 0.33 0.05049 0.00118 0.23061 0.00524 0.03307 0.00039 217 54 211 4 210 2 100 17 56 310 310 1.00 0.06487 0.00063 1.15174 0.01469 0.12861 0.0013 770 20 778 7 780 7 100 18 31 71.4 168 0.43 0.06904 0.0008 1.44958 0.02005 0.15227 0.00143 900 24 910 8 914 8 100 19 56 383 1440 0.27 0.05057 0.00067 0.24188 0.00361 0.0346 0.00036 222 31 220 3 219 2 100 20 302 0 6980 0.00 0.06694 0.00091 0.34422 0.00465 0.03733 0.00059 836 28 300 4 236 4 79 21 233 1710 6460 0.26 0.06503 0.0013 0.29357 0.00371 0.03293 0.00058 775 42 261 3 209 4 80 22 355 0 7420 0.00 0.06638 0.00098 0.38506 0.00948 0.04184 0.0007 818 31 331 7 264 4 80 23 255 0 6050 0.00 0.06847 0.00078 0.33474 0.00469 0.03541 0.00037 883 24 293 4 224 2 77 二长花岗岩(2MSG-3样品) 1 16 224 421 0.53 0.05045 0.0011 0.22725 0.00565 0.03266 0.00053 216 51 208 5 207 3 100 2 30 164 818 0.20 0.05049 0.00065 0.22751 0.00331 0.03272 0.00035 218 30 208 3 208 2 100 3 23 304 546 0.56 0.05011 0.00092 0.22483 0.00453 0.03249 0.0003 200 43 206 4 206 2 100 4 32 290 845 0.34 0.04978 0.00081 0.22508 0.00432 0.03281 0.00041 185 38 206 4 208 3 99 5 17 223 434 0.51 0.05048 0.00077 0.22673 0.00332 0.0326 0.00034 217 35 208 3 207 2 100 6 47 400 1220 0.33 0.05023 0.0005 0.22816 0.00324 0.03295 0.00045 206 23 209 3 209 3 100 7 44 504 1150 0.44 0.0499 0.001 0.22889 0.00523 0.03327 0.00059 190 47 209 4 211 4 99 8 47 392 1220 0.32 0.05031 0.00063 0.23333 0.0032 0.03362 0.00031 210 29 213 3 213 2 100 9 56 406 1410 0.29 0.05049 0.00059 0.23146 0.00314 0.03325 0.00029 217 27 211 3 211 2 100 10 58 510 1460 0.35 0.05032 0.00063 0.22958 0.00293 0.0331 0.00032 210 29 210 2 210 2 100 11 57 548 1470 0.37 0.05025 0.00062 0.23214 0.00414 0.03342 0.00044 207 29 212 3 212 3 100 12 53 448 1400 0.32 0.05029 0.00059 0.22833 0.00362 0.0329 0.00034 209 27 209 3 209 2 100 13 22 313 534 0.59 0.05045 0.0008 0.22722 0.00408 0.03273 0.0004 216 37 208 3 208 3 100 14 23 274 573 0.48 0.05054 0.00083 0.23033 0.0048 0.03303 0.00041 220 38 211 4 210 3 100 15 24 354 607 0.58 0.05025 0.00122 0.22599 0.00594 0.03266 0.0004 207 56 207 5 207 3 100 16 23 313 565 0.55 0.0506 0.0008 0.22663 0.00451 0.03245 0.00032 223 37 207 4 206 2 99 17 23 303 566 0.54 0.05057 0.00084 0.22917 0.00453 0.03294 0.00045 221 38 210 4 209 3 100 18 19 260 483 0.54 0.05061 0.00071 0.22854 0.00468 0.03275 0.00046 223 32 209 4 208 3 99 19 50 319 1340 0.24 0.05092 0.00065 0.23213 0.00387 0.03311 0.00036 237 29 212 3 210 2 99 20 55 528 1440 0.37 0.05058 0.00049 0.22855 0.00351 0.03281 0.00037 222 23 209 3 208 2 100 21 16 98.1 438 0.22 0.05304 0.00084 0.23287 0.00404 0.03182 0.00028 331 36 213 3 202 2 95 22 17 231 444 0.52 0.05037 0.00088 0.22271 0.00373 0.03214 0.00032 212 40 204 3 204 2 100 23 31 481 792 0.61 0.0509 0.00065 0.21781 0.00286 0.03108 0.00031 236 30 200 2 197 2 99 表 3 东昆仑印支晚期埃达克质花岗岩(2MSG-1样品)独居石LA-ICP-MS U-Pb 同位素测定结果
Table 3. Monazite laser ablation inductively coupled plasma mass spectrometry U-Pb data of Late Indosinian adakitic granite in East Kunlun
测试点 元素含量/×10−6 Th/U 同位素比值及误差 年龄及误差/Ma U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 1 4220 76200 822 18 0.05294 0.00057 0.2388 0.0030 0.03275 0.00036 0.01060 0.00013 218 3 208 2 326 25 213 3 2 6220 53500 674 9 0.05089 0.00048 0.2296 0.0029 0.03274 0.00037 0.01056 0.00013 210 2 208 2 236 22 212 3 3 4410 98300 1021 22 0.05171 0.00046 0.237 0.0033 0.03324 0.00043 0.01061 0.00012 216 3 211 3 273 20 213 3 4 8520 122000 1347 14 0.0508 0.00044 0.2307 0.0026 0.03299 0.00040 0.01050 0.00010 211 2 209 3 232 20 211 2 5 12000 70900 1007 6 0.05136 0.00043 0.2325 0.0031 0.03282 0.00041 0.01047 0.00013 212 3 208 3 257 19 211 3 6 3860 86500 893 22 0.05365 0.00058 0.2437 0.0034 0.0329 0.00034 0.01050 0.00012 222 3 209 2 356 24 211 2 7 9340 48500 721 5 0.05144 0.00047 0.2327 0.0026 0.03283 0.00036 0.01052 0.00016 213 2 208 2 261 21 212 3 8 6890 156000 1608 23 0.05236 0.00047 0.2406 0.0029 0.03334 0.00038 0.01054 0.00012 219 2 211 2 301 20 212 2 9 3880 84000 861 22 0.05316 0.0005 0.2401 0.0029 0.03275 0.00033 0.01069 0.00011 219 2 208 2 336 21 215 2 10 6800 152000 1522 22 0.05404 0.00044 0.247 0.0028 0.03319 0.00038 0.01049 0.00010 224 2 211 2 373 18 211 2 11 8060 118000 1224 15 0.05289 0.0005 0.236 0.0031 0.03242 0.00042 0.01029 0.00011 215 3 206 3 324 22 207 2 12 7200 141000 1358 20 0.05443 0.00049 0.2452 0.0029 0.03274 0.00041 0.01010 0.00010 223 2 208 3 389 20 203 2 13 9040 150000 1532 17 0.05203 0.00045 0.2331 0.0028 0.03256 0.00042 0.01039 0.00011 213 2 207 3 287 20 209 2 14 5580 120000 1166 22 0.05309 0.00047 0.2421 0.0035 0.03308 0.00045 0.01039 0.00010 220 3 210 3 333 20 209 2 15 5280 96200 962 18 0.05138 0.00046 0.234 0.0031 0.03306 0.00042 0.01044 0.00011 214 3 210 3 258 20 210 2 16 11200 172000 1770 15 0.05186 0.0004 0.2344 0.0028 0.03279 0.00036 0.01044 0.00009 214 2 208 2 279 18 210 2 17 11100 131000 1415 12 0.05181 0.00039 0.2336 0.0028 0.03272 0.00039 0.01039 0.00011 213 2 208 3 277 17 209 2 18 4270 120000 1119 28 0.05221 0.00049 0.2344 0.0034 0.03254 0.00038 0.01043 0.00011 214 3 206 2 295 21 210 2 19 5230 130000 1228 25 0.052 0.00049 0.2352 0.0031 0.03284 0.00040 0.01046 0.00010 215 3 208 3 286 22 210 2 20 5300 117000 1125 22 0.05244 0.00045 0.2399 0.0035 0.03317 0.00043 0.01040 0.00012 218 3 210 3 305 20 209 2 