留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东昆仑印支晚期埃达克质花岗岩的成因和地质意义

王秉璋 李五福 郑英 王春涛 赵忠国 金婷婷 曹锦山 付长垒

王秉璋,李五福,郑英,等,2024. 东昆仑印支晚期埃达克质花岗岩的成因和地质意义[J]. 地质力学学报,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030
引用本文: 王秉璋,李五福,郑英,等,2024. 东昆仑印支晚期埃达克质花岗岩的成因和地质意义[J]. 地质力学学报,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030
WANG B Z,LI W F,ZHENG Y,et al.,2024. Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen[J]. Journal of Geomechanics,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030
Citation: WANG B Z,LI W F,ZHENG Y,et al.,2024. Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen[J]. Journal of Geomechanics,30(5):834−864 doi: 10.12090/j.issn.1006-6616.2024030

东昆仑印支晚期埃达克质花岗岩的成因和地质意义

doi: 10.12090/j.issn.1006-6616.2024030
基金项目: 第二次青藏高原综合科学考察研究(STEP)项目(2019QZKK0702);青海省地质矿产勘查开发局项目(地矿[2021]61号);青海省地质勘查专项资金项目(2024524015jc015)
详细信息
    作者简介:

    王秉璋(1969—),男,博士,正高级工程师,主要从事区域地质矿产调查。Email:wbz6901@126.com

  • 中图分类号: P588.121; P597.3

Petrogenesis and geological significance of the Late Indosinian adakitic granites in the East Kunlun Orogen

Funds: This research is financially supported by the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0702), Geological and Mineral Exploration Project of the Qinghai Provincial Development Bureau (Grant No. [2021]61),and Qinghai Provincial Geological Exploration Special Funding (Grant No. 2024524015jc015).
More Information
    Author Bio:

    王秉璋,青海省地质矿产勘查开发局正高级工程师,博士生导师。2023年获得第十八次李四光地质科学奖野外奖。从事青藏高原地质工作30余年,入选国务院政府特殊津贴专家、国土资源高层次创新型科技人才培养工程(科技领军人才),自然资源部高层次科技创新人才,青海省昆仑英才(杰出人才)。发现青藏高原东北部茶卡北山印支期Li-Be矿化伟晶岩带、三江北段草陇−尕朵伟晶岩型Li-Be矿集区;首次在东昆仑发现铌磷矿化碱性岩−碳酸岩杂岩体,铌矿找矿取得重要进展;“358”找矿行动中主持4个整装勘查区找矿勘探和找矿部署研究,新发现矿产地10处、大—中型矿床7处,组织开展中—大比例尺矿产远景调查,圈定找矿靶区500余处,发现了大量后备勘查基地;参加国土资源大调查,填补青藏高原北部地质空白。出版专著5部,发表SCI和EI论文40余篇,获国家科技进步特等奖1项(R21)、省部级一等奖3项(R2、R4、R12)、二等奖4项(R1、R2、R3、R4)等

  • 摘要: 东昆仑造山带印支期的碰撞造山过程目前尚存在争议,在东昆仑小南川地区新发现的三叠纪埃达克质花岗岩为约束碰撞造山演化提供了新的地质证据。研究通过对小南川地区出露的磨石沟和本头山2个花岗岩体开展岩石学、地球化学、锆石U-Pb和Lu-Hf同位素分析,探讨其岩石成因和构造环境,并结合以往东昆仑印支晚期岩浆作用和沉积作用的研究成果,初步讨论了东昆仑印支造山带的碰撞造山过程。磨石沟岩体岩性为花岗闪长岩和二长花岗岩,形成时代为209~208 Ma;本头山岩体岩性为花岗闪长岩,形成时代为201~200 Ma。2个岩体的花岗岩含较高的SiO2和Al2O3,富碱且相对富钠,同时含较高的Sr(398×10−6~613×10−6)和Sr/Y比值(50~97),亏损重稀土,无Eu异常,表现出埃达克质花岗岩的地球化学特征。磨石沟花岗岩具有负的全岩εNdt)值(−3.60~−3.34)和变化的锆石εHft)值(−1.3~5.9),表明其来源于加厚下地壳的部分熔融。本头山花岗岩具有负的全岩εNdt)值(−1.65~−1.55)和正的锆石εHft)值(+3.4~+7.3),表明其来源于变质基性岩组成的加厚下地壳,残留相为榴辉岩。磨石沟岩体和本头山岩体花岗岩形成于东昆仑印支造山带碰撞后伸展的构造环境。综合分析表明,东昆仑造山带在晚三叠世处于碰撞和碰撞后阶段,而碰撞后阶段的岩浆活动可以进一步划分为晚三叠世早期和晚三叠世晚期—早侏罗世初期2个阶段。

     

  • 印支期造山作用被广泛定义为与古特提斯洋关闭有关的早中生代构造事件,三叠纪末古特提斯洋盆最终闭合形成宏大的印支造山系。昆南−阿尼玛卿古特提斯洋盆闭合形成南昆仑印支造山带(许志琴等,2012),属于印支造山系的一支。东昆仑中部构造带和祁漫塔格北部构造带发育巨量的印支期弧花岗岩,与古特提斯洋的俯冲作用相关,因此,东昆仑造山带整体属于印支造山系的一部分。由于还未发现与大陆碰撞和深俯冲相关的高压—超高压变质岩,以及具有弧岩浆岩地球化学特征的晚二叠世—三叠纪岩浆岩的广泛分布,导致东昆仑印支造山带碰撞造山过程的研究始终存在不同的认识。例如,对碰撞造山作用开始的时间存在3种认识:①碰撞发生在晚二叠世(殷鸿福和张克信,1998任纪舜,2004Huang et al.,2014);②碰撞发生在中三叠世晚期—晚三叠世早期(许志琴等,1996莫宣学等,2007Xiong et al.,2014Kong et al.,2020Wang et al.,2022Zhang et al.,2023Yan et al.,2024),上三叠统八宝山组磨拉石覆盖于石炭—二叠系和中—下三叠统之上,代表了强烈的晚三叠世造山运动;③碰撞发生在晚三叠世晚期,三叠纪东昆仑属于大陆弧(刘红涛,2001Ding et al.,2014董云鹏等,2022)。对碰撞造山作用结束的时间以及晚三叠世—早侏罗世东昆仑深部地质过程也有不同认识:①晚三叠世—早侏罗世为碰撞—后碰撞阶段,经历了陆陆碰撞与地壳加厚,加厚下地壳拆沉,形成了软流圈地幔上涌和碰撞后伸展塌陷的构造背景(王秉璋等,2014Xiong et al.,2014Hu et al.,2016Liu et al.,2017Dong et al.,2018Wang et al.,2022);②晚三叠世中期(约212Ma)碰撞造山过程结束,进入板内伸展阶段,以香日德A1型碱性火山岩(212~209 Ma;Zhu et al.,2022)和于沟子碱性花岗岩为代表(钱兵等,2015);③晚三叠世存在俯冲板片断离过程,以托克妥Cu-Au(Mo)矿床含矿二长花岗斑岩、花岗闪长斑岩(233Ma;夏锐等,2014)和可日正长岩岩体为代表(233~232Ma;陈国超等,2018)。

    文中报道了在东昆仑南部小南川地区新发现的2个具有埃达克质岩地球化学成分的花岗岩岩体,其锆石、独居石的激光剥蚀等离子体质谱(LA-ICP-MS)U-Pb定年表明其形成时代为209~200Ma,这是迄今为止在东昆仑印支造山带发现的最年轻的埃达克质花岗岩之一,可以进一步约束东昆仑印支碰撞造山带的碰撞造山过程晚期的地质演化。结合以往东昆仑印支期岩浆作用、沉积作用和成矿作用的研究成果,初步讨论了东昆仑印支造山带的碰撞造山过程。

    东昆仑造山带自北向南主要划分为祁漫塔格北部构造带、东昆仑中部构造带和东昆仑南部构造带(董云鹏等,2022),磨石沟岩体和本头山岩体位于东昆仑南部构造带小南川地区(图1)。东昆仑南部构造带前寒武纪地层为古—中元古界(苦海岩群)和新元古界万保沟群,古—中元古界由角闪岩相变质的副片麻岩和片岩组成,其与昆中断裂北侧的金水口岩群特征相似。新元古界万保沟群主体由具有洋岛玄武岩(Ocean Island Basalts, OIB)特征的玄武岩和镁质大理岩组成。下古生界主体为纳赤台群,主体由中—基性火山岩、火山碎屑岩、碎屑岩与少量灰岩组成(王秉璋等,2022);其次为志留系赛什腾组,主体由碎屑岩、火山岩和凝灰岩组成。中泥盆统布拉克巴什组主要由火山碎屑岩和碳酸盐岩组成。下石炭统哈拉郭勒组为碳酸盐岩夹碎屑岩—火山碎屑岩—碳酸盐岩夹碎屑岩的充填序列;上石炭统—下二叠统浩特洛哇组下部以粗碎屑岩为主,上部为碳酸盐岩和碳酸盐岩夹碎屑岩的岩石组合(岳远刚,2022)。二叠系主要为布青山群(布青山蛇绿构造混杂岩),基质岩系主要为一套强烈变形的浊积岩地层,混杂岩块包括大洋中脊(Mid-Oceanic Ridge, MOR)型蛇绿岩岩块、洋岛/海山玄武岩岩块等(裴先治等,2018)。上述所有地层均强烈变形,组成叠瓦状逆冲岩席和(或)逆冲推覆构造,并被广泛出露的中—下三叠统(洪水川组、闹仓坚沟组和希里可特组)断续覆盖,呈区域性角度不整合接触,局部地区被断续出露的上二叠统格曲组覆盖,呈角度不整合接触。中—下三叠统为连续沉积的碎屑岩−碳酸盐岩−火山岩−火山碎屑岩建造,具有弧前盆地沉积特点(岳远刚,2022)。上三叠统八宝山组为陆相碎屑岩建造,部分地区含有中—基性火山岩,角度不整合于中—下三叠统之上。相对于东昆仑中部构造带,东昆仑南部构造带海西—印支期深成侵入岩浆作用弱,主要为呈岩株状零星分布的高钾钙碱性花岗岩、镁铁质岩浆岩和埃达克质岩(陈国超等,2019)。

    图  1  研究区位置和小南川地区地质简图
    1—侏罗系;2—三叠系;3—石炭系—二叠系;4—石炭系;5—泥盆系;6—寒武系—奥陶系;7—志留系;8—元古宇;9—二叠纪—三叠纪花岗岩;10—志留纪—泥盆纪花岗岩;11—寒武纪—奥陶纪花岗岩;12—镁铁—超镁铁质岩;13—区域性断裂及编号;14—一般断裂;15—湖泊;16—河流;17—采样地点和编号;F1—阿尔金断裂;F2—昆北断裂;F3—昆中断裂;F4—昆南断裂a—研究区位置(据王秉璋等,2021修改);b—小南川地区地质简图
    Figure  1.  The location of the study area and geological sketch of Xiaonanchuan area
    (a) The location of the study area (modified after Wang et al.,2021); (b) Geological sketch of Xiaonanchuan area1—Jurassic; 2—Triassic; 3—Carboniferous-Permian; 4—Carboniferous; 5—Devonian; 6—Cambrian-Ordovician; 7—Silurian; 8—Proterozoic; 9—Permian-Triassic granite; 10—Silurian-Devonian granite; 11—Cambrian-Ordovician granite; 12—ultramafic-mafic rocks; 13—regional faults and numbers; 14—general faults; 15— lakes; 16—rivers; 17—Sampling location and number; F1—Altyn Fault; F2—North Kunlun Fault; F3—Central Kunlun Fault; F4—South Kunlun Fault.

    磨石沟岩体和本头山岩体侵入于下古生界中(图1b图2a),其中磨石沟岩体面积约为110.1 km2,岩性为花岗闪长岩和二长花岗岩,2种岩石野外特征相似,不易区分。本头山岩体面积约为32.4 km2,岩性主要为花岗闪长岩。磨石沟岩体和本头山岩体相对均匀,野外观察未见暗色包体(图2a、2b)。

    图  2  东昆仑印支晚期埃达克质花岗岩的野外和显微特征
    Qz—石英;Pl—斜长石;Kf—钾长石;Bit—黑云母a—本头山岩体侵入于下古生界;b—磨石沟岩体野外特征;c—磨石沟岩体二长花岗岩镜下结构和主要矿物特征(正交偏光);d—磨石沟岩体二长花岗岩镜下钾长石条纹结构(正交偏光);e—磨石沟岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光);f—本头山岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光)
    Figure  2.  Field characteristics and photomicrographs of Late Indosinian adakitic granite in East Kunlun
    (a) Bentoushan rock mass intruded into the Lower Paleozoic; (b) Field characteristics of Moshigou rock mass; (c) Microstructure and main mineral characteristics of monzogranite in Moshigou rock mass (cross-polarized light); (d) Potassium feldspar perthitic microstructure of monzogranite in Moshigou rock mass (cross-polarized light); (e) Microstructure and main mineral characteristics of granodiorite in Moshigou rock mass (cross-polarized light); (f) Microstructure and main mineral characteristics of granodiorite in Bentoushan rock mass (cross-polarized light) Notes:Qz—quartz; Pl—plagioclase; Kf—potassium-feldspar; Bit—biotite.

    磨石沟岩体二长花岗岩,呈灰白色,块状构造(图2b),中—细粒花岗结构(图2c)。其中钾长石含量为20%~36%,斜长石含量为28%~40%,石英含量为20%~30%,黑云母含量为6%~8%,角闪石含量约为1%,榍石、磷灰石、褐帘石微量。钾长石呈半自形粒状晶、他形粒状晶,发育格状双晶,具条纹结构(图2d),为微斜条纹长石;斜长石呈半自形粒状晶,具环带构造、钠长双晶,为中长石;石英多呈他形粒状晶,少数呈不规则粒状晶;黑云母呈褐色片状;角闪石呈半自形粒状晶,具绿帘石化蚀变,为普通角闪石。

    磨石沟岩体花岗闪长岩,呈灰白色,块状构造,中—细粒花岗结构(图2e)。其中钾长石含量为20%,斜长石含量为49%,石英含量为22%,黑云母含量为8%,角闪石含量约1%,磷灰石微量。钾长石呈半自形粒状晶、他形粒状晶,发育格状双晶,具条纹结构,为微斜条纹长石;斜长石呈半自形粒状晶,具环带构造;石英多呈他形粒状晶;黑云母呈褐色片状;角闪石为半自形粒状晶,为普通角闪石。

    本头山岩体花岗闪长岩,呈灰白色,块状构造,中—细粒花岗结构(图2f),矿物成分主要为斜长石(48%~52%)、钾长石(14%~16%)、石英(20%~30%)、黑云母(3%~5%)、角闪石(2%)和微量榍石。斜长石呈半自形板状晶,具明显的环带结构,An=25~30,为更—中长石。钾长石呈他形粒状晶,发育条纹结构和格子状双晶,为微斜条纹长石。石英呈他形粒状晶,充填于斜长石间隙。普通角闪石呈半自形粒状,多数发生绿帘石化。

    样品系统采自磨石沟岩体和本头山岩体,选择新鲜样品进行锆石和独居石U-Pb测年、锆石Lu-Hf同位素分析和全岩主/微量元素及Sr-Nd同位素分析。采样位置见图1b表1。样品的全岩主/微量元素测定与Sr-Nd同位素分析测试在武汉上谱分析科技有限责任公司完成。锆石与独居石U-Pb测年、锆石Lu-Hf分析在北京燕都中实测试技术有限公司完成。

    表  1  东昆仑印支晚期埃达克质花岗岩的主量元素(%)、微量元素(×10−6)和稀土元素(×10−6)含量特征
    Table  1.  Major (%), trace(×10−6), and REE element (×10−6) abundances of the Late Indosinian adakitic granite in East Kunlun
    样品名称 2MSG-1-2 2MSG-1-3 2MSG-2-2 2MSG-2-3 2MSG-3-2 2MSG-3-3 2MSG-4-2 2MSG-4-3 2BTS-1 2BTS-1-2 2BTS-1-3 2BTS-3 2BTS-3-2 2BTS-3-3 2BTS-4-1 2BTS-4-2 2BTS-4-3
    磨石沟岩体 本头山岩体
    二长花岗岩 二长花岗岩 二长花岗岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩
    样品坐标 94°34′30.8″E;35°48′33.3″N 94°33′3.2″E;35°49′20.9″N 94°31′27.6″E;35°49′59.4″N 94°29′28.1″E;35°51′0.7″N 94°18′39″E;35°50′35.9″N 94°16′18.8″E;35°51′42.4″N 94°15′0.8″E;35°51′18.3″N
    SiO2 70.12 70.37 71.04 69.68 68.92 69.14 66.35 65.73 66.18 65.65 67.31 66.64 67.90 67.42 67.16 68.30 66.29
    TiO2 0.27 0.26 0.25 0.26 0.29 0.29 0.42 0.43 0.47 0.47 0.44 0.48 0.46 0.45 0.48 0.42 0.47
    Al2O3 15.91 15.68 15.69 16.39 16.79 16.66 17.52 17.09 16.79 17.18 16.70 16.45 16.25 16.19 16.16 15.53 16.41
    Fe2O3T 1.71 1.65 1.70 1.73 1.92 1.94 2.60 2.65 3.17 3.19 2.85 3.11 3.12 3.00 3.09 2.84 3.27
    MnO 0.036 0.034 0.030 0.031 0.038 0.037 0.040 0.040 0.057 0.056 0.042 0.057 0.056 0.055 0.055 0.051 0.057
    MgO 0.73 0.70 0.67 0.70 0.73 0.74 1.26 1.27 1.28 1.29 1.19 1.26 1.29 1.24 1.24 1.17 1.39
    CaO 2.35 2.35 2.75 2.92 2.77 2.76 3.74 3.51 3.23 3.12 3.46 3.05 3.11 3.07 3.28 3.14 3.28
    Na2O 4.36 4.32 4.43 4.74 4.77 4.73 4.26 4.35 4.39 4.31 4.49 4.19 4.25 4.23 4.27 4.19 4.30
    K2O 3.86 3.92 3.04 3.06 3.56 3.50 3.31 3.24 3.36 4.02 2.62 3.58 3.25 3.30 2.93 2.75 3.17
    P2O5 0.10 0.10 0.10 0.10 0.11 0.11 0.15 0.16 0.21 0.21 0.19 0.21 0.21 0.20 0.21 0.20 0.22
    LOI 0.45 0.45 0.39 0.47 0.45 0.40 0.80 1.77 0.64 0.79 0.84 0.54 0.52 0.63 0.66 0.62 0.60
    SUM 99.88 99.82 100.08 100.07 100.34 100.29 100.45 100.24 99.79 100.29 100.14 99.57 100.40 99.77 99.55 99.22 99.47
    FeO 1.10 0.82 0.98 0.98 1.10 1.20 1.64 1.58 1.74 1.74 1.48 1.38 1.78 1.60 1.44 1.54 1.88
    Mg# 46 46 44 45 43 43 49 49 45 45 45 45 45 45 45 45 46
    Na2O/K2O 1.13 1.10 1.45 1.55 1.34 1.35 1.29 1.34 1.30 1.07 1.71 1.17 1.31 1.28 1.46 1.53 1.36
    Na2O+K2O 8.22 8.23 7.47 7.80 8.33 8.23 7.58 7.59 7.76 8.33 7.12 7.77 7.50 7.53 7.20 6.94 7.47
    A/CNK 1.02 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00
    Li 57.4 56.6 37.8 40.7 45.8 45.2 21.3 26.0 33.9 38.3 35.3 39.7 41.6 35.6 46.2 43.4 44.9
    Be 2.53 2.54 2.14 2.29 2.42 2.36 2.19 2.16 1.83 1.69 1.84 1.82 2.00 1.73 1.99 1.73 1.79
    Sc 2.45 2.54 2.06 2.16 2.43 2.17 5.93 6.13 4.04 4.25 2.38 4.14 4.17 4.02 4.18 3.96 4.01
    V 17.9 18.3 17.1 17.8 18.8 18.1 32.2 32.4 32.8 35.2 31.2 34.5 33.6 32.6 34.0 31.7 35.5
    Cr 8.50 8.35 7.89 8.40 8.21 8.13 19.70 18.80 10.60 10.70 9.05 10.60 10.40 10.00 10.60 9.82 11.10
    Co 3.05 3.14 3.12 3.23 3.38 3.28 5.55 5.55 5.92 5.91 5.22 5.90 6.02 5.72 5.60 5.52 6.28
    Ni 3.78 3.69 3.67 3.67 3.49 4.00 6.33 6.97 5.95 6.59 5.69 5.95 6.24 6.55 5.90 5.84 6.68
    Cu 7.66 6.25 5.42 5.86 6.16 5.93 6.93 7.38 20.8 7.10 7.31 10.50 9.55 9.78 7.27 7.15 10.60
    Zn 43.8 43.6 39.3 41.0 45.2 45.8 51.4 49.5 68.5 70.6 64.0 68.5 68.1 65.0 66.8 62.5 71.1
    Ga 21.9 21.8 20.4 21.9 22.4 21.7 22.5 22.2 21.2 22.8 21.9 21.4 21.5 21.7 20.9 21.0 21.9
    Rb 135.0 149.0 94.8 97.9 120.0 115.0 117.0 116.0 98.9 120.0 88.4 112.0 113.0 106.0 95.3 94.6 105.0
    Sr 399 398 529 566 559 544 502 516 534 550 613 517 525 520 544 535 554
    Y 6.91 7.21 5.47 5.85 6.57 6.54 6.50 7.23 8.73 8.82 6.97 9.37 8.50 8.41 10.8 8.46 8.02
    Zr 144 156 143 155 170 170 160 167 204 197 163 187 193 189 201 183 203
    Nb 11.4 12.0 8.69 9.07 11.5 11.5 7.14 7.56 14.1 14.3 12.2 15.7 14.7 13.8 17.4 13.6 13.7
    Sn 1.98 2.05 1.03 1.11 1.53 1.53 1.41 1.46 1.81 1.80 1.53 2.07 1.75 1.65 2.09 1.70 1.62
    Cs 1.70 1.86 1.99 2.00 3.08 3.10 2.53 1.30 2.75 2.90 2.18 3.54 3.35 3.28 3.31 3.32 2.39
    Ba 824 809 1052 1099 1137 1070 935 1022 814 1020 931 872 840 807 920 823 866
    La 23.6 27.4 26.3 30.7 33.9 36.2 24.9 27.5 39.4 49.2 34.6 33.6 35.9 50.8 48.1 37.3 34.4
    Ce 42.7 48.3 45.4 52.1 58.0 62.3 46.1 50.4 68.4 88.6 63.7 61.8 66.3 91.9 84.8 68.3 63.4
    Pr 4.22 4.89 4.44 5.16 5.73 6.10 4.78 5.37 7.22 8.98 6.33 6.57 6.79 9.20 8.91 7.09 6.65
    Nd 14.1 16.6 14.7 16.9 18.8 20.0 17.0 18.8 24.0 30.3 21.7 22.4 23.0 30.7 30.3 23.9 22.4
    Sm 2.34 2.74 2.29 2.50 2.88 3.10 2.83 3.03 3.85 4.36 3.47 3.76 3.65 4.17 4.81 3.64 3.45
    Eu 0.73 0.82 0.85 0.91 0.90 0.91 1.16 1.11 1.01 1.09 1.05 1.04 0.99 1.03 1.19 0.96 1.04
    Gd 1.70 1.69 1.56 1.59 1.77 1.81 1.79 1.99 2.45 2.62 2.12 2.70 2.50 2.63 3.08 2.54 2.28
    Tb 0.22 0.23 0.18 0.21 0.23 0.23 0.24 0.26 0.34 0.34 0.28 0.36 0.31 0.33 0.44 0.32 0.30
    Dy 1.19 1.29 1.01 1.14 1.25 1.27 1.17 1.36 1.64 1.76 1.42 1.87 1.65 1.68 2.21 1.77 1.53
    Ho 0.21 0.21 0.18 0.17 0.21 0.21 0.20 0.23 0.30 0.27 0.23 0.32 0.28 0.28 0.34 0.26 0.26
    Er 0.54 0.58 0.47 0.48 0.52 0.56 0.59 0.64 0.81 0.76 0.56 0.81 0.77 0.80 0.96 0.82 0.72
    Tm 0.08 0.09 0.07 0.07 0.08 0.09 0.08 0.09 0.11 0.11 0.08 0.12 0.10 0.10 0.13 0.10 0.10
    Yb 0.53 0.56 0.42 0.47 0.52 0.55 0.50 0.56 0.68 0.65 0.50 0.73 0.68 0.65 0.82 0.63 0.65
    Lu 0.08 0.09 0.06 0.07 0.09 0.08 0.08 0.09 0.10 0.10 0.08 0.11 0.10 0.09 0.11 0.09 0.09
    Hf 3.81 4.05 3.27 3.79 4.16 4.20 3.87 4.02 5.11 4.60 3.82 4.61 4.73 4.44 4.76 4.24 4.69
    Ta 0.71 0.74 0.51 0.55 0.68 0.70 0.28 0.31 0.84 0.82 0.62 0.95 0.84 0.79 1.10 0.76 0.74
    Tl 0.68 0.81 0.53 0.55 0.70 0.64 0.66 0.66 0.60 0.70 0.50 0.65 0.64 0.58 0.55 0.53 0.61
    Pb 24.9 26.4 28.9 30.1 30.4 30.4 24.5 23.1 18.9 18.5 16.3 19.3 18.5 18.2 17.4 18.0 19.4
    Th 8.69 10.20 6.96 7.78 9.54 9.99 8.67 10.20 8.55 11.30 7.74 8.96 9.05 11.40 10.20 8.52 8.79
    U 1.29 1.48 1.04 1.10 1.43 1.44 1.26 1.44 1.39 1.34 1.16 1.47 1.33 1.31 1.31 1.23 1.37
    Sr/Y 58 55 97 97 85 83 77 71 61 62 88 55 62 62 50 63 69
    ∑REE 92 106 98 112 125 133 101 111 150 189 136 136 143 194 186 148 137
    LREE/HREE 19 21 24 26 26 27 21 20 22 28 25 18 21 29 22 22 22
    La/Yb 45 49 62 66 65 66 49 49 58 76 70 46 53 78 59 59 53
    (La/Yb)N 32.0 34.9 44.6 47.3 46.9 47.3 35.3 35.0 41.9 54.7 50.0 32.8 38.1 56.3 42.1 42.6 38.0
    (La/Sm)N 6.5 6.5 7.4 7.9 7.6 7.5 5.7 5.8 6.6 7.3 6.5 5.8 6.4 7.9 6.5 6.6 6.4
    (Gd/Yb)N 2.7 2.5 3.0 2.8 2.8 2.7 2.9 2.9 3.0 3.4 3.5 3.0 3.1 3.4 3.1 3.3 2.9
    δEu 1.06 1.08 1.30 1.31 1.13 1.08 1.48 1.29 0.94 0.91 1.09 0.95 0.94 0.89 0.89 0.91 1.06
    Nb/La 0.48 0.44 0.33 0.30 0.34 0.32 0.29 0.28 0.36 0.29 0.35 0.47 0.41 0.27 0.36 0.37 0.40
    Rb/Sr 0.34 0.38 0.18 0.17 0.21 0.21 0.23 0.22 0.19 0.22 0.14 0.22 0.21 0.20 0.18 0.18 0.19
    Nb/U 8.91 8.13 8.32 8.26 8.07 7.98 5.64 5.24 10.16 10.65 10.57 10.65 11.05 10.51 13.32 11.08 9.99
    Ce/Pb 1.71 1.83 1.57 1.73 1.91 2.05 1.88 2.18 3.63 4.79 3.91 3.20 3.58 5.05 4.87 3.80 3.27
    Y/Yb 13.0 12.8 12.9 12.6 12.7 11.9 12.9 12.9 12.9 13.7 14.0 12.8 12.6 13.0 13.2 13.5 12.4
    (Ho/Yb)N 1.21 1.12 1.30 1.11 1.21 1.12 1.21 1.21 1.35 1.27 1.39 1.30 1.25 1.29 1.26 1.24 1.20
    Nb/Ta 16.1 16.3 17.0 16.6 17.1 16.3 25.2 24.3 16.9 17.4 19.8 16.5 17.4 17.5 15.8 17.9 18.6
    下载: 导出CSV 
    | 显示表格

    全岩主量元素测定使用波长色散X射线荧光光谱仪(ZSX Primus Ⅱ型),采用硅酸盐岩石化学分析方法(GB/T14506.28—2010) (中国国家质量监督检查检疫总局和中国国家标准化管理委员会,2010a)完成,标样采用GBW07101-14标准值来保证测试精度,数据校正采用理论α系数法,测试相对标准偏差(RSD)<2%,FeO含量使用重铬酸钾容量法检测完成。全岩微量元素测定使用电感耦合等离子体质谱仪(Agilent 7700e型),采用硅酸盐岩石化学分析方法(GB/T14506.30—2010) (中国国家质量监督检查检疫总局和中国国家标准化管理委员会,2010b)完成,分析精度优于10%。

    样品经分离和提纯后,Sr-Nd同位素在多接收电感耦合等离子体质谱仪(Nepture Plus型MC-ICP-MS)上进行测试。Sr同位素测试过程中加测国际标样NIST SRM987(87Sr/86Sr测试值为0.710245±0.000010和0.710237±0.000012),Nd同位素测试过程中加测国际标样JNdi-1(143Nd/144Nd测试值为0.512118±0.000009和0.512119±0.000009)。选择美国地质调查局(USGS)BCR-2(玄武岩)和RGM-2(流纹岩)作为流程监控标样,BCR-2的87Sr/86Sr分析测试值为0.705012±22(2SD,n=63),RGM-2的87Sr/86Sr分析测试值为0.704173±20(2SD,n=20);BCR-2的143Nd/144Nd分析测试值为0.512641±11(2SD,n=82),RGM-2的143Nd/144Nd分析测试值为0.512804±12(2SD,n=80)。

    锆石U-Pb同位素定年利用LA-ICP-MS分析完成,激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90型。锆石标准采用91500和Plesovice作为外标进行同位素分馏校正,样品2BTS-1和2BTS-3剥蚀光斑直径为25 μm,为避让暗化边的干扰,样品2MSG-1和2MSG-3采用26 μm×20 μm的方形光斑;普通Pb计算按Andersen的3D坐标法进行校正,样品的同位素比值和元素含量计算采用Skits和ICPMSDataCal软件处理,锆石的谐和曲线和加权平均年龄的计算采用Isoplot3.2等程序完成。

    独居石U-Pb同位素定年同样利用LA-ICP-MS分析完成,激光剥蚀系统为NWR193 nm Ar-F准分子激光系统,ICP-MS为PlasmaQuant MSQ型。定年中采用独居石Harvard 117531标样(Tomascak et al.,1996)作外标进行同位素分馏校正,并利用独居石标样RW-1(Ling et al.,2017)做监控标样;采用NIST610做外标,140Ce做内标进行U、Pb含量计算。每分析10个样品点,分析1组标样(NIST610标样、Harvard 117531标样、RW-1标样)。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约20 s的空白信号和50 s的样品信号。测试激光束斑大小为18 μm×14 μm,能量密度为4 J/cm2,剥蚀频率为5 Hz。将所测得的独居石U、Pb同位素组成使用Isoplot(Ludwig,2003)软件进行处理。

    锆石原位Lu-Hf同位素测定在Nepture-plus型 MC-ICP-MS上完成,激光烧蚀进样系统为NWR193。测试步骤与校准方法参照Wu et al.(2006)。锆石使用频率为8 Hz、能量为16 J/cm2的激光剥蚀31 s,剥蚀出直径约35 μm的剥蚀坑。测试时,由于锆石中的176Lu/177Hf比极低(一般小于0.002),176Lu对176Hf的同位素干扰可以忽略不计。每个测试点的173Yb/172Yb平均值用于计算Yb的分馏系数,然后再扣除176Yb对176Hf的同质异位素干扰。173Yb/172Yb的同位素比值为1.35274(Chu et al.,2002)。

    磨石沟岩体8件样品和本头山岩体9件样品的主量和微量元素组成见表1。磨石沟岩体二长花岗岩中SiO2含量(68.92%~71.04%)、Al2O3含量(15.68%~16.79%)和Na2O+K2O含量(7.47%~8.33%)高,CaO含量(2.35%~2.92%)中等,MgO含量(0.67%~0.74%)、Fe2O3T含量(1.65%~1.94%)和Mg#(43~46)较低,Na2O/K2O为1.10~1.55。在SiO2−(K2O+Na2O)图解中磨石沟岩体二长花岗岩样品主要分布在花岗岩范围内,个别分布在石英二长岩区(图3a);A/CNK为1.00~1.02,属于弱过铝质岩石;在SiO2−K2O图解中磨石沟岩体二长花岗岩样品主要分布在高钾钙碱性系列区(图3b)。磨石沟岩体二长花岗岩样品稀土元素总量为92×10−6~133×10−6,Eu具明显的正异常(δEu=1.06~1.31),轻/重稀土元素分馏显著。与大陆弧火山岩和岛弧火山岩相比,重稀土元素强烈亏损(图4a),Yb含量为0.42×10−6~0.56×10−6,Y含量为5.47×10−6~7.21×10−6,La/Yb=45~66,(La/Yb)N=32~47;与东昆仑其他地区晚三叠世拆沉下地壳重熔形成的埃达克质岩和加厚下地壳重熔形成的埃达克质岩相比,其也更加亏损重稀土元素(图4b、4c)。原始地幔标准化微量元素蛛网图中富集Rb、Ba、Th、U、Sr等大离子亲石元素和高场强元素Zr、Hf,亏损Nb、Ta、P和Ti等高场强元素(图4d)。