21 8240 135000 1345 16 0.05297 0.00043 0.2383 0.0030 0.03263 0.00038 0.01041 0.00010 217 3 207 2 328 18 209 2 22 5310 99800 977 19 0.05215 0.00049 0.2383 0.0032 0.03316 0.00040 0.01048 0.00010 217 3 210 3 292 22 211 2 23 4430 89300 853 20 0.05133 0.00046 0.2319 0.0033 0.03277 0.00041 0.01038 0.00011 212 3 208 3 256 21 209 2 24 5210 111000 1052 21 0.05161 0.00049 0.2333 0.0033 0.03281 0.0004 0.01045 0.00012 213 3 208 3 268 22 210 3 25 2450 50200 472 20 0.05531 0.00064 0.2498 0.0039 0.03273 0.00035 0.01029 0.00014 226 3 208 2 425 26 207 3 26 6340 125000 1199 20 0.05421 0.00049 0.2462 0.0032 0.03297 0.00039 0.01056 0.00012 224 3 209 2 380 20 212 2 27 7150 104000 1048 15 0.05311 0.00045 0.2398 0.0028 0.03283 0.00040 0.01038 0.00012 218 2 208 3 334 19 209 2 28 7650 133000 1286 17 0.05281 0.00044 0.2371 0.0027 0.03263 0.00039 0.01042 0.00012 216 2 207 2 321 19 210 2 29 7440 110000 1106 15 0.05197 0.0004 0.2355 0.0029 0.03289 0.00036 0.01042 0.00012 215 2 209 2 284 18 210 2 30 3690 129000 1139 35 0.05201 0.0005 0.2365 0.0032 0.03296 0.00033 0.01045 0.00012 216 3 209 2 286 22 210 3 表 4 东昆仑印支晚期埃达克质花岗岩锆石原位Hf同位素组成
Table 4. Zircon in situ Hf isotope composition of Late Indosinian adakitic granite in East Kunlun
测点 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ εHf(0) εHf(t) ±2σ tDM1 /Ga tDM2/Ga fLu/Hf 年龄/Ma 花岗闪长岩(2BTS-1样品) 2 0.019562 0.000360 0.000576 0.000009 0.282771 0.000012 −0.05 4.3 0.4 0.67 0.96 −0.98 201 3 0.027941 0.001496 0.000836 0.000041 0.282780 0.000010 0.28 4.6 0.4 0.67 0.94 −0.97 202 4 0.025777 0.000298 0.000805 0.000008 0.282776 0.000012 0.16 4.5 0.4 0.67 0.95 −0.98 207 5 0.042144 0.000510 0.001233 0.000012 0.282754 0.000011 −0.65 3.6 0.4 0.71 1.01 −0.96 206 6 0.026627 0.000435 0.000827 0.000012 0.282801 0.000011 1.04 5.3 0.4 0.64 0.90 −0.98 204 7 0.021616 0.000107 0.000723 0.000007 0.282769 0.000012 −0.10 4.2 0.4 0.68 0.97 −0.98 206 8 0.021666 0.000085 0.000691 0.000002 0.282819 0.000011 1.67 6.0 0.4 0.61 0.85 −0.98 196 9 0.024267 0.000585 0.000748 0.000016 0.282779 0.000011 0.24 4.6 0.4 0.67 0.95 −0.98 203 10 0.028067 0.000564 0.000880 0.000019 0.282762 0.000011 −0.36 3.9 0.4 0.69 0.99 −0.97 207 12 0.041378 0.000634 0.001253 0.000017 0.282767 0.000013 −0.18 4.1 0.5 0.69 0.98 −0.96 201 花岗闪长岩(2BTS-3样品) 1 0.018020 0.000545 0.000567 0.000014 0.282772 0.000012 0.01 4.3 0.4 0.67 0.96 −0.98 199 2 0.083193 0.001470 0.002278 0.000036 0.282805 0.000013 1.17 5.3 0.5 0.66 0.90 −0.93 200 3 0.074120 0.002881 0.002134 0.000084 0.282787 0.000013 0.55 4.7 0.4 0.68 0.94 −0.94 202 4 0.025046 0.000455 0.000784 0.000013 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 205 5 0.024533 0.000293 0.000761 0.000007 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 204 6 0.037705 0.000598 0.001123 0.000018 0.282769 0.000011 −0.10 4.1 0.4 0.69 0.97 −0.97 198 7 0.025854 0.000167 0.000816 0.000006 0.282770 0.000011 −0.08 4.1 0.4 0.68 0.97 −0.98 196 8 0.235679 0.008025 0.006361 0.000207 0.282875 0.000015 3.66 7.3 0.5 0.62 0.78 −0.81 204 9 0.025038 0.001254 0.000693 0.000027 0.282748 0.000011 −0.85 3.4 0.4 0.71 1.02 −0.98 198 10 0.029056 0.000891 0.000895 0.000025 0.282781 0.000012 0.34 4.5 0.4 0.66 0.94 −0.97 195 二长花岗岩(2MSG-1样品) 1 0.035872 0.001489 0.001229 0.000027 0.282665 0.000021 −3.8 0.6 0.7 0.84 1.20 −0.96 209 2 0.034150 0.000825 0.001158 0.000024 0.282686 0.000016 −3.0 1.4 0.6 0.81 1.15 −0.97 209 3 0.029031 0.000562 0.001159 0.000020 0.282715 0.000021 −2.0 2.4 0.7 0.76 1.09 −0.97 208 4 0.033764 0.000344 0.001199 0.000012 0.282666 0.000018 −3.7 0.7 0.6 0.83 1.20 −0.96 211 5 0.043131 0.001231 0.001494 0.000030 0.282718 0.000017 −1.9 2.5 0.6 0.77 1.09 −0.95 209 6 0.034134 0.000504 0.001224 0.000012 0.282633 0.000019 −4.9 −0.4 0.7 0.88 1.27 −0.96 211 7 0.027432 0.000219 0.001016 0.000006 0.282658 0.000019 −4.0 0.4 0.7 0.84 1.22 −0.97 207 8 0.038499 0.001176 0.001301 0.000017 0.282654 0.000019 −4.2 0.2 0.7 0.85 1.23 −0.96 208 9 0.033285 0.000708 0.001172 0.000016 0.282663 0.000018 −3.8 0.6 0.6 0.84 1.20 −0.96 211 10 0.041094 0.003337 0.001362 0.000074 0.282718 0.000027 −1.9 2.5 0.9 0.76 1.08 −0.96 209 二长花岗岩(2MSG-3样品) 1 0.025003 0.000323 0.000818 0.000015 0.282746 0.000019 −0.9 3.5 0.7 0.71 1.02 −0.98 207 2 0.020619 0.000329 0.000725 0.000017 0.282642 0.000019 −4.6 −0.1 0.7 0.86 1.25 −0.98 208 3 0.033529 0.000919 0.001098 0.000017 0.282775 0.000019 0.1 4.5 0.7 0.68 0.95 −0.97 206 4 0.029780 0.000433 0.000967 0.000003 0.282609 0.000019 −5.8 −1.3 0.7 0.91 1.33 −0.97 208 5 0.029397 0.000773 0.000946 0.000010 0.282750 0.000019 −0.8 3.6 0.7 0.71 1.01 −0.97 207 6 0.030505 0.001098 0.000983 0.000042 0.282608 0.000018 −5.8 −1.3 0.6 0.91 1.33 −0.97 209 7 0.035696 0.000317 0.001136 0.000019 0.282706 0.000018 −2.3 2.1 0.6 0.78 1.11 −0.97 211 8 0.049762 0.001531 0.001581 0.000031 0.282726 0.000020 −1.6 2.8 0.7 0.76 1.06 −0.95 213 9 0.034561 0.000792 0.001118 0.000012 0.282812 0.000019 1.4 5.9 0.7 0.63 0.87 −0.97 211 10 0.038980 0.000737 0.001272 0.000033 0.282670 0.000020 −3.6 0.8 0.7 0.83 1.19 −0.96 210 表 5 东昆仑印支晚期埃达克质花岗岩全岩Sr-Nd同位素组成
Table 5. Sr-Nd isotopic composition of the Late Indosinian adakitic granite in East Kunlun