    图  3  东昆仑印支晚期埃达克质岩的SiO2−(K2O+Na2O)与SiO2−K2O图解
    a—SiO2−(K2O+Na2O)图解(底图据Middlemost,1994);b —SiO2−K2O图解(底图据Peccerillo and Taylor,1976
    Figure  3.  SiO2−(K2O+Na2O) and SiO2−K2O diagrams of Late Indosinian adakitic rocks in East Kunlun
    (a) SiO2−(K2O+Na2O) diagram (according to Middlemost,1994); (b) SiO2−K2O diagram(according to Peccerillo and Taylor,1976)
    图  4  东昆仑印支晚期埃达克质岩的稀土元素球粒陨石标准化图解与微量元素原始地幔标准化蛛网图(标准化数据据Sun and McDonough,1989
    a—c—稀土元素球粒陨石标准化图解;d—f—微量元素原始地幔标准化蛛网图
    Figure  4.  Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace-element spider diagrams of Late Indosinian adakitic rocks in East Kunlun (data normalized according to Sun and McDonough, 1989)
    (a)–(c) Chondrite-normalized REE distribution patterns; (d)–(f) Primitive mantle-normalized trace-element spider diagrams

    磨石沟岩体花岗闪长岩中SiO2含量(65.73%~66.35%)、Al2O3含量(17.09%~17.52%)、Na2O+K2O含量(7.58%~7.59%)高,CaO含量(3.51%~3.74%)中等,MgO含量(1.26%~1.27%)和Fe2O3T含量(2.60%~2.65%)相对较高,Mg#为49,Na2O/K2O为1.29~1.34。在SiO2−(K2O+Na2O)图解中样品主要分布在花岗闪长岩和石英二长岩的分界线上(图3a),A/CNK为1.00~1.01,属于弱过铝质岩石。在SiO2−K2O图解(图3b)中样品均分布在高钾钙碱性系列区。微量元素组成与磨石沟岩体二长花岗岩一致。稀土元素总量为101×10−6~111×10−6,Eu具明显的正异常(δEu=1.29~1.48),重稀土元素强烈亏损(图4a),Yb含量为0.50×10−6~0.56×10−6,Y含量为6.50×10−6~7.23×10−6,La/Yb=49,(La/Yb)N= 35。富集Rb、Ba、Th、U、Sr等大离子亲石元素和高场强元素Zr、Hf,亏损Nb、Ta、P和Ti等高场强元素(图4d)。

    本头山岩体花岗岩样品中SiO2含量(65.65%~68.30%)、Al2O3含量(15.53%~17.18%)和Na2O+K2O含量(6.94%~8.33%)高,CaO含量(3.05%~3.46%)中等,MgO含量(1.17%~1.39%)和Fe2O3T含量(2.84%~3.27%)较高,Mg#为45~46,Na2O/K2O为1.07~1.71。在SiO2−(K2O+Na2O)图解中本头山岩体样品主要投入花岗闪长岩区,个别落入石英二长岩区(图3a)。A/CNK为1.00~1.01,属于弱过铝质岩石。在SiO2−K2O图解(图3b)中样品主要分布在高钾钙碱性系列区,个别在钙碱性岩区。微量元素组成与磨石沟岩体二长花岗岩和花岗闪长岩具有微小的差别。稀土元素总量为136×10−6~194×10−6,Eu基本不具异常(δEu=0.89~1.09,平均值为0.95),重稀土元素强烈亏损(图4a),Yb含量为0.50×10−6~0.82×10−6,Y含量为6.97×10−6~10.08×10−6,La/Yb=46~78,(La/Yb)N=33~56。富集Rb、Ba、Th、U、Sr等大离子亲石元素和高场强元素Zr、Hf,亏损Nb、Ta、P和Ti等高场强元素(图4d)。

    本头山岩体2件花岗岩样品LA-ICP-MS锆石U-Pb测年结果见表2。CL图像中花岗闪长岩(2BTS-1样品)的锆石呈灰色、深灰色,自形柱状晶,粒径长60~200 μm,普遍具岩浆震荡环带(图5a)。选择晶形完整、环带发育或相对均匀的部位进行测试,2~24号测点U含量为201×10−6~963×10−6,Th含量为90×10−6~979×10−6,Th/U值为0.32~1.03,结合锆石多具有岩浆震荡环带的特征,这些测点代表的锆石为岩浆锆石,206Pb/238U年龄在207~196 Ma之间,加权平均值为200.5±1.6 Ma(MSWD=3.0,n=23;图5a)。CL图像中花岗闪长岩(2BTS-3样品)中锆石呈灰色,粒径长70~180 μm(图5b)。选择晶形完整、环带发育或相对均匀的部位进行测试,1~22号测点U含量为193×10−6~2094×10−6,Th含量为37×10−6~4178×10−6,Th/U值为0.13~2.0,结合锆石多具有岩浆震荡环带的特征,这些测点代表的锆石为岩浆锆石,206Pb/238U年龄在205~195 Ma之间,加权平均值为199.9±1.5 Ma(MSWD=2.0, n=22;图5b)。

    表  2  东昆仑印支晚期埃达克质花岗岩LA-ICP-MS 锆石 U-Pb 同位素测年结果
    Table  2.  Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb data of Late Indosinian adakitic granite in East Kunlun
    测点 元素含量/×10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄/Ma 谐和度/%
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    花岗闪长岩(2BTS-1样品)
    1 12.99 170 380 0.45 0.05457 0.00274 0.21539 0.01045 0.02886 0.00036 394 111 198 9 183 2 92
    2 13.07 213 348 0.61 0.05246 0.00222 0.22852 0.00955 0.03162 0.00039 306 96 209 8 201 2 95
    3 32.25 344 889 0.39 0.05102 0.00158 0.22458 0.00691 0.03186 0.00028 243 77 206 6 202 2 98
    4 19.59 276 507 0.54 0.05084 0.00180 0.22839 0.00794 0.03258 0.00037 235 86 209 7 207 2 98
    5 36.32 492 949 0.52 0.05216 0.00146 0.23344 0.00653 0.03239 0.00025 300 63 213 5 206 2 96
    6 22.96 311 616 0.50 0.05536 0.00184 0.24598 0.00874 0.03221 0.00049 428 74 223 7 204 3 91
    7 19.91 188 548 0.34 0.05263 0.00200 0.23531 0.00905 0.03254 0.00038 322 82 215 7 206 2 96
    8 14.63 145 410 0.35 0.0539 0.0028 0.2283 0.0099 0.0309 0.0005 365 119 209 8 196 3 93
    9 23.71 293 634 0.46 0.05365 0.00195 0.23578 0.00839 0.03193 0.00035 367 81 215 7 203 2 94
    10 7.45 89.8 201 0.45 0.05079 0.00306 0.22434 0.01250 0.03264 0.00055 232 139 206 10 207 3 99
    11 17.23 175 481 0.36 0.05120 0.00208 0.22245 0.00859 0.03161 0.00034 250 93 204 7 201 2 98
    12 40.5 979 948 1.03 0.05162 0.00159 0.22533 0.00674 0.03159 0.00031 333 72 206 6 201 2 97
    13 21.06 278 578 0.48 0.05115 0.00190 0.21882 0.00787 0.03099 0.00031 256 82 201 7 197 2 97
    14 33.56 374 931 0.40 0.05004 0.00152 0.21692 0.00671 0.03130 0.00029 198 70 199 6 199 2 99
    15 14.76 196 403 0.49 0.05013 0.00206 0.21588 0.00904 0.03120 0.00041 211 96 198 8 198 3 99
    16 18.49 231 503 0.46 0.04931 0.00213 0.21317 0.00886 0.03151 0.00034 161 102 196 7 200 2 98
    17 16.49 176 452 0.39 0.05197 0.00208 0.22104 0.00898 0.03108 0.00031 283 91 203 7 197 2 97
    18 35.11 458 963 0.48 0.04959 0.00162 0.21094 0.00682 0.03084 0.00028 176 76 194 6 196 2 99
    19 13.29 184 344 0.53 0.05084 0.00222 0.22813 0.01033 0.03241 0.00047 235 100 209 9 206 3 98
    20 21.23 188 579 0.32 0.05358 0.00204 0.23519 0.00865 0.03193 0.00031 354 87 214 7 203 2 94
    21 34.28 348 958 0.36 0.05115 0.00141 0.21799 0.00604 0.03083 0.00028 256 63 200 5 196 2 97
    22 24.58 227 683 0.33 0.04902 0.00172 0.21223 0.00737 0.03131 0.00028 150 81 195 6 199 2 98
    23 10.32 114 278 0.41 0.05097 0.00258 0.23080 0.01235 0.03244 0.00056 239 117 211 10 206 4 97
    24 20.40 275 544 0.51 0.04747 0.00197 0.20234 0.00828 0.03096 0.00034 72.3 96 187 7 197 2 95
    花岗闪长岩(2BTS-3样品)
    1 11.86 69.0 341 0.20 0.04743 0.00240 0.20490 0.01010 0.03142 0.00042 77.9 109 189 9 199 3 94
    2 52.2 1554 1056 1.47 0.05372 0.00145 0.23444 0.00638 0.03148 0.00032 367 61 214 5 200 2 93
    3 20.67 179 564 0.32 0.05333 0.00190 0.23493 0.00815 0.03186 0.00035 343 80 214 7 202 2 94
    4 19.24 243 503 0.48 0.04736 0.00175 0.21111 0.00750 0.03234 0.00038 77.9 76 194 6 205 2 94
    5 26.92 314 726 0.43 0.04669 0.00182 0.20672 0.00777 0.03209 0.00035 35.3 89 191 7 204 2 93
    6 21.87 375 557 0.67 0.04910 0.00201 0.21302 0.00876 0.03115 0.00033 154 101 196 7 198 2 99
    7 18.85 196 527 0.37 0.05216 0.00187 0.22223 0.00768 0.03083 0.00033 300 81 204 6 196 2 95
    8 116.1 4178 2094 2.00 0.05083 0.00127 0.22708 0.00582 0.03214 0.00033 232 62 208 5 204 2 98
    9 10.33 65.7 300 0.22 0.05186 0.00285 0.22274 0.01212 0.03118 0.00044 280 158 204 10 198 3 96
    10 14.79 190 407 0.47 0.05184 0.00299 0.21848 0.01114 0.03076 0.00038 280 133 201 9 195 2 97
    11 19.68 322 521 0.62 0.05348 0.00202 0.23019 0.00905 0.03100 0.00041 350 85 210 7 197 3 93
    12 32.84 389 859 0.45 0.04901 0.00167 0.21986 0.00747 0.03230 0.00037 150 84 202 6 205 2 98
    13 20.87 321 547 0.59 0.04825 0.00194 0.20648 0.00791 0.03101 0.00040 122 99 191 7 197 2 96
    14 7.45 111 193 0.57 0.04997 0.00326 0.21629 0.01299 0.03192 0.00051 195 152 199 11 203 3 98
    15 38.4 704 1004 0.70 0.05099 0.00200 0.22287 0.00848 0.03161 0.00042 239 91 204 7 201 3 98
    16 17.16 181 478 0.38 0.04659 0.00181 0.20201 0.00753 0.03125 0.00041 27.9 89 187 6 198 3 94
    17 23.06 364 591 0.62 0.04907 0.00188 0.21763 0.00780 0.03201 0.00037 150 91 200 7 203 2 98
    18 38.8 798 969 0.82 0.05177 0.00160 0.22217 0.00673 0.03076 0.00031 276 68 204 6 195 2 95
    19 13.72 280 343 0.82 0.05209 0.00261 0.22840 0.01076 0.03173 0.00044 300 147 209 9 201 3 96
    20 14.72 262 385 0.68 0.04838 0.00202 0.20778 0.00824 0.03105 0.00035 117 98 192 7 197 2 97
    21 9.51 37.0 284 0.13 0.05454 0.00407 0.23655 0.01825 0.03151 0.00047 394 169 216 15 200 3 92
    22 18.53 274 490 0.56 0.04944 0.00198 0.21764 0.00827 0.03183 0.00037 169 94 200 7 202 2 98
    23 3.14 44.8 78.9 0.57 0.05708 0.00433 0.26273 0.01761 0.03394 0.00081 494 168 237 14 215 5 90
    24 23.4 531 538 0.99 0.05404 0.00238 0.25718 0.01179 0.03432 0.00056 372 72 232 10 218 3 93
    二长花岗岩(2MSG-1样品)
    1 46 418 1200 0.35 0.05016 0.00057 0.22815 0.00329 0.03296 0.00031 202 26 209 3 209 2 100
    2 68 768 1720 0.45 0.05005 0.0005 0.22767 0.00303 0.03302 0.00038 197 23 208 3 209 2 99
    3 34 257 871 0.30 0.05074 0.00098 0.2284 0.00413 0.03277 0.00044 229 45 209 3 208 3 100
    4 81 773 1960 0.39 0.05032 0.00071 0.2313 0.00362 0.03334 0.00036 210 33 211 3 211 2 100
    5 35 315 934 0.34 0.05189 0.00076 0.2359 0.00445 0.03287 0.00047 281 34 215 4 209 3 97
    6 42 478 1090 0.44 0.05072 0.00089 0.23258 0.00474 0.03327 0.00052 228 41 212 4 211 3 99
    7 31 383 782 0.49 0.05111 0.00083 0.23041 0.00462 0.03269 0.00047 246 37 211 4 207 3 98
    8 44 279 1230 0.23 0.05038 0.00081 0.22826 0.00349 0.03278 0.00043 213 37 209 3 208 3 100
    9 29 248 738 0.34 0.05069 0.00064 0.23239 0.00408 0.03321 0.00044 227 29 212 3 211 3 99
    10 44 575 1110 0.52 0.05022 0.00054 0.22885 0.00243 0.033 0.00031 205 25 209 2 209 2 100
    11 85 914 2150 0.43 0.05041 0.00041 0.22975 0.00297 0.033 0.00035 214 19 210 3 209 2 100
    12 105 1020 2620 0.39 0.05037 0.00053 0.22821 0.00296 0.03282 0.00028 212 25 209 2 208 2 100
    13 48 500 1220 0.41 0.04981 0.00056 0.22644 0.00314 0.03293 0.00028 186 26 207 3 209 2 99
    14 62 781 1450 0.54 0.05048 0.00084 0.23263 0.0037 0.03344 0.00036 217 39 212 3 212 2 100
    15 41 483 1030 0.47 0.05005 0.00053 0.22915 0.00303 0.03321 0.00036 198 25 210 3 211 2 99
    16 28 250 766 0.33 0.05049 0.00118 0.23061 0.00524 0.03307 0.00039 217 54 211 4 210 2 100
    17 56 310 310 1.00 0.06487 0.00063 1.15174 0.01469 0.12861 0.0013 770 20 778 7 780 7 100
    18 31 71.4 168 0.43 0.06904 0.0008 1.44958 0.02005 0.15227 0.00143 900 24 910 8 914 8 100
    19 56 383 1440 0.27 0.05057 0.00067 0.24188 0.00361 0.0346 0.00036 222 31 220 3 219 2 100
    20 302 0 6980 0.00 0.06694 0.00091 0.34422 0.00465 0.03733 0.00059 836 28 300 4 236 4 79
    21 233 1710 6460 0.26 0.06503 0.0013 0.29357 0.00371 0.03293 0.00058 775 42 261 3 209 4 80
    22 355 0 7420 0.00 0.06638 0.00098 0.38506 0.00948 0.04184 0.0007 818 31 331 7 264 4 80
    23 255 0 6050 0.00 0.06847 0.00078 0.33474 0.00469 0.03541 0.00037 883 24 293 4 224 2 77
    二长花岗岩(2MSG-3样品)
    1 16 224 421 0.53 0.05045 0.0011 0.22725 0.00565 0.03266 0.00053 216 51 208 5 207 3 100
    2 30 164 818 0.20 0.05049 0.00065 0.22751 0.00331 0.03272 0.00035 218 30 208 3 208 2 100
    3 23 304 546 0.56 0.05011 0.00092 0.22483 0.00453 0.03249 0.0003 200 43 206 4 206 2 100
    4 32 290 845 0.34 0.04978 0.00081 0.22508 0.00432 0.03281 0.00041 185 38 206 4 208 3 99
    5 17 223 434 0.51 0.05048 0.00077 0.22673 0.00332 0.0326 0.00034 217 35 208 3 207 2 100
    6 47 400 1220 0.33 0.05023 0.0005 0.22816 0.00324 0.03295 0.00045 206 23 209 3 209 3 100
    7 44 504 1150 0.44 0.0499 0.001 0.22889 0.00523 0.03327 0.00059 190 47 209 4 211 4 99
    8 47 392 1220 0.32 0.05031 0.00063 0.23333 0.0032 0.03362 0.00031 210 29 213 3 213 2 100
    9 56 406 1410 0.29 0.05049 0.00059 0.23146 0.00314 0.03325 0.00029 217 27 211 3 211 2 100
    10 58 510 1460 0.35 0.05032 0.00063 0.22958 0.00293 0.0331 0.00032 210 29 210 2 210 2 100
    11 57 548 1470 0.37 0.05025 0.00062 0.23214 0.00414 0.03342 0.00044 207 29 212 3 212 3 100
    12 53 448 1400 0.32 0.05029 0.00059 0.22833 0.00362 0.0329 0.00034 209 27 209 3 209 2 100
    13 22 313 534 0.59 0.05045 0.0008 0.22722 0.00408 0.03273 0.0004 216 37 208 3 208 3 100
    14 23 274 573 0.48 0.05054 0.00083 0.23033 0.0048 0.03303 0.00041 220 38 211 4 210 3 100
    15 24 354 607 0.58 0.05025 0.00122 0.22599 0.00594 0.03266 0.0004 207 56 207 5 207 3 100
    16 23 313 565 0.55 0.0506 0.0008 0.22663 0.00451 0.03245 0.00032 223 37 207 4 206 2 99
    17 23 303 566 0.54 0.05057 0.00084 0.22917 0.00453 0.03294 0.00045 221 38 210 4 209 3 100
    18 19 260 483 0.54 0.05061 0.00071 0.22854 0.00468 0.03275 0.00046 223 32 209 4 208 3 99
    19 50 319 1340 0.24 0.05092 0.00065 0.23213 0.00387 0.03311 0.00036 237 29 212 3 210 2 99
    20 55 528 1440 0.37 0.05058 0.00049 0.22855 0.00351 0.03281 0.00037 222 23 209 3 208 2 100
    21 16 98.1 438 0.22 0.05304 0.00084 0.23287 0.00404 0.03182 0.00028 331 36 213 3 202 2 95
    22 17 231 444 0.52 0.05037 0.00088 0.22271 0.00373 0.03214 0.00032 212 40 204 3 204 2 100
    23 31 481 792 0.61 0.0509 0.00065 0.21781 0.00286 0.03108 0.00031 236 30 200 2 197 2 99
    下载: 导出CSV 
    | 显示表格
    图  5  东昆仑磨石沟和本头山埃达克质花岗岩锆石和独居石U-Pb测年结果与典型锆石、独居石的阴极发光图像
    图a、b中白色实线圆圈与数字代表锆石LA-ICP-MS U-Pb定年测点位和编号;图中数值表示年龄和εHf(t)值a—d虚线圆圈表示锆石Hf同位素测试点位;c—e中白色方框代表LA-ICP-MS U-Pb定年点位
    Figure  5.  Cathodoluminescence images and U-Pb diagrams of zircon and monazite of adakitic granites from Moshigou and Bentoushan in East Kunlun
    Notes:In (a) and (b), the white solid circles with numbers represent the zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating sampling locations and their corresponding identifiers. Dashed circles from (a)–(d) indicate the zircon Hf isotope testing points. The white squares in (c)––(e) denote the LA-ICP-MS U-Pb dating locations. The numbers in the figure indicate the ages and εHf(t) values of these sites.

    磨石沟岩体件2件花岗岩样品LA-ICP-MS锆石U-Pb年龄分析结果见表2。CL图像中二长花岗岩(2MSG-1样品)的锆石晶群较为复杂,多呈灰色—深灰色柱状自形晶,粒径长50~100 μm,晶体边缘有很窄的暗化边(图5c),部分晶体浑圆状、碎片状。选择晶形完整、环带发育或相对均匀的部位进行测试,1~16号测点U和Th含量高,分别为738×10−6~2620×10−6、248×10−6~1020×10−6,Th/U值为0.23~0.54,锆石多具有岩浆震荡环带,这些测点代表的锆石为岩浆锆石,206Pb/238U年龄在212~207 Ma之间,加权平均值为209.4±1.1 Ma(MSWD=0.31, n=16;图5c)。CL图像中二长花岗岩(2MSG-3样品)的锆石呈灰色—深灰色,柱状晶,粒径长80~120 μm,边缘有很窄的暗化边(图5d)。选择晶形完整、环带发育或相对均匀的部位进行测试,1~20号测点U含量为421×10−6~1470×10−6,Th含量为164×10−6~548×10−6,具明显环带结构,Th/U值为0.20~0.59,表明测点代表的锆石为岩浆锆石,206Pb/238U年龄在213~206 Ma之间,加权平均值为208.8±1.0 Ma(MSWD=0.82,n=20;图5d)。

    磨石沟岩体1件花岗岩样品LA-ICP-MS独居石U-Pb年龄分析结果见表3。CL图像中二长花岗岩(2MSG-1样品)的独居石呈灰色,主要为自形—半自形柱状晶,部分为破片状,粒径为50~100 μm,部分晶体具有分带现象(图5e)。分析结果表明独居石的Th、U和Pb含量均较高,分别为48500×10−6~172000×10−6、2450×10−6~12000×10−6和472×10−6~1770×10−6,Th/U比值为5~35。30个独居石分析点在Tera-Wasserburg图上限定了一条约束良好的线(图5e),下交点年龄为207.9±0.9Ma(MSWD=0.33)。独居石的232Th/208Pb年龄分布均匀(215~203 Ma),208Pb/232Th加权平均值为209.7±0.8 Ma(MWSD=0.98,n=30;图5e),下交点年龄代表了独居石的结晶年龄。

    表  3  东昆仑印支晚期埃达克质花岗岩(2MSG-1样品)独居石LA-ICP-MS U-Pb 同位素测定结果
    Table  3.  Monazite laser ablation inductively coupled plasma mass spectrometry U-Pb data of Late Indosinian adakitic granite in East Kunlun
    测试点 元素含量/×10−6 Th/U 同位素比值及误差 年龄及误差/Ma
    U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ
    1 4220 76200 822 18 0.05294 0.00057 0.2388 0.0030 0.03275 0.00036 0.01060 0.00013 218 3 208 2 326 25 213 3
    2 6220 53500 674 9 0.05089 0.00048 0.2296 0.0029 0.03274 0.00037 0.01056 0.00013 210 2 208 2 236 22 212 3
    3 4410 98300 1021 22 0.05171 0.00046 0.237 0.0033 0.03324 0.00043 0.01061 0.00012 216 3 211 3 273 20 213 3
    4 8520 122000 1347 14 0.0508 0.00044 0.2307 0.0026 0.03299 0.00040 0.01050 0.00010 211 2 209 3 232 20 211 2
    5 12000 70900 1007 6 0.05136 0.00043 0.2325 0.0031 0.03282 0.00041 0.01047 0.00013 212 3 208 3 257 19 211 3
    6 3860 86500 893 22 0.05365 0.00058 0.2437 0.0034 0.0329 0.00034 0.01050 0.00012 222 3 209 2 356 24 211 2
    7 9340 48500 721 5 0.05144 0.00047 0.2327 0.0026 0.03283 0.00036 0.01052 0.00016 213 2 208 2 261 21 212 3
    8 6890 156000 1608 23 0.05236 0.00047 0.2406 0.0029 0.03334 0.00038 0.01054 0.00012 219 2 211 2 301 20 212 2
    9 3880 84000 861 22 0.05316 0.0005 0.2401 0.0029 0.03275 0.00033 0.01069 0.00011 219 2 208 2 336 21 215 2
    10 6800 152000 1522 22 0.05404 0.00044 0.247 0.0028 0.03319 0.00038 0.01049 0.00010 224 2 211 2 373 18 211 2
    11 8060 118000 1224 15 0.05289 0.0005 0.236 0.0031 0.03242 0.00042 0.01029 0.00011 215 3 206 3 324 22 207 2
    12 7200 141000 1358 20 0.05443 0.00049 0.2452 0.0029 0.03274 0.00041 0.01010 0.00010 223 2 208 3 389 20 203 2
    13 9040 150000 1532 17 0.05203 0.00045 0.2331 0.0028 0.03256 0.00042 0.01039 0.00011 213 2 207 3 287 20 209 2
    14 5580 120000 1166 22 0.05309 0.00047 0.2421 0.0035 0.03308 0.00045 0.01039 0.00010 220 3 210 3 333 20 209 2
    15 5280 96200 962 18 0.05138 0.00046 0.234 0.0031 0.03306 0.00042 0.01044 0.00011 214 3 210 3 258 20 210 2
    16 11200 172000 1770 15 0.05186 0.0004 0.2344 0.0028 0.03279 0.00036 0.01044 0.00009 214 2 208 2 279 18 210 2
    17 11100 131000 1415 12 0.05181 0.00039 0.2336 0.0028 0.03272 0.00039 0.01039 0.00011 213 2 208 3 277 17 209 2
    18 4270 120000 1119 28 0.05221 0.00049 0.2344 0.0034 0.03254 0.00038 0.01043 0.00011 214 3 206 2 295 21 210 2
    19 5230 130000 1228 25 0.052 0.00049 0.2352 0.0031 0.03284 0.00040 0.01046 0.00010 215 3 208 3 286 22 210 2
    20 5300 117000 1125 22 0.05244 0.00045 0.2399 0.0035 0.03317 0.00043 0.01040 0.00012 218 3 210 3 305 20 209 2
    21 8240 135000 1345 16 0.05297 0.00043 0.2383 0.0030 0.03263 0.00038 0.01041 0.00010 217 3 207 2 328 18 209 2
    22 5310 99800 977 19 0.05215 0.00049 0.2383 0.0032 0.03316 0.00040 0.01048 0.00010 217 3 210 3 292 22 211 2
    23 4430 89300 853 20 0.05133 0.00046 0.2319 0.0033 0.03277 0.00041 0.01038 0.00011 212 3 208 3 256 21 209 2
    24 5210 111000 1052 21 0.05161 0.00049 0.2333 0.0033 0.03281 0.0004 0.01045 0.00012 213 3 208 3 268 22 210 3
    25 2450 50200 472 20 0.05531 0.00064 0.2498 0.0039 0.03273 0.00035 0.01029 0.00014 226 3 208 2 425 26 207 3
    26 6340 125000 1199 20 0.05421 0.00049 0.2462 0.0032 0.03297 0.00039 0.01056 0.00012 224 3 209 2 380 20 212 2
    27 7150 104000 1048 15 0.05311 0.00045 0.2398 0.0028 0.03283 0.00040 0.01038 0.00012 218 2 208 3 334 19 209 2
    28 7650 133000 1286 17 0.05281 0.00044 0.2371 0.0027 0.03263 0.00039 0.01042 0.00012 216 2 207 2 321 19 210 2
    29 7440 110000 1106 15 0.05197 0.0004 0.2355 0.0029 0.03289 0.00036 0.01042 0.00012 215 2 209 2 284 18 210 2
    30 3690 129000 1139 35 0.05201 0.0005 0.2365 0.0032 0.03296 0.00033 0.01045 0.00012 216 3 209 2 286 22 210 3
    下载: 导出CSV 
    | 显示表格

    在锆石U-Pb定年的基础上,对相应样品分析点进行原位Hf同位素测定(图5a—5d)。锆石的εHft)值和模式年龄采用对应锆石测点的206Pb/238U年龄计算,结果见表4

    表  4  东昆仑印支晚期埃达克质花岗岩锆石原位Hf同位素组成
    Table  4.  Zircon in situ Hf isotope composition of Late Indosinian adakitic granite in East Kunlun
    测点 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ εHf(0) εHft ±2σ tDM1 /Ga tDM2/Ga fLu/Hf 年龄/Ma
    花岗闪长岩(2BTS-1样品)
    2 0.019562 0.000360 0.000576 0.000009 0.282771 0.000012 −0.05 4.3 0.4 0.67 0.96 −0.98 201
    3 0.027941 0.001496 0.000836 0.000041 0.282780 0.000010 0.28 4.6 0.4 0.67 0.94 −0.97 202
    4 0.025777 0.000298 0.000805 0.000008 0.282776 0.000012 0.16 4.5 0.4 0.67 0.95 −0.98 207
    5 0.042144 0.000510 0.001233 0.000012 0.282754 0.000011 −0.65 3.6 0.4 0.71 1.01 −0.96 206
    6 0.026627 0.000435 0.000827 0.000012 0.282801 0.000011 1.04 5.3 0.4 0.64 0.90 −0.98 204
    7 0.021616 0.000107 0.000723 0.000007 0.282769 0.000012 −0.10 4.2 0.4 0.68 0.97 −0.98 206
    8 0.021666 0.000085 0.000691 0.000002 0.282819 0.000011 1.67 6.0 0.4 0.61 0.85 −0.98 196
    9 0.024267 0.000585 0.000748 0.000016 0.282779 0.000011 0.24 4.6 0.4 0.67 0.95 −0.98 203
    10 0.028067 0.000564 0.000880 0.000019 0.282762 0.000011 −0.36 3.9 0.4 0.69 0.99 −0.97 207
    12 0.041378 0.000634 0.001253 0.000017 0.282767 0.000013 −0.18 4.1 0.5 0.69 0.98 −0.96 201
    花岗闪长岩(2BTS-3样品)
    1 0.018020 0.000545 0.000567 0.000014 0.282772 0.000012 0.01 4.3 0.4 0.67 0.96 −0.98 199
    2 0.083193 0.001470 0.002278 0.000036 0.282805 0.000013 1.17 5.3 0.5 0.66 0.90 −0.93 200
    3 0.074120 0.002881 0.002134 0.000084 0.282787 0.000013 0.55 4.7 0.4 0.68 0.94 −0.94 202
    4 0.025046 0.000455 0.000784 0.000013 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 205
    5 0.024533 0.000293 0.000761 0.000007 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 204
    6 0.037705 0.000598 0.001123 0.000018 0.282769 0.000011 −0.10 4.1 0.4 0.69 0.97 −0.97 198
    7 0.025854 0.000167 0.000816 0.000006 0.282770 0.000011 −0.08 4.1 0.4 0.68 0.97 −0.98 196
    8 0.235679 0.008025 0.006361 0.000207 0.282875 0.000015 3.66 7.3 0.5 0.62 0.78 −0.81 204
    9 0.025038 0.001254 0.000693 0.000027 0.282748 0.000011 −0.85 3.4 0.4 0.71 1.02 −0.98 198
    10 0.029056 0.000891 0.000895 0.000025 0.282781 0.000012 0.34 4.5 0.4 0.66 0.94 −0.97 195
    二长花岗岩(2MSG-1样品)
    1 0.035872 0.001489 0.001229 0.000027 0.282665 0.000021 −3.8 0.6 0.7 0.84 1.20 −0.96 209
    2 0.034150 0.000825 0.001158 0.000024 0.282686 0.000016 −3.0 1.4 0.6 0.81 1.15 −0.97 209
    3 0.029031 0.000562 0.001159 0.000020 0.282715 0.000021 −2.0 2.4 0.7 0.76 1.09 −0.97 208
    4 0.033764 0.000344 0.001199 0.000012 0.282666 0.000018 −3.7 0.7 0.6 0.83 1.20 −0.96 211
    5 0.043131 0.001231 0.001494 0.000030 0.282718 0.000017 −1.9 2.5 0.6 0.77 1.09 −0.95 209
    6 0.034134 0.000504 0.001224 0.000012 0.282633 0.000019 −4.9 −0.4 0.7 0.88 1.27 −0.96 211
    7 0.027432 0.000219 0.001016 0.000006 0.282658 0.000019 −4.0 0.4 0.7 0.84 1.22 −0.97 207
    8 0.038499 0.001176 0.001301 0.000017 0.282654 0.000019 −4.2 0.2 0.7 0.85 1.23 −0.96 208
    9 0.033285 0.000708 0.001172 0.000016 0.282663 0.000018 −3.8 0.6 0.6 0.84 1.20 −0.96 211
    10 0.041094 0.003337 0.001362 0.000074 0.282718 0.000027 −1.9 2.5 0.9 0.76 1.08 −0.96 209
    二长花岗岩(2MSG-3样品)
    1 0.025003 0.000323 0.000818 0.000015 0.282746 0.000019 −0.9 3.5 0.7 0.71 1.02 −0.98 207
    2 0.020619 0.000329 0.000725 0.000017 0.282642 0.000019 −4.6 −0.1 0.7 0.86 1.25 −0.98 208
    3 0.033529 0.000919 0.001098 0.000017 0.282775 0.000019 0.1 4.5 0.7 0.68 0.95 −0.97 206
    4 0.029780 0.000433 0.000967 0.000003 0.282609 0.000019 −5.8 −1.3 0.7 0.91 1.33 −0.97 208
    5 0.029397 0.000773 0.000946 0.000010 0.282750 0.000019 −0.8 3.6 0.7 0.71 1.01 −0.97 207
    6 0.030505 0.001098 0.000983 0.000042 0.282608 0.000018 −5.8 −1.3 0.6 0.91 1.33 −0.97 209
    7 0.035696 0.000317 0.001136 0.000019 0.282706 0.000018 −2.3 2.1 0.6 0.78 1.11 −0.97 211
    8 0.049762 0.001531 0.001581 0.000031 0.282726 0.000020 −1.6 2.8 0.7 0.76 1.06 −0.95 213
    9 0.034561 0.000792 0.001118 0.000012 0.282812 0.000019 1.4 5.9 0.7 0.63 0.87 −0.97 211
    10 0.038980 0.000737 0.001272 0.000033 0.282670 0.000020 −3.6 0.8 0.7 0.83 1.19 −0.96 210
    下载: 导出CSV 
    | 显示表格