样品编号 2BTS-1-2 2BTS-3-2 2BTS-4-2 2MSG-3-2 2MSG-3-3 2MSG-1-2 87Rb/86Sr 0.6322 0.6208 0.5119 0.6206 0.6130 0.9786 87Sr/86Sr 0.70925 0.70923 0.70891 0.71094 0.71094 0.71181 2σ 0.000006 0.000005 0.000006 0.000006 0.000006 0.000007 (87Sr/86Sr)i 0.7074 0.7075 0.7074 0.7091 0.7091 0.7089 147Sm/144Nd 0.08694 0.09571 0.09216 0.09230 0.09372 0.09996 143Nd/144Nd 0.512409 0.512425 0.512421 0.512324 0.512326 0.512321 2σ 0.000004 0.000004 0.000004 0.000005 0.000006 0.000005 (143Nd/144Nd)i 0.512290 0.512294 0.512300 0.512203 0.512203 0.512184 t/Ma 201 200 201 209 209 209 εNd(t) −1.65 −1.58 −1.55 −3.34 −3.34 −3.60 tDM1/Ga 0.89 0.94 0.92 1.04 1.05 1.11 tDM2/Ga 1.12 1.11 1.11 1.26 1.26 1.28 -
[1] ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3 [2] AO C, SUN F Y, LI B L, et al., 2015. U-Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 39(6): 1176-1184, doi: 10.16539/j.ddgzyckx.2015.06.016 [3] CAO L, YI L W, DAI W, et al., 2021. Re-Os isotopic age of molybdenite of the Jingren deposit and its mineralogical significance of magnetite, pyrite and chalcopyrite[J]. Acta Geologica Sinica (English Edition), 95(4): 1236-1248. doi: 10.1111/1755-6724.14718 [4] CASTILLO P R, JANNEY P E, SOLIDUM R U, 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51. doi: 10.1007/s004100050467 [5] CASTILLO P R, 2012. Adakite petrogenesis[J]. Lithos, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013 [6] CHEN D L, LIU L, CHE Z C, et al., 2001. Determination and preliminary study of Indosinian aluminous A-type granites in the Qimantag area, southeastern Xinjiang[J]. Geochimica, 30(6): 540-546. (in Chinese with English abstract [7] CHEN G, PEI X Z, LI Z C, et al., 2016. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China, 35(12): 1990-2005. (in Chinese with English abstract [8] CHEN G C, PEI X Z, LI R B, et al., 2013a. Late Triassic magma mixing in the East Kunlun orogenic belt: a case study of Helegang Xilikete granodiorites[J]. Geology in China, 40(4): 1044-1065. (in Chinese with English abstract [9] CHEN G C, PEI X Z, LI R B, et al., 2013b. Zircon U-Pb geochronology, geochemical characteristics and geological significance of cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun[J]. Acta Geologica Sinica, 87(2): 178-196. (in Chinese with English abstract [10] CHEN G C, PEI X Z, LI R B, et al., 2017. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance[J]. Geotectonica et Metallogenia, 41(6): 1097-1115. (in Chinese with English abstract [11] CHEN G C, PEI X Z, LI R B, et al., 2018. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: constraint on the middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 34(3): 567-585. (in Chinese with English abstract [12] CHEN G C, PEI X Z, LI R B, et al., 2019. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 26(4): 191-208. (in Chinese with English abstract [13] CHEN G C, CHEN X Z, PEI X Z, et al., 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of East Kunlun[J]. Acta Geologica Sinica, 96(3): 971-990. (in Chinese with English abstract [14] CHERNIAK D J, HANCHAR J M, WATSON E B, 1997a. Diffusion of tetravalent cations in zircon[J]. Contributions to Mineralogy and Petrology, 127(4): 383-390. doi: 10.1007/s004100050287 [15] CHERNIAK D J, HANCHAR J M, WATSON E B, 1997b. Rare-earth diffusion in zircon[J]. Chemical Geology, 134(4): 289-301. doi: 10.1016/S0009-2541(96)00098-8 [16] CHERNIAK D J, WATSON E B, 2001. Pb diffusion in zircon[J]. Chemical Geology, 172(1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3 [17] CHERNIAK D J, WATSON E B, GROVE M, et al., 2004. Pb diffusion in monazite: a combined RBS/SIMS study[J]. Geochimica et Cosmochimica Acta, 68(4): 829-840. doi: 10.1016/j.gca.2003.07.012 [18] China University of Geosciences (Wuhan), 2006. Regional geological survey report of 1∶250 000 Qusaihu (I46C001002) and Budomhquan (I46C001003) in Qinghai Province[R]. 1-400. (in Chinese) [19] CHU N C, TAYLOR R N, CHAVAGNAC V, et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/b206707b [20] CHUNG S L, LIU D Y, JI J Q, et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1 [21] DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0 [22] DING Q F, JIANG S Y, SUN F Y, 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: petrogenesis and tectonic implications[J]. Lithos, 205: 266-283. doi: 10.1016/j.lithos.2014.07.015 [23] DING S, HUANG H, NIU Y L, et al., 2011. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrologica Sinica, 27(12): 3603-3614. (in Chinese with English abstract [24] DONG Y P, HE D F, SUN S S, et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006 [25] DONG Y P, HUI B, SUN S S, et al., 2022. Multiple orogeny and geodynamics from proto-tethys to paleo-tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3426-3448. (in Chinese with English abstract [26] FANG J, ZHANG L, CHEN H Y, et al., 2018. Genesis of the Weibao banded skarn Pb-Zn deposit, Qimantagh, Xinjiang: insights from skarn mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews, 100: 483-503. doi: 10.1016/j.oregeorev.2017.06.001 [27] FENG C Y, LI D S, QU W J, et al., 2009. Re-Os isotopic dating of molybdenite from the Suolajier skarn-type copper-molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223-227. (in Chinese with English abstract [28] FENG C Y, WANG X P, SHU X F, et al., 2011. Isotopic chronology of the