    磨石沟岩体二长花岗岩(2MSG-1样品)锆石176Hf/177Hf值为0.282633~0.282718,εHft)值为−0.4~2.5,模式年龄(tDM2)为1.27~1.08 Ga。二长花岗岩(2MSG-3样品)锆石176Hf/177Hf值为0.282608~0.282812,εHft)值为−1.3~5.9,模式年龄(tDM2)为1.33~0.87 Ga。

    本头山岩体花岗闪长岩(BTS-1样品)锆石176Hf/177Hf值为0.282754~0.282819,εHft)值为3.6~6.0,模式年龄(tDM2)为1.01~0.85 Ga。花岗闪长岩(BTS-3样品)锆石176Hf/177Hf值为0.282748~0.282875,εHft)值为3.4~7.3,模式年龄(tDM2)为1.02~0.78 Ga。

    样品全岩Sr-Nd同位素地球化学测试结果列于表5。其中磨石沟岩体3件二长花岗岩样品的87Sr/86Sr比值为0.71094~0.71181,(87Sr/86Sr)i为0.7089~0.7091;143Nd/144Nd比值为0.512321 ~0.512326,εNdt)值为−3.60~−3.46,Nd模式年龄(tDM2)为1.28~1.26 Ga。

    表  5  东昆仑印支晚期埃达克质花岗岩全岩Sr-Nd同位素组成
    Table  5.  Sr-Nd isotopic composition of the Late Indosinian adakitic granite in East Kunlun
    样品编号 2BTS-1-2 2BTS-3-2 2BTS-4-2 2MSG-3-2 2MSG-3-3 2MSG-1-2
    87Rb/86Sr 0.6322 0.6208 0.5119 0.6206 0.6130 0.9786
    87Sr/86Sr 0.70925 0.70923 0.70891 0.71094 0.71094 0.71181
    2σ 0.000006 0.000005 0.000006 0.000006 0.000006 0.000007
    87Sr/86Sr)i 0.7074 0.7075 0.7074 0.7091 0.7091 0.7089
    147Sm/144Nd 0.08694 0.09571 0.09216 0.09230 0.09372 0.09996
    143Nd/144Nd 0.512409 0.512425 0.512421 0.512324 0.512326 0.512321
    2σ 0.000004 0.000004 0.000004 0.000005 0.000006 0.000005
    143Nd/144Nd)i 0.512290 0.512294 0.512300 0.512203 0.512203 0.512184
    t/Ma 201 200 201 209 209 209
    εNdt −1.65 −1.58 −1.55 −3.34 −3.34 −3.60
    tDM1/Ga 0.89 0.94 0.92 1.04 1.05 1.11
    tDM2/Ga 1.12 1.11 1.11 1.26 1.26 1.28
    下载: 导出CSV 
    | 显示表格

    本头山岩体3件花岗闪长岩样品87Sr/86Sr比值为0.70891~0.70925,(87Sr/86Sr)i为0.7074~0.7075;143Nd/144Nd比值为0.512409~0.512425,εNdt)值为−1.65~−1.55,Nd模式年龄(tDM2)为1.12~1.11 Ga。

    本头山岩体2件花岗岩样品的锆石U-Pb年龄为200.5±1.6 Ma和199.9±1.5 Ma,推断本头山岩体花岗岩形成时代为201~200 Ma。磨石沟岩体2件花岗岩样品的锆石U-Pb年龄为209.4±1.1 Ma和208.8±1.0 Ma,1件花岗岩样品的独居石U-Pb年龄为207.9±0.9Ma,略低于锆石U-Pb年龄。锆石U-Pb同位素体系具有较高的封闭温度(一般要高于800 ℃;Cherniak和Watson,2001),而独居石U-Pb同位素体系的封闭温度一般略低,约为700 ℃(Smith和Giletti,1997Cherniak et al.,2004),结晶时代通常要晚于锆石U-Pb年龄,由此推断磨石沟岩体的形成时代为209~208 Ma。

    东昆仑造山带与古特提斯洋增生造山作用相关的弧花岗岩的形成时代主要集中在270~237 Ma(孙雨等,2009Zhang et al.,2012Ding et al.,2014Huang et al.,2014Xiong et al.,2014陈功等,2016菅坤坤等,2017李瑞保等,2018国显正等,20182019张雨莲等,2018岳维好和周家喜,2019封铿等,2020Kong et al.,2020徐博等,2020王巍等,2021陈国超等,2022王凤林等,2022Yan et al.,2024)。其中,与碰撞—碰撞后构造阶段相关的A型花岗岩时代为218~204 Ma(陈丹玲等,2001刘云华等,2006丁烁等,2011高永宝等,2014钱兵等,2015张明玉等,2018Zhu et al.,2022);与碰撞—碰撞后构造阶段相关的埃达克质岩的时代为231~215 Ma(陈国超等,2013a2013bDing et al.,2014Xiong et al.,2014刘金龙等2015Xin et al.,2019黄啸坤等,2021刘建栋等,2023);与碰撞—碰撞后构造阶段相关的镁铁—超镁质岩的时代为228~207 Ma(罗照华等,2002;中国地质大学(武汉),2006;奥琮等,2015;Hu et al.,2016;陈国超等,2017;Liu et al.,2017;顾雪祥等,2017)。磨石沟岩体和本头山岩体花岗岩锆石和独居石U-Pb测年结果表明其形成时代为209~200 Ma,为东昆仑印支造山带最晚的岩浆活动年龄记录之一。

    本头山岩体和磨石沟岩体花岗岩样品均具有如下地球化学特征:高Al2O3含量(15.53%~17.52%)、高Sr含量(398×10−6~613×10−6)、高Sr/Y比值(50~97)和La/Y比值(45~78),亏损重稀土元素(Y含量为5.47×10−6~10.77×10−6,Yb含量为0.42×10−6~0.82×10−6),Eu正异常或无异常,低MgO含量(0.67%~1.39%),相对富钠(Na2O/K2O=1.07~1.71),亏损高场强元素Nb、Ta、Ti等,类似于埃达克质岩(王强等,2008Wang et al.,2020)。亏损重稀土元素说明残留相含有石榴子石;球粒陨石标准化配分模式图中重稀土元素呈右倾(图4a),Y/Yb=11.9~14.0,(Ho/Yb)N=1.11~1.39、平均值为1.24,表明残留相中无角闪石;高Sr且Eu无异常或正异常,暗示残留相中无斜长石。Nb、Ta元素亏损,微量元素比值蛛网图中Nb、Ta具有显著的负异常(图4d)。样品中Nb/Ta比值高(15.84~25.23,平均值为18.04),接近原始地幔或OIB(17.39、17.79;Sun and McDonough,1989),远高于大陆地壳(11.43,Rudnick and Gao,2003);SiO2−(Nb/Ta)图显示Nb/Ta比值受结晶分异作用影响很小(图6a),通常大陆地壳物质的加入往往会使Nb/Ta比值有所降低,大陆俯冲带流体的加入也会使Nb/Ta比值下降;与金红石平衡的熔体往往具有较高的Nb/Ta比值,含有金红石的源区岩石在熔融过程中形成的熔体具有更高的Nb/Ta比值(Liu et al.,2009),由此表明金红石也可能是主要的残留相矿物。上述分析表明磨石沟岩体和本头山岩体具有埃达克质花岗岩的地球化学特征,岩浆起源于石榴子石、金红石在稳定压力下的部分熔融。

    图  6  东昆仑印支晚期埃达克质岩SiO2−Nb/Ta、SiO2−Al2O3、SiO2−MgO、SiO2−TiO2、SiO2−Mg#、SiO2−P2O5、SiO2−Yb、SiO2−Fe2O3、SiO2−Ca、SiO2−Na2O、SiO2−Ni和SiO2−Cr图解(俯冲洋壳熔融形成的埃达克质岩、加厚下地壳熔融形成的埃达克质岩和拆沉下地壳熔融形成的埃达克质岩分类据Wang et al.,2006
    Figure  6.  SiO2 vs. Nb/Ta, SiO2 vs. Al2O3 , SiO2 vs. MgO, SiO2 vs. TiO2, SiO2 vs. Mg, SiO2 vs. P2O5, SiO2 vs. Yb, SiO2 vs. Fe2O3, SiO2 vs. Ca, SiO2 vs. Na2O, SiO2 vs. Ni, and SiO2 vs. Cr plots of Late Indosinian adakitic rocks in East Kunlun(The fields of adakitic rocks derived from the partial melting of the subducted oceanic crust, thickened crust, and delaminated lower crust were compiled according to Wang et al.,2006

    埃达克质岩成因主要有以下几种:①俯冲大洋板片的熔融(Defant and Drummond,1990Kay and Kay,1993);②拆沉下地壳的熔融(Wang et al.,20062007);③基性岩浆高压下分离结晶作用(Macpherson et al.,2006);④基性岩浆上升过程中地壳混染和低压下分离结晶作用(Castillo et al.,1999Castillo,2012);⑤加厚下地壳的部分熔融(Chung et al.,2003Hou et al.,2004Wang et al.,20072020He et al.,2011Zeng et al.,2011Guan et al.,2012

    本头山岩体样品在Th−(Th/Y)与La−(La/Sm)图中呈部分熔融趋势(图7a、7b),在SiO2与Sr/Y、Dy/Yb、La、La/Y的协变图中(图7c—7f)未显示出高压或低压分离结晶的趋势,由此排除了分离结晶成因的可能,Eu无异常(δEu平均值为0.95),表明未发生斜长石分离结晶作用。较低的Cr(9.05×10−6~11.03×10−6)、Ni(5.69×10−6~6.68×10−6)含量和Mg#(45~46)说明岩浆未与地幔或幔源岩浆发生相互作用,排除了拆沉下地壳和俯冲洋壳熔融的可能。岩体形成时代为201~200 Ma,相当于东昆仑印支期碰撞造山带碰撞—碰撞后造山过程的晚期,也排除了俯冲洋壳熔融成因的可能性。由此推断,本头山岩体形成于加厚下地壳的部分熔融(图6b—6g)。

    图  7  东昆仑印支晚期埃达克质花岗岩Th−Th/Y、La−La/Sm、SiO2−Sr/Y、SiO2−Dy/Yb、SiO2−La和SiO2−La/Y协变图
    高压分离结晶趋势线据Macpherson et al.,2006;低压分离结晶趋势线据Castillo et al.,1999
    Figure  7.  Th vs. Th/Y, La vs. La/Sm, SiO2 vs. Sr/Y, SiO2 vs. Dy/Yb, SiO2 vs. La, and SiO2 vs. La/Y plots of Late Indosinian adakitic granite in East Kunlun
    High-pressure fractional crystallization lines according to Macpherson et al.,2006;Low-pressure fractional crystallization lines according to Castillo et al., 1999.

    磨石沟岩体样品在Th−(Th/Y)、La−(La/Sm)图中部分熔融趋势明显(图7a、7b),在SiO2与Sr/Y、Dy/Yb、La、La/Y的协变图中(图7c—7f)也未显示出高压或低压分离结晶的趋势,排除了分离结晶成因的可能。较低的Cr(7.89×10−6~19.68×10−6)、Ni(3.49×10−6~6.97×10−6)含量和Mg#(43~49)表明岩浆未与地幔或幔源岩浆发生相互作用,排除了拆沉下地壳和俯冲洋壳熔融的可能。由此表明磨石沟岩体也形成于加厚下地壳部分熔融(图6b—6g)。

    本头山岩体和磨石沟岩体样品的主/微量元素成分接近图6,高SiO2含量、富碱(Na2O+K2O=6.94%~8.33%),富集大离子亲石元素和轻稀土元素,其不可能源于地幔。Nb/La(0.27~0.48)、Rb/Sr(0.14~0.38)、Nb/U(5.24~13.32)和Ce/Pb(1.57~5.05)比值接近大陆地壳成分(Nb/La=0.40、Rb/Sr=0.15、Nb/U=6.15、Ce/Pb=3.91;Rudnick and Gao,2003)。源岩组成判别图解显示(图8),本头山岩体的样品分布于变质基性岩的部分熔融区,磨石沟岩体的样品分布于变质杂砂岩和变质基性岩的部分熔融区。

    图  8  东昆仑印支晚期埃达克质岩源岩组成判别图解
    a—(CaO)/(MgO+FeOT)−(Al2O3)/(MgO+FeOT)图解(Altherr et al., 2000;以物质的量(mol)计算单位);b—(Na2O+K2O+FeOT+MgO+TiO2)−(Na2O+K2O)/(FeOT+MgO+TiO2) 图解(Patiño Douce,1999
    Figure  8.  Diagram for discrimination of source rock composition of Late Indosinian adakitic rocks in East Kunlun
    (a) (CaO)/(MgO+FeOT) vs. (Al2O3)/(MgO+FeOT) plot (in molar concentrations, according to Altherr et al., 2000); (b) (Na2O+K2O+FeOT+TiO2) vs. (Na2O+K2O)/(FeOT+MgO+TiO2) plot (according to Patiño Douce,1999)

    本头山岩体和磨石沟岩体花岗岩均具有弱富集的放射性成因全岩Sr-Nd同位素组成,不同于MOR或由俯冲洋板片部分熔融形成的熔体成分(图9a)。本头山岩体花岗岩富集程度略低,(87Sr/86Sr)i=0.7074~0.7075,εNdt)= −1.65~−1.55,相对于东昆仑印支期弧花岗岩略微亏损(图9a);锆石εHft)变化范围小(3.4~7.3;图9b),模式年龄(tDM2)为1.02~0.78 Ga,由此推断其源区主要为新元古代基性地壳。磨石沟岩体(87Sr/86Sr)i=0.7089~0.7091,εNdt)= −3.60~−3.34,与东昆仑印支期弧岩浆岩或富集岩石圈地幔类似(图9a),锆石εHft)变化范围较大(−1.3~5.9;图9b),模式年龄(tDM2)为1.33~0.87 Ga,这种锆石Hf元素的不均一性指示岩浆在演化过程中有新的源区加入(Cherniak et al.,1997a1997b),表明其源区除了新元古代基性地壳组分外,应当还有更古老地壳物质的加入。本头山岩体和磨石沟岩体样品源于加厚下地壳的部分熔融,与东昆仑已报道的晚三叠世加厚下地壳重熔形成的埃达克质岩相似,但重稀土元素更为亏损(图4图6)。综上,本头山岩体花岗岩源于由新元古代变质基性岩组成的加厚下地壳的部分熔融,残留相含有石榴子石和金红石,为榴辉岩。磨石沟岩体花岗岩源于由中—新元古代变质基性岩和少量变质杂砂岩组成的加厚下地壳(榴辉岩)的部分熔融。

    图  9  东昆仑印支晚期埃达克质岩全岩(87Sr/86Sr)iεNdt)、锆石定年−εHft)关系图解
    a—(87Sr/86Sr)iεNdt)图解(底图据Li et al.,2018);b—锆石定年−εHft)图解
    Figure  9.  Diagram of whole-rock (87Sr/86Sr) i-εNd(t) relationship and zircon t t-εHf (t) for Late Indosinian adakitic rocks in East Kunlun
    (a) (87Sr/86Sr)i-εNd(t) plot (modified after Li et al.,2018);(b) Zircon t t-εHf (t) plot

    文中获得的磨石沟岩体和本头山岩体花岗岩形成时代为209~200 Ma,为晚三叠世晚期,具有相对富集的Sr-Nd同位素,源区主要为古老的地壳,不同于俯冲洋壳熔融形成的埃达克质岩,其岩石成因为源于加厚下地壳部分熔融形成的埃达克质岩。通常认为由加厚下地壳部分熔融形成的埃达克质岩形成于碰撞造山环境或碰撞后环境(Wang et al.,20072020He et al.,2011),碰撞过程中地壳的部分熔融可以在超高压变质大陆地壳刚开始折返时发生,并形成埃达克质岩;碰撞后阶段,在重力的作用下加厚下地壳、岩石圈地幔拆沉引发造山带的垮塌、去根和软流圈上涌,并导致局部构造环境由挤压向伸展的转变(Song et al.,2015),该阶段加厚下地壳部分熔融也可以形成埃达克质岩。由此推断磨石沟岩体和本头山岩体埃达克质岩可能形成于碰撞阶段超高压变质大陆地壳折返或碰撞后阶段伸展的构造环境中。

    东昆仑造山带与古特提斯洋增生造山作用相关的弧花岗岩主要分布在东昆仑中部构造带,对东昆仑已发表的弧花岗岩测年进行分析(图10孙雨等,2009Zhang et al.,2012Ding et al.,2014Huang et al.,2014Xiong et al.,2014陈功等,2016菅坤坤等,2017李瑞保等,2018国显正等,20182019张雨莲等,2018岳维好和周家喜,2019封铿等,2020Kong et al.,2020徐博等,2020王巍等,2021陈国超等,2022王凤林等,2022Yan et al.,2024),除个别弧花岗岩样品年龄分布在231~237Ma,弧花岗岩形成时代主要集分布在270~237 Ma,年龄概率曲线可形成明显峰值,推断在中三叠世末大洋板片俯冲结束。东昆仑南部构造带中—下三叠统是一套发育较好的弧前盆地沉积,其陆缘碎屑岩的物源主要来自北部的东昆仑中部构造带内广泛分布的弧岩浆岩,进一步证明早—中三叠世东昆仑构造带处于俯冲背景下的陆缘弧−盆体系(闫臻等,2008李瑞保等,2015岳远刚,2022)。晚三叠世弧盆体系已不存在,处于碰撞造山阶段。这些特征表明磨石沟岩体和本头山岩体形成于碰撞—碰撞后构造阶段。

    图  10  东昆仑印支期岩浆活动、沉积序列、成矿作用与构造演化关系图
    J1-2yq—羊曲组;J1-2d—大煤沟组;T3bb—八宝山组;T3e—鄂拉山组;T2x—希里可特组;T1-2n—闹仓坚沟组;T1h—洪水川组;P3g—格曲组;P1-2dc—打柴沟组;PB—布青山群弧花岗岩年龄据孙雨等,2009;Zhang et al.,2012;Ding et al.,2014;Huang et al.,2014;Xiong et al.,2014;陈功等,2016;菅坤坤等,2017;李瑞保等,2018;国显正等,2018,2019;张雨莲等,2018;岳维好和周家喜,2019;封铿等,2020;Kong et al.,2020;徐博等,2020;王巍等,2021;陈国超等,2022;王凤林等,2022;Yan et al.,2024。A型花岗岩和具A型花岗岩地球化学成分的火山岩年龄据陈丹玲等,2001;刘云华等,2006;丁烁等,2011;高永宝等,2014;钱兵等,2015;张明玉等,2018;Zhu et al.,2022。埃达克质岩年龄据陈国超等,2013a,2013b;Ding et al.,2014;Xiong et al.,2014;刘金龙等,2015;孔会磊等,2016;Xin et al.,2019,黄啸坤等,2021;刘建栋等,2023。矽卡岩型矿床年龄据丰成友等,2009,2011;高永宝等,2012;田承盛等,2013;王富春等,2013;Xia et al.,2015;于淼等,2015;刘建楠等,2017;Fang et al.,2018;Qu et al.,2019;Gao et al.,2020;Liang et al.,2021;黄啸坤,2021。金矿床年龄据肖晔等,2014;Zhang et al.,2017;李金超,2017;Cao et al.,2021;Liang et al.,2021。镁铁质—超镁铁质岩年龄据罗照华等,2002;中国地质大学(武汉),2006;熊富浩等,2011;奥琮等,2015;Hu et al.,2016;陈国超等,2017;Liu et al.,2017;王亚磊等,2017;顾雪祥等,2017;赵旭等,2018;Yan et al.,2024。地层柱状图中年龄据丁烁等,2011;邵凤丽,2017;封铿等,2022;青海省地质调查院,2023;张耀玲等,2024;地层柱状图资料据青海省地质调查院,2023
    Figure  10.  Relationship between Indosinian magmatic activity, sedimentary sequence, mineralization and tectonic evolution in East Kunlun
    J1-2yq—Yangqu Formation; J1-2d—Dameigou Formation; T3bb—Babaoshan Formation; T3e—Elashan Formation; T2x—Xilikete Formation; T1-2n—Naocangjiangou Formation; T1h—Hongshuichuan Formation; P3g—Gequ Formation; P1-2dc—Dachaigou Formation; PB—Buqingshan Group. Arc granite ages according to Sun et al., 2009; Zhang et al., 2012; Ding et al., 2014; Huang et al., 2014; Xiong et al., 2014; Chen et al., 2016; Jian et al., 2017; Li et al., 2018; Guo et al., 2018, 2019; Zhang et al., 2018; Yue and Zhou, 2019; Kong et al., 2020; Xu et al., 2020; Feng et al., 2020; Wang et al., 2021; Chen et al., 2022; Wang et al., 2022; and Yan et al., 2024. Age data of A-type granites and volcanic rocks with geochemical composition of A-type granites according to Chen et al., 2001; Liu et al., 2006, Ding et al., 2011; Gao et al., 2014; Qian et al., 2015; Zhang et al., 2018; and Zhu et al., 2022. Age of adakitic rocks according to Chen et al., 2013a, 2013b; Xiong et al., 2014; Ding et al., 2014; Liu et al., 2015; Kong et al., 2016; Xin et al., 2019; Huang et al., 2021 and Liu et al., 2023. Age of skarn type deposit according to Feng et al., 2009, 2011; Gao et al., 2012; Tian et al., 2013; Wang et al., 2013; Yu et al., 2015; Xia et al., 2015; Liu et al., 2017; Fang et al., 2018; Qu et al., 2019; Gao et al., 2020; Liang et al., 2021; Huang et al., 2021 and Cao et al., 2021. The gold deposit age data according to Xiao et al., 2014; Zhang et al., 2017; Li et al., 2017; and Liang et al., 2021. The mafic–ultramafic rock age data according to Luo et al., 2002; China University of Geosciences (Wuhan), 2006; Xiong et al., 2011; Ao et al., 2015; Hu et al., 2016; Liu et al., 2017; Chen et al., 2017; Wang et al., 2017; Gu et al., 2017; Zhao et al., 2018; and Yan et al., 2024. Age data in the stratigraphic column charts according to Ding et al., 2011; Shao et al., 2017; Feng et al., 2022; Qinghai Geological Survey Institute, 2023; and Zhang et al., 2024. Stratigraphic column data according to Qinghai Geological Survey Institute, 2023.

    东昆仑印支晚期已发现的埃达克质岩形成时代为231~215Ma,在东昆仑中部构造带和东昆仑南部构造带均有分布,成因大致有2种类型(图6):①加厚下地壳重熔形成的埃达克质岩,主要包括分布在东昆仑南部构造带内的和勒冈希里克特花岗闪长岩(225Ma;陈国超等,2013a)和哥日卓托似斑状花岗岩(227Ma;刘金龙等,2015),以及分布在东昆仑中部构造带的巴隆斑状花岗闪长岩(224 Ma,Xiong et al.,2014)和小圆山英云闪长岩(218 Ma,孔会磊等,2016)。②拆沉下地壳熔融形成的埃达克质岩,主要包括分布在东昆仑南部构造带内科科鄂阿龙岩体(218Ma;陈国超等,2013b),以及分布在东昆仑中部构造带内的黄龙沟闪长岩(215Ma;Ding et al.,2014)、黄龙沟斑状闪长岩(218Ma;Xin et al.,2019)和巴隆石英闪长岩(230Ma;黄啸坤等,2021)。由此表明东昆仑在晚三叠世早期(231~215Ma)就可能存在加厚下地壳的拆沉作用或俯冲板片断离作用。

    东昆仑印支期A型花岗岩或具有A型花岗岩地球化学成分的火山岩形成时代主要为晚三叠世晚期(218~204Ma;陈丹玲等,2001刘云华等,2006丁烁等,2011高永宝2014钱兵等,2015张明玉等,2018Zhu et al.,2022图10)。东昆仑晚三叠世也存在幔源岩浆活动,时代为228~207 Ma(罗照华等,2002中国地质大学(武汉),2006奥琮等,2015Hu et al.,2016陈国超等,2017顾雪祥等,2017Liu et al.,2017图10)。由A型花岗岩年龄分布特征推断东昆仑至少在晚三叠世中期就处于伸展的构造背景。

    东昆仑南部构造带上三叠统八宝山组不同于下石炭统—中三叠统海相和海陆过渡相沉积,是以河流相、三角洲相和湖泊相为特征的陆相沉积,物源来自多个不同方向,地层变形较弱,产状近水平,具有伸展型陆相断陷盆地的充填特征(岳远刚,2022),并且上三叠统八宝山组角度不整合于中—下三叠统之上,与下伏中—下三叠统之间形成了明显的沉积间断(图10)。东昆仑中部构造带缺失中—下三叠统沉积,晚三叠世地层为陆相火山岩地层鄂拉山组(图10)。上述特征表明晚三叠世开始东昆仑造山带构造体制发生了重要的变化,进入碰撞—碰撞后造山阶段,并且在晚三叠世较早时期就开始显示为伸展的构造背景。

    综合上述特征分析表明,磨石沟岩体和本头山岩体埃达克质岩形成于东昆仑印支期造山带碰撞后伸展的构造环境中。

    磨石沟岩体和本头山岩体埃达克质花岗岩形成时代为209~200 Ma,即晚三叠世晚期—早侏罗世初期,是东昆仑印支造山带发现的较年轻的埃达克质岩,其成因为加厚下地壳的熔融。这表明东昆仑印支造山带印支期碰撞—碰撞后地质过程持续到了侏罗纪初期。进一步结合以往研究成果,可以较完整地、初步概括出东昆仑印支造山带的碰撞造山过程和地质特征。

    4.4.1   陆块初始碰撞(237~232 Ma)

    东昆仑印支期弧岩浆岩形成的时间为270~237 Ma,推断碰撞初始阶段的起始点约在237 Ma,可能持续到232 Ma。该阶段尚无幔源岩浆岩、埃达克质岩和A型花岗岩发现的报道,I型花岗岩活动也非常微弱,是一个岩浆活动相对平静的时期(图10)。通常在初始碰撞阶段由于处于陆块的挤压和加厚过程,岩浆活动受到限制。该阶段在东昆仑南部构造带为一明显的沉积间断(图10),在东昆仑中部构造带缺失中—下三叠统,晚三叠世陆相火山岩地层鄂拉山组角度不整合于下伏地层之上,鄂拉山组火山岩已获得的最老年龄为235 Ma(封铿等,2022)。另外,该阶段的成矿作用也十分微弱。

    4.4.2   碰撞后(232~198Ma)

    该阶段岩浆活动强烈,发育长时序的埃达克质岩、幕式发育的幔源岩浆岩和具A型花岗岩地球化学成分特征的岩浆岩(图10),并发育大量高钾钙碱性−钾玄岩系列花岗岩类岩石(陈国超等,2019)。该阶段也是东昆仑造山带最重要的成矿期之一(图10)。

    幔源岩浆活动约开始于230 Ma(熊富浩等,2011),镁铁质—超镁铁质岩浆岩规模小、分布分散,表明幔源岩浆活动相对微弱。幔源岩浆活动呈现幕式特征,第一期为230~222 Ma,峰值为226 Ma(图10),分布于祁漫塔格北部构造带和东昆仑中部构造带,源区主要为俯冲交代岩石圈地幔(奥琮等,2015Hu et al.,2016陈国超等,2017)。其中冰沟富闪深成岩为富集岩石圈地幔和软流圈地幔组成的混合地幔源,可能与板片断离相关(226 Ma;Liu et al.,2017)。第二期是以深沟镁铁质岩体为代表的幔源岩浆岩(211~207 Ma;中国地质大学(武汉),2006;顾雪祥等,2017),分布于东昆仑南部构造带。

    东昆仑印支期A型花岗岩和具A型花岗岩地球化学特征的火山岩形成时代主要为218~204 Ma(陈丹玲等,2001刘云华等,2006丁烁等,2011高永宝等,2014钱兵等,2015张明玉等,2018Zhu et al.,2022),均分布在祁漫塔格北部构造带和东昆仑中部构造带,与第二期幔源岩浆活动时间接近(图10)。目前A型花岗岩成因大体有2种认识:①东昆仑东端的香日德碱性火山岩和东昆仑西端的于沟子含碱性暗色矿物的碱性花岗岩,其均被认为形成于大陆板内伸展环境,与碰撞造山无关(钱兵等,2015Zhu et al.,2022);其中香日德碱性火山岩形成时代为212~209 Ma,由交代岩石圈地幔部分熔融、长时间分离结晶和少量的地壳混染形成(Zhu et al.,2022);于沟子花岗岩时代为210 Ma,形成于古老地壳重熔并伴有地幔物质的参与(钱兵等,2015)。②以野马泉A型花岗岩为代表(高永宝等,2014),形成时代为213 Ma,源区为古老地壳,构造环境为碰撞—碰撞后。无论哪种成因,A型花岗岩的形成均表明了岩石圈伸展和软流圈地幔上涌地质过程的存在。在东昆仑造山带,A型花岗岩和具A型花岗岩成分特征的火山岩分布局限,仅见于香日德、于沟子、肯德可克、小红山和野马泉等少数地区。该时期东昆仑镁铁质—超镁铁质岩体也均分散分布,出露较为局限。这些特征暗示东昆仑岩石圈伸展和软流圈地幔上涌可能是局部的,而不是区域的。

    埃达克质岩活动时间为232~198Ma(图10),在东昆仑中部构造带和东昆仑南部构造带均有分布。约在晚三叠世早期(232~221Ma)出现了埃达克质中—酸性侵入岩形成的第一个时期(图10),岩石成因主要为加厚下地壳的部分熔融(陈国超等,2013bXiong et al.,2014刘金龙等,2015黄啸坤等,2021刘建栋等,2023),表明该时期东昆仑存在加厚下地壳,第一期埃达克质岩形成的时间与第一期幔源岩浆活动的时间相近。俯冲岩石圈板片的断离或加厚下地壳的拆沉均有可能是第一阶段埃达克质岩和镁铁质—超镁铁质岩形成的动力学机制,板片断离诱发深俯冲高压—超高压岩片减压重熔形成埃达克质岩,并诱发地幔减压与镁铁质—超镁铁质岩浆的形成与侵位;加厚下地壳的拆沉也可以形成埃达克质岩和减压导致的幔源岩浆的形成。晚三叠世晚期—早侏罗世初期(221~200 Ma)出现埃达克质岩形成的第二个时期(图10),成因大致有2种类型,加厚下地壳(榴辉岩和石榴子石角闪岩)熔融和拆沉下地壳熔融(图6陈国超等,2013aDing et al.,2014孔会磊等,2016Xin et al.,2019)。同期形成了A型花岗岩和具A型花岗岩成分特征的火山岩和第二期幔源岩浆岩。第二期埃达克质岩与东昆仑毗邻的巴颜喀拉−松潘甘孜造山带埃达克质岩形成时代接近,巴颜喀拉−松潘甘孜造山带加厚下地壳部分熔融形成的埃达克质岩的时代为230~200 Ma,但并未发生显著的加厚地壳的拆沉作用(Zhan et al.,2018李成祥等,2023)。

    东昆仑印支期金矿床、矽卡岩型铁和多金属矿床是东昆仑最重要的矿产资源,主要形成于232~221Ma(图10丰成友等,2011高永宝等,2012田承盛等,2013肖晔等,2014Xia et al., 2015刘建楠等,2017李金超,2017Fang et al., 2018Qu et al., 2019Gao et al., 2020Cao et al., 2021黄啸坤等,2021Liang et al., 2021),与第一期埃达克质岩的时代基本一致,也与第一期幔源活动的时期基本一致。