hutouya skarn lead-zinc polymetallic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806-1817. (in Chinese with English abstract [29] FENG K, LI R B, PEI X Z, et al., 2020. Zircon U-Pb dating and geochemical characteristics of dagele granite in the eastern margin of East Kunlun Orogenic Belt, China and their tectonic implications[J]. Journal of Earth Sciences and Environment, 42(4): 442-463, doi: 10.19814/j.jese.2020.05009 [30] FENG K, LI R B, PEI X Z, et al., 2022. Zircon U-Pb chronology, geochemistry and geological significance of late triassic intermediate-acid volcanic rocks in Boluositai Area, East Kunlun Orogenic Belt[J]. Earth Science, 47(4): 1194-1216, doi: 10.3799/dqkx.2021.116 [31] GAO H C, SUN F Y, LI B L, et al., 2020. Geochronological and geochemical constraints on the origin of the Hutouya polymetallic skarn deposit in the East Kunlun orogenic belt, NW China[J]. Minerals, 10(12): 1136. doi: 10.3390/min10121136 [32] GAO Y B, Li W Y, Ma X G, et al., 2012. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 48(2): 36-47(in Chinese with English abstract [33] GAO Y B, LI W Y, QIAN B, et al., 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647-1665. (in Chinese with English abstract [34] General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese) [35] General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010b. (in Chinese) [36] GU X X, ZHANG Y M, HE G F, et al. , 2017. Study on metallogenic regularity and prospecting direction of gold deposit in Kunlun River area, Qinghai Province[R]. 1-332. (in Chinese) [37] GUAN Q, ZHU D C, ZHAO Z D, et al., 2012. Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 21(1): 88-99. doi: 10.1016/j.gr.2011.07.004 [38] GUO X Z, LI Y Z, JIA Q Z, et al., 2018. Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun: implication for metallogenic tectonic[J]. Acta Petrologica Sinica, 34(8): 2359-2379. (in Chinese with English abstract [39] GUO X Z, JIA Q Z, LI J C, et al., 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286-300. (in Chinese with English abstract [40] HE Y S, LI S G, HOEFS J, et al., 2011. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. doi: 10.1016/j.gca.2011.04.011 [41] HOU Z Q, GAO Y F, QU X M, et al., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X [42] HU Y, NIU Y L, LI J Y, et al., 2016. Petrogenesis and tectonic significance of the late triassic mafic dikes and felsic volcanic rocks in the East Kunlun orogenic belt, northern tibet plateau[J]. Lithos, 245: 205-222. doi: 10.1016/j.lithos.2015.05.004 [43] HUANG H, NIU Y L, NOWELL G, et al., 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 370: 1-18, doi: 10.1016/J.chemgeo.2014.01.010 [44] HUANG X K, 2021. Gold mineralization and comprehensive information prospecting prediction in Balong-Gouli area, East Kunlun Orogen[D]. Wuhan: China University of Geosciences, doi: 10.27492/d.cnki.gzdzu.2021.000251. (in Chinese with English abstract [45] HUANG X K, WEI J H, LI H, et al., 2021. Zircon U-Pb geochronological, elemental and Sr-Nd-Hf isotopic constraints on petrogenesis of late triassic quartz diorite in balong region, East Kunlun Orogen[J]. Earth Science, 46(6): 2037-2056. (in Chinese with English abstract [46] JIAN K K, ZHU Y H, WANG L W, et al., 2017. Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the middle triassic granites from the Zhongzaohuo Area, East Kunlun[J]. Geological Review, 63(3): 659-676. (in Chinese with English abstract [47] KAY R W, KAY S M, 1993. Delamination and delamination magmatism[J]. Tectonophysics, 219(1-3): 177-189. doi: 10.1016/0040-1951(93)90295-U [48] KONG H L, LI J C, LI Y Z, et al., 2016. LA-MC-ICP-MS zircon U-Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron-polymetallic ore district in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 35(1): 8-16. (in Chinese with English abstract [49] KONG J J, NIU Y L, HU Y, et al., 2020. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: implications for continental crust growth from syn-collisional to post-collisional setting[J]. Lithos, 364-365: 105513, doi: 10.1016/J.lithos.2020.105513 [50] LI C X, ZENG X H, ZHOU H, et al., 2023. Petrogenesis and geological significance of triassic granites in the central bayanhar[J]. Geotectonica et Metallogenia, 47(6): 1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303 [51] LI J C, 2017. Metallogenic regularity and metallogenic prognosis of Gold Deposit in the East Kunlun Orogen, Qinghai Province[D]. Xi’an: Chang'an University. (in Chinese with English abstract [52] LI R B, PEI X Z, LI Z C, et al., 2015. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 34(12): 2302-2314 (in Chinese with English abstract [53] LI R B, PEI X Z, LI Z C, et al., 2018. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 34(11): 3399-3421. (in Chinese with English abstract [54] LI R B, PEI X Z, PEI L, et al., 2018. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 62: 212-226. doi: 10.1016/j.gr.2018.03.005 [55] LIANG G Z, YANG K F, SUN W Q, et al., 2021. Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun Orogenic Belt, western China[J]. Journal of Asian Earth Sciences, 220: 104920. doi: 10.1016/j.jseaes.2021.104920 [56] LING X X, HUYSKENS M H, LI Q L, et al., 2017. Monazite RW-1: a homogenous natural reference material for SIMS U–Pb and Th–Pb isotopic analysis[J]. Mineralogy and Petrology, 111(2): 163-172 doi: 10.1007/s00710-016-0478-7 [57] LIU B, MA C Q, HUANG J, et al., 2017. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau[J]. Lithos, 284-285: 766-778. doi: 10.1016/j.lithos.2017.05.016 [58] LIU H T, 2001. Qimantage terrestrial volcanics: Petrologic evidence of active continental margin of Tarim Plate during Late Indo-China Epoch[J]. Acta Petrologica Sinica, 17(3): 337-351 (in Chinese with English abstract [59] LIU J D, ZHANG K, WANG B Z, et al., 2023. U-Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains[J]. Geological Review, 69(4): 1525-1542. (in Chinese with English abstract [60] LIU J L, SUN F Y, LI L, et al., 2015. Geochronology, geochemistry and Hf isotopes of gerizhuotuo complex intrusion in west of anyemaqen suture zone[J]. Earth Science, 40(6): 965-981. (in Chinese with English abstract [61] LIU J N, FENG C Y, HE S Y, et al., 2017. Zircon U-Pb and phlogopite Ar-Ar ages of the monzogranite from Yemaquan iron-zinc deposit in Qinghai province[J]. Geotectonica et Metallogenia, 41(6): 1158-1170, doi: 10.16539/j.ddgzyckx.2017.06.013 [62] LIU S, HU R Z, GAO S, et al., 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China: constraints on petrogenesis and implications[J]. Journal of Asian Earth Sciences, 35(5): 445-458. doi: 10.1016/j.jseaes.2009.02.008 [63] LIU Y H, MO X X, YU X H, et al., 2006. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 22(10): 2457-2463. (in Chinese with English abstract [64] LUDWIG K R, 2003. User's manual for isoplot 3.00: a geochronological toolkit for microsoft excel[R]. Berkeley: Berkeley Geochronology Center: 39. [65] LUO M F, MO X X, YU X H, et al., 2014. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride Area, East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3229-3241. (in Chinese with English abstract [66] LUO Z H, KE S, CAO Y Q, et al., 2002. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6): 292-297. (in Chinese with English abstract [67] MACPHERSON C G, DREHER S T, THIRLWALL M F, 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth And Planetary Science Letters, 243(3-4): 581-593. doi: 10.1016/j.jpgl.2005.12.034 [68] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224, doi: 10.1016/0012-8252(94)90029-9 [69] MO X X, LUO Z H, DENG J F, et al., 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403-414. (in Chinese with English abstract [70] PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05 [71] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81, doi: 10.1007/BF00384745 [72] PEI X Z, LI R B, LI Z C, et al., 2018. Composition feature and Formation process of buqingshan composite accretionary mélange belt in southern margin of East Kunlun Orogen[J]. Earth Science, 43(12): 4498-4520. (in Chinese with English abstract [73] QIAN B, GAO Y B, LI K, et al., 2015. Zircon U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granitic intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 31(9): 2508-2520. (in Chinese with English abstract [74] Qinghai Geological Survey Institute, 2023. Regional geology of China. Qinghai province[M]. Beijing: Geological Publishing House: 1-1543. (in Chinese) [75] QU H Y, FRIEHAUF K, SANTOSH M, et al., 2019. Middle-Late Triassic magmatism in the Hutouya Fe-CU-Pb-Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization[J]. Ore Geology Reviews, 113: 103088. doi: 10.1016/j.oregeorev.2019.103088 [76] REN J S, 2004. Some problems on the Kunlun-Qinling orogenic system[J]. Northwestern Geology, 37(1): 1-5. (in Chinese with English abstract [77] RUDNICK R L, GAO S, 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64. [78] SHAO F L, 2017. Petrogenesis of Triassic granitoids and rhyolites in the East Kunlun Orogenic Belt and their tectonic implications[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences: 1-146. (in Chinese with English abstract [79] SMITH H A, GILETTI B J, 1997. Lead diffusion in monazite[J]. Geochimica et Cosmochimica Acta, 61(5): 1047-1055. doi: 10.1016/S0016-7037(96)00396-1 [80] SONG S G, WANG M J, WANG C, et al., 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective[J]. Science China Earth Sciences, 58(8): 1284-1304, doi: 10.1007/s11430-015-5102-x [81] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [82] SUN Y, PEI X Z, DING S P, et al., 2009. Halagatu magma mixing granite in the East Kunlun Mountains: evidence from zircon U-Pb dating[J]. Acta Geologica Sinica, 83(7): 1000-1010. (in Chinese with English abstract [83] TIAN C S, FENG C Y, LI J H, et al., 2013. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in qimantag mountain of Qinghai province and its geological implications[J]. Mineral Deposits, 32(1): 169-176. (in Chinese with English abstract [84] TOMASCAK P B, KROGSTAD E J, WALKER R J, 1996. U-Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the northern appalachians[J]. The Journal of Geology, 104(2): 185-195. doi: 10.1086/629813 [85] WANG B Z, CHEN J, LUO Z H, et al., 2014. Spatial and temporal distribution of Late Permian-Early Jurassic intrusion assemblages in eastern Qimantag, East Kunlun, and their tectonic settings[J]. Acta Petrologica Sinica, 30(11): 3213-3228. (in Chinese with English abstract [86] WANG B Z, PAN T, REN H D, et al., 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 28(1): 318-333 (in Chinese with English abstract [87] WANG B Z, LI J Q, FU C L, et al., 2022. Research on formation and evolution of Early paleozoic bulhanbuda Arc in East Kunlun Orogen[J]. Earth Science, 47(4): 1253-1270. (in Chinese with English abstract [88] WANG F C, CHEN J, XIE Z Y, et al., 2013. Geological features and Re-Os isotopic dating of the Lalingzaohuo molybdenum polymetallic deposit in East Kunlun[J]. Geology in China, 40(4): 1209-1217. (in Chinese with English abstract [89] WANG F L, WEI J H, LI X L, et al., 2022. Late permian magmatism at the eastern segment of the eastern Kunlun Orogenic belt: insights from granites in the Gazhima Area[J]. Geotectonica et Metallogenia, 46(5): 1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009 [90] WANG P, ZHAO G C, LIU Q, et al., 2022. Evolution of the paleo-tethys ocean in eastern Kunlun, north Tibetan Plateau: from continental rift-drift to final closure[J]. Lithos, 422-423: 106717. doi: 10.1016/j.lithos.2022.106717 [91] WANG Q, XU J F, JIAN P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070 [92] WANG Q, WYMAN D A, XU J F, et al., 2007. Early cretaceous adakitic granites in the northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008 [93] WANG Q, XU J F, ZHAO Z H, et al., 2008. Tectonic setting and associated rock suites of adakitic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350. (in Chinese with English abstract [94] WANG Q, HAO L L, ZHANG X Z, et al., 2020. Adakitic rocks at convergent plate boundaries: compositions and petrogenesis[J]. Science China Earth Sciences, 63(12): 1992-2016. doi: 10.1007/s11430-020-9678-y [95] WANG W, XIONG F H, MA C Q, et al., 2021. Petrogenesis of triassic suolagou sanukitoid-like diorite in East Kunlun orogen and its implications for paleo-tethyan orogeny[J]. Earth Science, 46(8): 2887-2902. (in Chinese with English abstract [96] WANG Y L, ZHANG Z W, ZHANG J W, et al., 2017. Early mesozoic mantle-derived magmatic events and their geological significance in the East Kunlun orogenic belt[J]. Geology and Exploration, 53(5): 855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003 [97] WU F Y, YANG Y H, XIE L W, et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003 [98] XIA R, QING M, WANG C M, et al., 2014. The genesis of the ore-bearing porphyry of the tuoketuo porphyry Cu-Au(Mo) deposit in the East Kunlun, Qinghai province: constraints from zircon U-Pb geochronological and geochemistry[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524. (in Chinese with English abstract [99] XIA R, WANG C M, QING M, et al., 2015. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024 [100] XIAO Y, FENG C Y, LI D X, et al., 2014. Chronology and fluid inclusions of the guoluolongwa gold deposit in Qinghai province[J]. Acta Geologica Sinica, 88(5): 895-902. (in Chinese with English abstract [101] XIN W, SUN F Y, ZHANG Y T, et al., 2019. Mafic-intermediate igneous rocks in the East Kunlun orogenic belt, northwestern china: petrogenesis and implications for regional geodynamic evolution during the triassic[J]. Lithos, 346-347: 105159. doi: 10.1016/j.lithos.2019.105159 [102] XIONG F H, MA C Q, ZHANG J Y, et al., 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 27(11): 3350-3364. (in Chinese with English abstract [103] XIONG F H, MA C Q, ZHANG J Y, et al., 2014. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by triassic I-type granitoids in the East Kunlun Orogen, northern Tibetan Plateau[J]. Journal of the Geological Society, 171(6): 847-863. doi: 10.1144/jgs2013-038 [104] XU B, WANG C Y, LIU J D, et al., 2020. The petrogenesis of the Late Triassic granites in the Heergetou area, East Kunlun: constraints from geochronology, geochemistry and Sr-Nd-Pb isotopes[J]. Acta Geologica Sinica, 94(12): 3643-3656. (in Chinese with English abstract [105] XU Z Q, JIANG M, YANG J S, 1996. Tectonophysical process at depth for the uplift of the northern part of the qinghai-tibet plateau: illu- strated by the geological and geophysical compreh- ensive profile from golmud to the Tanggula Mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 70(3): 195-206. (in Chinese with English abstract [106] XU Z Q, YANG J S, LI W C, et al., 2012. Tectonic positioning of important metallogenic belts at southern and southeastern Tibet and ore prospecting[J]. Acta Geologica Sinica, 86(12): 1857-1868. (in Chinese with English abstract [107] YAN D D, XIONG F H, MA C Q, et al., 2024. Petrogenesis of middle triassic intermediate-mafic igneous rocks in East Kunlun, northern Tibet: implications for the crust growth and Paleo-Tethyan orogeny[J]. Geosystems and Geoenvironment, 3(2): 100096, doi: 10.1016/J.geogeo.2022.100096 [108] YAN Z, BIAN Q T, Korchagin O A, et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: constrains from detrital framework, heavy mineral analysis and geochemistry[J]. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract [109] YIN H F, ZHANG K X, 1998. Evolution and characteristics of the Central Orogenic Belt[J]. Earth Science—Journal of China University of Geosciences, 23(5): 438-442. (in Chinese with English abstract [110] YU M, FENG C Y, LIU H C, et al., 2015. 