    上述分析表明,东昆仑碰撞后地质阶段依据岩浆活动与成矿作用特点可以划分为2个阶段。第一阶段为晚三叠世早期(232~221Ma),形成第一期埃达克质岩和第一期幔源岩浆岩。该时期也是东昆仑印支造山带最重要的金矿床、矽卡岩型铁和多金属矿床的成矿期,因此晚三叠世早期的深部地质过程及岩浆活动在东昆仑印支造山带成矿规律研究与找矿预测中具有重要意义。第二阶段为晚三叠世晚期(221~198Ma),形成第二期埃达克质岩、第二期幔源岩浆岩、A型花岗岩和具A型花岗岩成分特征的火山岩,成矿事实并不多见。关于第一阶段的构造环境也有不同认识,例如俯冲板片的断离或加厚下地壳的拆沉。加厚下地壳的拆沉作用和俯冲板片的断离均可以引起幔源岩浆活动和埃达克质岩浆的形成;东昆仑晚三叠世早期的埃达克质岩空间分布跨越了东昆仑中部和南部构造带,具有呈面状分布的特征,不同于与板片断离作用相关岩浆岩多呈线性分布的特点(罗明非等,2014),因此笔者倾向于该阶段花岗岩浆作用可能主要与碰撞后岩石圈的拆沉作用有关。

    (1)东昆仑本头山岩体和磨石沟岩体花岗岩主要由花岗闪长岩和二长花岗岩组成。磨石沟岩体的形成时代为209~208Ma,本头山岩体的形成时代为201~200Ma,是东昆仑印支造山带发现的最年轻的埃达克质岩之一。

    (2)本头山岩体和磨石沟岩体花岗岩样品具有高SiO2含量、高Al2O3含量、高Sr含量和高Sr/Y比值,富Na2O+K2O,亏损重稀土元素,Eu正异常或无异常,具有富集的全岩Sr-Nd同位素组成和弱亏损的锆石Hf同位素组成,为加厚下地壳部分熔融形成的埃达克质花岗岩。

    (3)磨石沟岩体和本头山岩体花岗岩形成于东昆仑印支造山带碰撞后伸展的构造环境。

  • 图  1  研究区位置和小南川地区地质简图

    1—侏罗系;2—三叠系;3—石炭系—二叠系;4—石炭系;5—泥盆系;6—寒武系—奥陶系;7—志留系;8—元古宇;9—二叠纪—三叠纪花岗岩;10—志留纪—泥盆纪花岗岩;11—寒武纪—奥陶纪花岗岩;12—镁铁—超镁铁质岩;13—区域性断裂及编号;14—一般断裂;15—湖泊;16—河流;17—采样地点和编号;F1—阿尔金断裂;F2—昆北断裂;F3—昆中断裂;F4—昆南断裂a—研究区位置(据王秉璋等,2021修改);b—小南川地区地质简图

    Figure  1.  The location of the study area and geological sketch of Xiaonanchuan area

    (a) The location of the study area (modified after Wang et al.,2021); (b) Geological sketch of Xiaonanchuan area1—Jurassic; 2—Triassic; 3—Carboniferous-Permian; 4—Carboniferous; 5—Devonian; 6—Cambrian-Ordovician; 7—Silurian; 8—Proterozoic; 9—Permian-Triassic granite; 10—Silurian-Devonian granite; 11—Cambrian-Ordovician granite; 12—ultramafic-mafic rocks; 13—regional faults and numbers; 14—general faults; 15— lakes; 16—rivers; 17—Sampling location and number; F1—Altyn Fault; F2—North Kunlun Fault; F3—Central Kunlun Fault; F4—South Kunlun Fault.

    图  2  东昆仑印支晚期埃达克质花岗岩的野外和显微特征

    Qz—石英;Pl—斜长石;Kf—钾长石;Bit—黑云母a—本头山岩体侵入于下古生界;b—磨石沟岩体野外特征;c—磨石沟岩体二长花岗岩镜下结构和主要矿物特征(正交偏光);d—磨石沟岩体二长花岗岩镜下钾长石条纹结构(正交偏光);e—磨石沟岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光);f—本头山岩体花岗闪长岩镜下结构和主要矿物特征(正交偏光)

    Figure  2.  Field characteristics and photomicrographs of Late Indosinian adakitic granite in East Kunlun

    (a) Bentoushan rock mass intruded into the Lower Paleozoic; (b) Field characteristics of Moshigou rock mass; (c) Microstructure and main mineral characteristics of monzogranite in Moshigou rock mass (cross-polarized light); (d) Potassium feldspar perthitic microstructure of monzogranite in Moshigou rock mass (cross-polarized light); (e) Microstructure and main mineral characteristics of granodiorite in Moshigou rock mass (cross-polarized light); (f) Microstructure and main mineral characteristics of granodiorite in Bentoushan rock mass (cross-polarized light) Notes:Qz—quartz; Pl—plagioclase; Kf—potassium-feldspar; Bit—biotite.

    图  3  东昆仑印支晚期埃达克质岩的SiO2−(K2O+Na2O)与SiO2−K2O图解

    a—SiO2−(K2O+Na2O)图解(底图据Middlemost,1994);b —SiO2−K2O图解(底图据Peccerillo and Taylor,1976

    Figure  3.  SiO2−(K2O+Na2O) and SiO2−K2O diagrams of Late Indosinian adakitic rocks in East Kunlun

    (a) SiO2−(K2O+Na2O) diagram (according to Middlemost,1994); (b) SiO2−K2O diagram(according to Peccerillo and Taylor,1976)

    图  4  东昆仑印支晚期埃达克质岩的稀土元素球粒陨石标准化图解与微量元素原始地幔标准化蛛网图(标准化数据据Sun and McDonough,1989

    a—c—稀土元素球粒陨石标准化图解;d—f—微量元素原始地幔标准化蛛网图

    Figure  4.  Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace-element spider diagrams of Late Indosinian adakitic rocks in East Kunlun (data normalized according to Sun and McDonough, 1989)

    (a)–(c) Chondrite-normalized REE distribution patterns; (d)–(f) Primitive mantle-normalized trace-element spider diagrams

    图  5  东昆仑磨石沟和本头山埃达克质花岗岩锆石和独居石U-Pb测年结果与典型锆石、独居石的阴极发光图像

    图a、b中白色实线圆圈与数字代表锆石LA-ICP-MS U-Pb定年测点位和编号;图中数值表示年龄和εHf(t)值a—d虚线圆圈表示锆石Hf同位素测试点位;c—e中白色方框代表LA-ICP-MS U-Pb定年点位

    Figure  5.  Cathodoluminescence images and U-Pb diagrams of zircon and monazite of adakitic granites from Moshigou and Bentoushan in East Kunlun

    Notes:In (a) and (b), the white solid circles with numbers represent the zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating sampling locations and their corresponding identifiers. Dashed circles from (a)–(d) indicate the zircon Hf isotope testing points. The white squares in (c)––(e) denote the LA-ICP-MS U-Pb dating locations. The numbers in the figure indicate the ages and εHf(t) values of these sites.

    图  6  东昆仑印支晚期埃达克质岩SiO2−Nb/Ta、SiO2−Al2O3、SiO2−MgO、SiO2−TiO2、SiO2−Mg#、SiO2−P2O5、SiO2−Yb、SiO2−Fe2O3、SiO2−Ca、SiO2−Na2O、SiO2−Ni和SiO2−Cr图解(俯冲洋壳熔融形成的埃达克质岩、加厚下地壳熔融形成的埃达克质岩和拆沉下地壳熔融形成的埃达克质岩分类据Wang et al.,2006

    Figure  6.  SiO2 vs. Nb/Ta, SiO2 vs. Al2O3 , SiO2 vs. MgO, SiO2 vs. TiO2, SiO2 vs. Mg, SiO2 vs. P2O5, SiO2 vs. Yb, SiO2 vs. Fe2O3, SiO2 vs. Ca, SiO2 vs. Na2O, SiO2 vs. Ni, and SiO2 vs. Cr plots of Late Indosinian adakitic rocks in East Kunlun(The fields of adakitic rocks derived from the partial melting of the subducted oceanic crust, thickened crust, and delaminated lower crust were compiled according to Wang et al.,2006

    图  7  东昆仑印支晚期埃达克质花岗岩Th−Th/Y、La−La/Sm、SiO2−Sr/Y、SiO2−Dy/Yb、SiO2−La和SiO2−La/Y协变图

    高压分离结晶趋势线据Macpherson et al.,2006;低压分离结晶趋势线据Castillo et al.,1999

    Figure  7.  Th vs. Th/Y, La vs. La/Sm, SiO2 vs. Sr/Y, SiO2 vs. Dy/Yb, SiO2 vs. La, and SiO2 vs. La/Y plots of Late Indosinian adakitic granite in East Kunlun

    High-pressure fractional crystallization lines according to Macpherson et al.,2006;Low-pressure fractional crystallization lines according to Castillo et al., 1999.

    图  8  东昆仑印支晚期埃达克质岩源岩组成判别图解

    a—(CaO)/(MgO+FeOT)−(Al2O3)/(MgO+FeOT)图解(Altherr et al., 2000;以物质的量(mol)计算单位);b—(Na2O+K2O+FeOT+MgO+TiO2)−(Na2O+K2O)/(FeOT+MgO+TiO2) 图解(Patiño Douce,1999

    Figure  8.  Diagram for discrimination of source rock composition of Late Indosinian adakitic rocks in East Kunlun

    (a) (CaO)/(MgO+FeOT) vs. (Al2O3)/(MgO+FeOT) plot (in molar concentrations, according to Altherr et al., 2000); (b) (Na2O+K2O+FeOT+TiO2) vs. (Na2O+K2O)/(FeOT+MgO+TiO2) plot (according to Patiño Douce,1999)

    图  9  东昆仑印支晚期埃达克质岩全岩(87Sr/86Sr)iεNdt)、锆石定年−εHft)关系图解

    a—(87Sr/86Sr)iεNdt)图解(底图据Li et al.,2018);b—锆石定年−εHft)图解

    Figure  9.  Diagram of whole-rock (87Sr/86Sr) i-εNd(t) relationship and zircon t t-εHf (t) for Late Indosinian adakitic rocks in East Kunlun

    (a) (87Sr/86Sr)i-εNd(t) plot (modified after Li et al.,2018);(b) Zircon t t-εHf (t) plot

    图  10  东昆仑印支期岩浆活动、沉积序列、成矿作用与构造演化关系图

    J1-2yq—羊曲组;J1-2d—大煤沟组;T3bb—八宝山组;T3e—鄂拉山组;T2x—希里可特组;T1-2n—闹仓坚沟组;T1h—洪水川组;P3g—格曲组;P1-2dc—打柴沟组;PB—布青山群弧花岗岩年龄据孙雨等,2009;Zhang et al.,2012;Ding et al.,2014;Huang et al.,2014;Xiong et al.,2014;陈功等,2016;菅坤坤等,2017;李瑞保等,2018;国显正等,2018,2019;张雨莲等,2018;岳维好和周家喜,2019;封铿等,2020;Kong et al.,2020;徐博等,2020;王巍等,2021;陈国超等,2022;王凤林等,2022;Yan et al.,2024。A型花岗岩和具A型花岗岩地球化学成分的火山岩年龄据陈丹玲等,2001;刘云华等,2006;丁烁等,2011;高永宝等,2014;钱兵等,2015;张明玉等,2018;Zhu et al.,2022。埃达克质岩年龄据陈国超等,2013a,2013b;Ding et al.,2014;Xiong et al.,2014;刘金龙等,2015;孔会磊等,2016;Xin et al.,2019,黄啸坤等,2021;刘建栋等,2023。矽卡岩型矿床年龄据丰成友等,2009,2011;高永宝等,2012;田承盛等,2013;王富春等,2013;Xia et al.,2015;于淼等,2015;刘建楠等,2017;Fang et al.,2018;Qu et al.,2019;Gao et al.,2020;Liang et al.,2021;黄啸坤,2021。金矿床年龄据肖晔等,2014;Zhang et al.,2017;李金超,2017;Cao et al.,2021;Liang et al.,2021。镁铁质—超镁铁质岩年龄据罗照华等,2002;中国地质大学(武汉),2006;熊富浩等,2011;奥琮等,2015;Hu et al.,2016;陈国超等,2017;Liu et al.,2017;王亚磊等,2017;顾雪祥等,2017;赵旭等,2018;Yan et al.,2024。地层柱状图中年龄据丁烁等,2011;邵凤丽,2017;封铿等,2022;青海省地质调查院,2023;张耀玲等,2024;地层柱状图资料据青海省地质调查院,2023

    Figure  10.  Relationship between Indosinian magmatic activity, sedimentary sequence, mineralization and tectonic evolution in East Kunlun

    J1-2yq—Yangqu Formation; J1-2d—Dameigou Formation; T3bb—Babaoshan Formation; T3e—Elashan Formation; T2x—Xilikete Formation; T1-2n—Naocangjiangou Formation; T1h—Hongshuichuan Formation; P3g—Gequ Formation; P1-2dc—Dachaigou Formation; PB—Buqingshan Group. Arc granite ages according to Sun et al., 2009; Zhang et al., 2012; Ding et al., 2014; Huang et al., 2014; Xiong et al., 2014; Chen et al., 2016; Jian et al., 2017; Li et al., 2018; Guo et al., 2018, 2019; Zhang et al., 2018; Yue and Zhou, 2019; Kong et al., 2020; Xu et al., 2020; Feng et al., 2020; Wang et al., 2021; Chen et al., 2022; Wang et al., 2022; and Yan et al., 2024. Age data of A-type granites and volcanic rocks with geochemical composition of A-type granites according to Chen et al., 2001; Liu et al., 2006, Ding et al., 2011; Gao et al., 2014; Qian et al., 2015; Zhang et al., 2018; and Zhu et al., 2022. Age of adakitic rocks according to Chen et al., 2013a, 2013b; Xiong et al., 2014; Ding et al., 2014; Liu et al., 2015; Kong et al., 2016; Xin et al., 2019; Huang et al., 2021 and Liu et al., 2023. Age of skarn type deposit according to Feng et al., 2009, 2011; Gao et al., 2012; Tian et al., 2013; Wang et al., 2013; Yu et al., 2015; Xia et al., 2015; Liu et al., 2017; Fang et al., 2018; Qu et al., 2019; Gao et al., 2020; Liang et al., 2021; Huang et al., 2021 and Cao et al., 2021. The gold deposit age data according to Xiao et al., 2014; Zhang et al., 2017; Li et al., 2017; and Liang et al., 2021. The mafic–ultramafic rock age data according to Luo et al., 2002; China University of Geosciences (Wuhan), 2006; Xiong et al., 2011; Ao et al., 2015; Hu et al., 2016; Liu et al., 2017; Chen et al., 2017; Wang et al., 2017; Gu et al., 2017; Zhao et al., 2018; and Yan et al., 2024. Age data in the stratigraphic column charts according to Ding et al., 2011; Shao et al., 2017; Feng et al., 2022; Qinghai Geological Survey Institute, 2023; and Zhang et al., 2024. Stratigraphic column data according to Qinghai Geological Survey Institute, 2023.