40Ar-39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510-521. (in Chinese with English abstract [111] YUE W H, ZHOU J X, 2019. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai province[J]. Geological Bulletin of China, 38(2-3): 328-338. (in Chinese with English abstract [112] YUE Y G, 2022. Accretionary orogenesis of Carboniferous-Triassic in the southern belt of East Kunlun Orogen[D]. Xi’an: Northwest University, doi: 10.27405/d.cnki.gxbdu.2022.001333. (in Chinese with English abstract [113] ZENG L S, GAO L E, XIE K J, et al., 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303(3-4): 251-266. doi: 10.1016/j.jpgl.2011.01.005 [114] ZHAN Q Y, ZHU D C, WANG Q, et al., 2018. Constructing the eastern margin of the Tibetan Plateau during the late Triassic[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459. [115] ZHANG J Y, MA C Q, XIONG F H, et al., 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 149(5): 892-908. doi: 10.1017/S0016756811001142 [116] ZHANG J Y, MA C Q, LI J W, et al., 2017. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, Western China[J]. Ore Geology Reviews, 81: 342-357. doi: 10.1016/j.oregeorev.2016.11.003 [117] ZHANG M Y, FENG C Y, WANG H, et al., 2018. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralogica, 37(2): 197-210. (in Chinese with English abstract [118] ZHANG X M, ZHAO X, FU L B, et al., 2023. Crustal architecture and metallogeny associated with the Paleo-Tethys evolution in the Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau[J]. Geoscience Frontiers, 14: 101654. doi: 10.1016/j.gsf.2023.101654 [119] ZHANG Y L, LI Y Z, JIA Q Z, et al., 2018. Origin of magmatic rocks from Xishan copper polymetallic deposit, Geermu city, Qinghai province: insights from zircon U-Pb dating and geochemical characteristics[J]. Earth Science, 43(12): 4364-4374. (in Chinese with English abstract [120] ZHANG Y L, NI J Y, HU D G, et al., 2024. Geochronological and geochemical characteristics of volcanic rocks in the permian Gequ Formation in East Kunlun and their tectonic significance[J]. Acta Geoscientica Sinica, 45(2): 152-164. (in Chinese with English abstract [121] ZHAO X, FU L B, WEI J H, et al., 2018. Geochemical characteristics of An'nage hornblende gabbro from East Kunlun Orogenic belt and its constraints on evolution of paleo-tethys ocean[J]. Earth Science, 43(2): 354-370. (in Chinese with English abstract [122] ZHU Y X, WANG L X, MA C Q, et al., 2022. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412-413: 106595, doi: 10.1016/J.lithos.2022.106595 [123] 奥琮,孙丰月,李碧乐,等,2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义[J]. 大地构造与成矿学,39(6):1176-1184, doi: 10.16539/J.ddgzyckx.2015.06.016. [124] 陈丹玲,刘良,车自成,等,2001. 祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J]. 地球化学,30(6):540-546. doi: 10.3321/j.issn:0379-1726.2001.06.006 [125] 陈功,裴先治,李佐臣,等,2016. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报,35(12):1990-2005. doi: 10.3969/j.issn.1671-2552.2016.12.007 [126] 陈国超,裴先治,李瑞保,等,2013a. 东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质,40(4):1044-1065. [127] 陈国超,裴先治,李瑞保,等,2013b. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报,87(2):178-196. [128] 陈国超,裴先治,李瑞保,等,2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学,41(6):1097-1115. [129] 陈国超,裴先治,李瑞保,等,2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报,34(3):567-585. [130] 陈国超,裴先治,李瑞保,等,2019. 东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据[J]. 地学前缘,26(4):191-208. [131] 陈国超,陈孝珍,裴先治,等,2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束[J]. 地质学报,96(3):971-990. doi: 10.3969/j.issn.0001-5717.2022.03.015 [132] 丁烁,黄慧,牛耀龄,等,2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报,27(12):3603-3614. [133] 董云鹏,惠博,孙圣思,等,2022. 中国中央造山系原-古特提斯多阶段复合造山过程[J]. 地质学报,96(10):3426-3448. doi: 10.3969/j.issn.0001-5717.2022.10.010 [134] 丰成友,李东生,屈文俊,等,2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试,28(3):223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006 [135] 丰成友,王雪萍,舒晓峰,等,2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版),41(6):1806-1817. [136] 封铿,李瑞保,裴先治,等,2020. 东昆仑造山带东段大格勒花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报,42(4):442-463, doi: 10.19814/J.Jese.2020.05009. [137] 封铿,李瑞保,裴先治,等,2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 地球科学,47(4):1194-1216, doi: 10.3799/dqkx.2021.116. [138] 高永宝,李文渊,马晓光,等,2012. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版),48(2):36-47. doi: 10.3969/j.issn.0455-2059.2012.02.007 [139] 高永宝,李文渊,钱兵,等,2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报,30(6):1647-1665. [140] 顾雪祥,章永梅,何格冯,等,2017. 青海省昆仑河地区金矿成矿规律与找矿方向研究[R]. 1-332. [141] 国显正,栗亚芝,贾群子,等,2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义[J]. 岩石学报,34(8):2359-2379. [142] 国显正,贾群子,李金超,等,2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报,25(2):286-300. doi: 10.12090/j.issn.1006-6616.2019.25.02.027 [143] 黄啸坤,2021. 东昆仑巴隆-沟里地区金成矿作用与综合信息成矿预测[D]. 武汉:中国地质大学,doi: 10.27492/d.cnki.gzdzu.2021.000251. [144] 黄啸坤,魏俊浩,李欢,等,2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因:U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 地球科学,46(6):2037-2056. [145] 菅坤坤,朱云海,王利伟,等,2017. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义[J]. 地质论评,63(3):659-676. [146] 孔会磊,李金超,栗亚芝,等,2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报,35(1):8-16. [147] 李成祥,曾小慧,周虎,等,2023. 巴颜喀拉中部三叠纪花岗岩类的岩石成因及其地质意义[J]. 大地构造与成矿学,47(6):1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303. [148] 李金超,2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安:长安大学. [149] 李瑞保,裴先治,李佐臣,等,2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报,34(12):2302-2314. doi: 10.3969/j.issn.1671-2552.2015.12.016 [150] 李瑞保,裴先治,李佐臣,等,2018. 东昆仑东段古特提斯洋俯冲作用:乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报,34(11):3399-3421. [151] 刘红涛,2001. 祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J]. 岩石学报,17(3):337-351. doi: 10.3321/j.issn:1000-0569.2001.03.001 [152] 刘建栋,张焜,王秉璋,等,2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及Hf同位素特征[J]. 地质论评,69(4):1525-1542. [153] 刘建楠,丰成友,何书跃,等,2017. 青海野马泉铁锌矿床二长花岗岩锆石U-Pb和金云母Ar-Ar测年及地质意义[J]. 大地构造与成矿学,41(6):1158-1170, doi: 10.16539/J.ddgzyckx.2017.06.013. [154] 刘金龙,孙丰月,李良,等,2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素[J]. 地球科学,40(6):965-981. [155] 刘云华,莫宣学,喻学惠,等,2006. 东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报,22(10):2457-2463. doi: 10.3321/j.issn:1000-0569.2006.10.006 [156] 罗明非,莫宣学,喻学惠,等,2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报,30(11):3229-3241. [157] 罗照华,柯珊,曹永清,等,2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报,21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [158] 莫宣学,罗照华,邓晋福,等,2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报,13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [159] 裴先治,李瑞保,李佐臣,等,2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学,43(12):4498-4520. [160] 钱兵,高永宝,李侃,等,2015. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报,31(9):2508-2520. [161] 青海省地质调查院,2023. 中国区域地质志. 青海志[M]. 北京:地质出版社:1-1543. [162] 任纪舜,2004. 昆仑-秦岭造山系的几个问题[J]. 西北地质,37(1):1-5. doi: 10.3969/j.issn.1009-6248.2004.01.001 [163] 邵凤丽,2017. 东昆仑造山带三叠纪花岗岩类和流纹岩类的成因:洋壳到陆壳的转化[D]. 青岛:中国科学院大学(中国科学院海洋研究所):1-146. [164] 孙雨,裴先治,丁仨平,等,2009. 东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J]. 地质学报,83(7):1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008 [165] 田承盛,丰成友,李军红,等,2013. 青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J]. 矿床地质,32(1):169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012 [166] 王秉璋,陈静,罗照华,等,2014. 东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J]. 岩石学报,30(11):3213-3228. [167] 王秉璋,潘彤,任海东,等,2021. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘,28(1):318-333. [168] 王秉璋,李积清,付长垒,等,2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学,47(4):1253-1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007 [169] 王凤林,魏俊浩,李小亮,等,2022. 东昆仑造山带东段晚二叠世岩浆作用:来自尕之麻地区花岗岩的制约[J]. 大地构造与成矿学,46(5):1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009. [170] 王富春,陈静,谢志勇,等,2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年[J]. 中国地质,40(4):1209-1217. doi: 10.3969/j.issn.1000-3657.2013.04.019 [171] 王强,许继峰,赵振华,等,2008. 埃达克质岩的构造背景与岩石组合[J]. 矿物岩石地球化学通报,27(4):344-350. doi: 10.3969/j.issn.1007-2802.2008.04.003 [172] 王巍,熊富浩,马昌前,等,2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示[J]. 地球科学,46(8):2887-2902. [173] 王亚磊,张照伟,张江伟,等,2017. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探,53(5):855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003. [174] 夏锐,卿敏,王长明,等,2014. 青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版),44(5):1502-1524. [175] 肖晔,丰成友,李大新,等,2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报,88(5):895-902. [176] 熊富浩,马昌前,张金阳,等,2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报,27(11):3350-3364. [177] 徐博,王成勇,刘建栋,等,2020. 东昆仑河尔格头地区晚三叠世花岗岩成因:年代学、地球化学及Sr-Nd-Pb同位素约束[J]. 地质学报,94(12):3643-3656. doi: 10.3969/j.issn.0001-5717.2020.12.009 [178] 许志琴,姜枚,杨经绥,1996. 青藏高原北部隆升的深部构造物理作用:以“格尔木-唐古拉山”地质及地球物理综合剖面为例[J]. 地质学报,70(3):195-206. [179] 许志琴,杨经绥,李文昌,等,2012. 青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景[J]. 地质学报,86(12):1857-1868. doi: 10.3969/j.issn.0001-5717.2012.12.001 [180] 闫臻,边千韬,Korchagin OA,等,2008. 东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据[J]. 岩石学报,24(5):1068-1078. [181] 殷鸿福,张克信,1998. 中央造山带的演化及其特点[J]. 地球科学−中国地质大学学报,23(5):438-442. [182] 于淼,丰成友,刘洪川,等,2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报,89(3):510-521. [183] 岳维好,周家喜,2019. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J]. 地质通报,38(2-3):328-338. [184] 岳远刚,2022. 东昆仑南部构造带石炭-三叠纪增生造山作用[D]. 西安:西北大学,doi: 10.27405/d.cnki.gxbdu.2022.001333. [185] 张明玉,丰成友,王辉,等,2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志,37(2):197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002 [186] 张耀玲,倪晋宇,胡道功,等,2024. 东昆仑二叠系格曲组火山岩年代学、地球化学特征及其构造意义[J]. 地球学报,45(2):152-164. doi: 10.3975/cagsb.2023.110902 [187] 张雨莲,栗亚芝,贾群子,等,2018. 青海省格尔木市西山铜多金属矿成矿岩体锆石U-Pb定年及地球化学特征[J]. 地球科学,43(12):4364-4374. [188] 赵旭,付乐兵,魏俊浩,等,2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学,43(2):354-370. [189] 中国地质大学(武汉),2006. 青海省1∶25万库赛湖幅(I46C001002)、不冻泉幅(I46C001003)区域地质调查报告[R]. 1-400. [190] 中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010a. 硅酸盐岩石化学分析方法:第28部分 16个主次成分量测定:GB/T 14506.28—2010[S]. 北京:中国标准出版社. [191] 中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010b. 硅酸盐岩石化学分析方法:第30部分 44个元素量测定:GB/T14506.30-2010[S]. 北京:中国标准出版社.