    表  1  东昆仑印支晚期埃达克质花岗岩的主量元素(%)、微量元素(×10−6)和稀土元素(×10−6)含量特征

    Table  1.   Major (%), trace(×10−6), and REE element (×10−6) abundances of the Late Indosinian adakitic granite in East Kunlun

    样品名称 2MSG-1-2 2MSG-1-3 2MSG-2-2 2MSG-2-3 2MSG-3-2 2MSG-3-3 2MSG-4-2 2MSG-4-3 2BTS-1 2BTS-1-2 2BTS-1-3 2BTS-3 2BTS-3-2 2BTS-3-3 2BTS-4-1 2BTS-4-2 2BTS-4-3
    磨石沟岩体 本头山岩体
    二长花岗岩 二长花岗岩 二长花岗岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩
    样品坐标 94°34′30.8″E;35°48′33.3″N 94°33′3.2″E;35°49′20.9″N 94°31′27.6″E;35°49′59.4″N 94°29′28.1″E;35°51′0.7″N 94°18′39″E;35°50′35.9″N 94°16′18.8″E;35°51′42.4″N 94°15′0.8″E;35°51′18.3″N
    SiO2 70.12 70.37 71.04 69.68 68.92 69.14 66.35 65.73 66.18 65.65 67.31 66.64 67.90 67.42 67.16 68.30 66.29
    TiO2 0.27 0.26 0.25 0.26 0.29 0.29 0.42 0.43 0.47 0.47 0.44 0.48 0.46 0.45 0.48 0.42 0.47
    Al2O3 15.91 15.68 15.69 16.39 16.79 16.66 17.52 17.09 16.79 17.18 16.70 16.45 16.25 16.19 16.16 15.53 16.41
    Fe2O3T 1.71 1.65 1.70 1.73 1.92 1.94 2.60 2.65 3.17 3.19 2.85 3.11 3.12 3.00 3.09 2.84 3.27
    MnO 0.036 0.034 0.030 0.031 0.038 0.037 0.040 0.040 0.057 0.056 0.042 0.057 0.056 0.055 0.055 0.051 0.057
    MgO 0.73 0.70 0.67 0.70 0.73 0.74 1.26 1.27 1.28 1.29 1.19 1.26 1.29 1.24 1.24 1.17 1.39
    CaO 2.35 2.35 2.75 2.92 2.77 2.76 3.74 3.51 3.23 3.12 3.46 3.05 3.11 3.07 3.28 3.14 3.28
    Na2O 4.36 4.32 4.43 4.74 4.77 4.73 4.26 4.35 4.39 4.31 4.49 4.19 4.25 4.23 4.27 4.19 4.30
    K2O 3.86 3.92 3.04 3.06 3.56 3.50 3.31 3.24 3.36 4.02 2.62 3.58 3.25 3.30 2.93 2.75 3.17
    P2O5 0.10 0.10 0.10 0.10 0.11 0.11 0.15 0.16 0.21 0.21 0.19 0.21 0.21 0.20 0.21 0.20 0.22
    LOI 0.45 0.45 0.39 0.47 0.45 0.40 0.80 1.77 0.64 0.79 0.84 0.54 0.52 0.63 0.66 0.62 0.60
    SUM 99.88 99.82 100.08 100.07 100.34 100.29 100.45 100.24 99.79 100.29 100.14 99.57 100.40 99.77 99.55 99.22 99.47
    FeO 1.10 0.82 0.98 0.98 1.10 1.20 1.64 1.58 1.74 1.74 1.48 1.38 1.78 1.60 1.44 1.54 1.88
    Mg# 46 46 44 45 43 43 49 49 45 45 45 45 45 45 45 45 46
    Na2O/K2O 1.13 1.10 1.45 1.55 1.34 1.35 1.29 1.34 1.30 1.07 1.71 1.17 1.31 1.28 1.46 1.53 1.36
    Na2O+K2O 8.22 8.23 7.47 7.80 8.33 8.23 7.58 7.59 7.76 8.33 7.12 7.77 7.50 7.53 7.20 6.94 7.47
    A/CNK 1.02 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00
    Li 57.4 56.6 37.8 40.7 45.8 45.2 21.3 26.0 33.9 38.3 35.3 39.7 41.6 35.6 46.2 43.4 44.9
    Be 2.53 2.54 2.14 2.29 2.42 2.36 2.19 2.16 1.83 1.69 1.84 1.82 2.00 1.73 1.99 1.73 1.79
    Sc 2.45 2.54 2.06 2.16 2.43 2.17 5.93 6.13 4.04 4.25 2.38 4.14 4.17 4.02 4.18 3.96 4.01
    V 17.9 18.3 17.1 17.8 18.8 18.1 32.2 32.4 32.8 35.2 31.2 34.5 33.6 32.6 34.0 31.7 35.5
    Cr 8.50 8.35 7.89 8.40 8.21 8.13 19.70 18.80 10.60 10.70 9.05 10.60 10.40 10.00 10.60 9.82 11.10
    Co 3.05 3.14 3.12 3.23 3.38 3.28 5.55 5.55 5.92 5.91 5.22 5.90 6.02 5.72 5.60 5.52 6.28
    Ni 3.78 3.69 3.67 3.67 3.49 4.00 6.33 6.97 5.95 6.59 5.69 5.95 6.24 6.55 5.90 5.84 6.68
    Cu 7.66 6.25 5.42 5.86 6.16 5.93 6.93 7.38 20.8 7.10 7.31 10.50 9.55 9.78 7.27 7.15 10.60
    Zn 43.8 43.6 39.3 41.0 45.2 45.8 51.4 49.5 68.5 70.6 64.0 68.5 68.1 65.0 66.8 62.5 71.1
    Ga 21.9 21.8 20.4 21.9 22.4 21.7 22.5 22.2 21.2 22.8 21.9 21.4 21.5 21.7 20.9 21.0 21.9
    Rb 135.0 149.0 94.8 97.9 120.0 115.0 117.0 116.0 98.9 120.0 88.4 112.0 113.0 106.0 95.3 94.6 105.0
    Sr 399 398 529 566 559 544 502 516 534 550 613 517 525 520 544 535 554
    Y 6.91 7.21 5.47 5.85 6.57 6.54 6.50 7.23 8.73 8.82 6.97 9.37 8.50 8.41 10.8 8.46 8.02
    Zr 144 156 143 155 170 170 160 167 204 197 163 187 193 189 201 183 203
    Nb 11.4 12.0 8.69 9.07 11.5 11.5 7.14 7.56 14.1 14.3 12.2 15.7 14.7 13.8 17.4 13.6 13.7
    Sn 1.98 2.05 1.03 1.11 1.53 1.53 1.41 1.46 1.81 1.80 1.53 2.07 1.75 1.65 2.09 1.70 1.62
    Cs 1.70 1.86 1.99 2.00 3.08 3.10 2.53 1.30 2.75 2.90 2.18 3.54 3.35 3.28 3.31 3.32 2.39
    Ba 824 809 1052 1099 1137 1070 935 1022 814 1020 931 872 840 807 920 823 866
    La 23.6 27.4 26.3 30.7 33.9 36.2 24.9 27.5 39.4 49.2 34.6 33.6 35.9 50.8 48.1 37.3 34.4
    Ce 42.7 48.3 45.4 52.1 58.0 62.3 46.1 50.4 68.4 88.6 63.7 61.8 66.3 91.9 84.8 68.3 63.4
    Pr 4.22 4.89 4.44 5.16 5.73 6.10 4.78 5.37 7.22 8.98 6.33 6.57 6.79 9.20 8.91 7.09 6.65
    Nd 14.1 16.6 14.7 16.9 18.8 20.0 17.0 18.8 24.0 30.3 21.7 22.4 23.0 30.7 30.3 23.9 22.4
    Sm 2.34 2.74 2.29 2.50 2.88 3.10 2.83 3.03 3.85 4.36 3.47 3.76 3.65 4.17 4.81 3.64 3.45
    Eu 0.73 0.82 0.85 0.91 0.90 0.91 1.16 1.11 1.01 1.09 1.05 1.04 0.99 1.03 1.19 0.96 1.04
    Gd 1.70 1.69 1.56 1.59 1.77 1.81 1.79 1.99 2.45 2.62 2.12 2.70 2.50 2.63 3.08 2.54 2.28
    Tb 0.22 0.23 0.18 0.21 0.23 0.23 0.24 0.26 0.34 0.34 0.28 0.36 0.31 0.33 0.44 0.32 0.30
    Dy 1.19 1.29 1.01 1.14 1.25 1.27 1.17 1.36 1.64 1.76 1.42 1.87 1.65 1.68 2.21 1.77 1.53
    Ho 0.21 0.21 0.18 0.17 0.21 0.21 0.20 0.23 0.30 0.27 0.23 0.32 0.28 0.28 0.34 0.26 0.26
    Er 0.54 0.58 0.47 0.48 0.52 0.56 0.59 0.64 0.81 0.76 0.56 0.81 0.77 0.80 0.96 0.82 0.72
    Tm 0.08 0.09 0.07 0.07 0.08 0.09 0.08 0.09 0.11 0.11 0.08 0.12 0.10 0.10 0.13 0.10 0.10
    Yb 0.53 0.56 0.42 0.47 0.52 0.55 0.50 0.56 0.68 0.65 0.50 0.73 0.68 0.65 0.82 0.63 0.65
    Lu 0.08 0.09 0.06 0.07 0.09 0.08 0.08 0.09 0.10 0.10 0.08 0.11 0.10 0.09 0.11 0.09 0.09
    Hf 3.81 4.05 3.27 3.79 4.16 4.20 3.87 4.02 5.11 4.60 3.82 4.61 4.73 4.44 4.76 4.24 4.69
    Ta 0.71 0.74 0.51 0.55 0.68 0.70 0.28 0.31 0.84 0.82 0.62 0.95 0.84 0.79 1.10 0.76 0.74
    Tl 0.68 0.81 0.53 0.55 0.70 0.64 0.66 0.66 0.60 0.70 0.50 0.65 0.64 0.58 0.55 0.53 0.61
    Pb 24.9 26.4 28.9 30.1 30.4 30.4 24.5 23.1 18.9 18.5 16.3 19.3 18.5 18.2 17.4 18.0 19.4
    Th 8.69 10.20 6.96 7.78 9.54 9.99 8.67 10.20 8.55 11.30 7.74 8.96 9.05 11.40 10.20 8.52 8.79
    U 1.29 1.48 1.04 1.10 1.43 1.44 1.26 1.44 1.39 1.34 1.16 1.47 1.33 1.31 1.31 1.23 1.37
    Sr/Y 58 55 97 97 85 83 77 71 61 62 88 55 62 62 50 63 69
    ∑REE 92 106 98 112 125 133 101 111 150 189 136 136 143 194 186 148 137
    LREE/HREE 19 21 24 26 26 27 21 20 22 28 25 18 21 29 22 22 22
    La/Yb 45 49 62 66 65 66 49 49 58 76 70 46 53 78 59 59 53
    (La/Yb)N 32.0 34.9 44.6 47.3 46.9 47.3 35.3 35.0 41.9 54.7 50.0 32.8 38.1 56.3 42.1 42.6 38.0
    (La/Sm)N 6.5 6.5 7.4 7.9 7.6 7.5 5.7 5.8 6.6 7.3 6.5 5.8 6.4 7.9 6.5 6.6 6.4
    (Gd/Yb)N 2.7 2.5 3.0 2.8 2.8 2.7 2.9 2.9 3.0 3.4 3.5 3.0 3.1 3.4 3.1 3.3 2.9
    δEu 1.06 1.08 1.30 1.31 1.13 1.08 1.48 1.29 0.94 0.91 1.09 0.95 0.94 0.89 0.89 0.91 1.06
    Nb/La 0.48 0.44 0.33 0.30 0.34 0.32 0.29 0.28 0.36 0.29 0.35 0.47 0.41 0.27 0.36 0.37 0.40
    Rb/Sr 0.34 0.38 0.18 0.17 0.21 0.21 0.23 0.22 0.19 0.22 0.14 0.22 0.21 0.20 0.18 0.18 0.19
    Nb/U 8.91 8.13 8.32 8.26 8.07 7.98 5.64 5.24 10.16 10.65 10.57 10.65 11.05 10.51 13.32 11.08 9.99
    Ce/Pb 1.71 1.83 1.57 1.73 1.91 2.05 1.88 2.18 3.63 4.79 3.91 3.20 3.58 5.05 4.87 3.80 3.27
    Y/Yb 13.0 12.8 12.9 12.6 12.7 11.9 12.9 12.9 12.9 13.7 14.0 12.8 12.6 13.0 13.2 13.5 12.4
    (Ho/Yb)N 1.21 1.12 1.30 1.11 1.21 1.12 1.21 1.21 1.35 1.27 1.39 1.30 1.25 1.29 1.26 1.24 1.20
    Nb/Ta 16.1 16.3 17.0 16.6 17.1 16.3 25.2 24.3 16.9 17.4 19.8 16.5 17.4 17.5 15.8 17.9 18.6
    下载: 导出CSV

    表  2  东昆仑印支晚期埃达克质花岗岩LA-ICP-MS 锆石 U-Pb 同位素测年结果

    Table  2.   Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb data of Late Indosinian adakitic granite in East Kunlun

    测点 元素含量/×10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄/Ma 谐和度/%
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    花岗闪长岩(2BTS-1样品)
    1 12.99 170 380 0.45 0.05457 0.00274 0.21539 0.01045 0.02886 0.00036 394 111 198 9 183 2 92
    2 13.07 213 348 0.61 0.05246 0.00222 0.22852 0.00955 0.03162 0.00039 306 96 209 8 201 2 95
    3 32.25 344 889 0.39 0.05102 0.00158 0.22458 0.00691 0.03186 0.00028 243 77 206 6 202 2 98
    4 19.59 276 507 0.54 0.05084 0.00180 0.22839 0.00794 0.03258 0.00037 235 86 209 7 207 2 98
    5 36.32 492 949 0.52 0.05216 0.00146 0.23344 0.00653 0.03239 0.00025 300 63 213 5 206 2 96
    6 22.96 311 616 0.50 0.05536 0.00184 0.24598 0.00874 0.03221 0.00049 428 74 223 7 204 3 91
    7 19.91 188 548 0.34 0.05263 0.00200 0.23531 0.00905 0.03254 0.00038 322 82 215 7 206 2 96
    8 14.63 145 410 0.35 0.0539 0.0028 0.2283 0.0099 0.0309 0.0005 365 119 209 8 196 3 93
    9 23.71 293 634 0.46 0.05365 0.00195 0.23578 0.00839 0.03193 0.00035 367 81 215 7 203 2 94
    10 7.45 89.8 201 0.45 0.05079 0.00306 0.22434 0.01250 0.03264 0.00055 232 139 206 10 207 3 99
    11 17.23 175 481 0.36 0.05120 0.00208 0.22245 0.00859 0.03161 0.00034 250 93 204 7 201 2 98
    12 40.5 979 948 1.03 0.05162 0.00159 0.22533 0.00674 0.03159 0.00031 333 72 206 6 201 2 97
    13 21.06 278 578 0.48 0.05115 0.00190 0.21882 0.00787 0.03099 0.00031 256 82 201 7 197 2 97
    14 33.56 374 931 0.40 0.05004 0.00152 0.21692 0.00671 0.03130 0.00029 198 70 199 6 199 2 99
    15 14.76 196 403 0.49 0.05013 0.00206 0.21588 0.00904 0.03120 0.00041 211 96 198 8 198 3 99
    16 18.49 231 503 0.46 0.04931 0.00213 0.21317 0.00886 0.03151 0.00034 161 102 196 7 200 2 98
    17 16.49 176 452 0.39 0.05197 0.00208 0.22104 0.00898 0.03108 0.00031 283 91 203 7 197 2 97
    18 35.11 458 963 0.48 0.04959 0.00162 0.21094 0.00682 0.03084 0.00028 176 76 194 6 196 2 99
    19 13.29 184 344 0.53 0.05084 0.00222 0.22813 0.01033 0.03241 0.00047 235 100 209 9 206 3 98
    20 21.23 188 579 0.32 0.05358 0.00204 0.23519 0.00865 0.03193 0.00031 354 87 214 7 203 2 94
    21 34.28 348 958 0.36 0.05115 0.00141 0.21799 0.00604 0.03083 0.00028 256 63 200 5 196 2 97
    22 24.58 227 683 0.33 0.04902 0.00172 0.21223 0.00737 0.03131 0.00028 150 81 195 6 199 2 98
    23 10.32 114 278 0.41 0.05097 0.00258 0.23080 0.01235 0.03244 0.00056 239 117 211 10 206 4 97
    24 20.40 275 544 0.51 0.04747 0.00197 0.20234 0.00828 0.03096 0.00034 72.3 96 187 7 197 2 95
    花岗闪长岩(2BTS-3样品)
    1 11.86 69.0 341 0.20 0.04743 0.00240 0.20490 0.01010 0.03142 0.00042 77.9 109 189 9 199 3 94
    2 52.2 1554 1056 1.47 0.05372 0.00145 0.23444 0.00638 0.03148 0.00032 367 61 214 5 200 2 93
    3 20.67 179 564 0.32 0.05333 0.00190 0.23493 0.00815 0.03186 0.00035 343 80 214 7 202 2 94
    4 19.24 243 503 0.48 0.04736 0.00175 0.21111 0.00750 0.03234 0.00038 77.9 76 194 6 205 2 94
    5 26.92 314 726 0.43 0.04669 0.00182 0.20672 0.00777 0.03209 0.00035 35.3 89 191 7 204 2 93
    6 21.87 375 557 0.67 0.04910 0.00201 0.21302 0.00876 0.03115 0.00033 154 101 196 7 198 2 99
    7 18.85 196 527 0.37 0.05216 0.00187 0.22223 0.00768 0.03083 0.00033 300 81 204 6 196 2 95
    8 116.1 4178 2094 2.00 0.05083 0.00127 0.22708 0.00582 0.03214 0.00033 232 62 208 5 204 2 98
    9 10.33 65.7 300 0.22 0.05186 0.00285 0.22274 0.01212 0.03118 0.00044 280 158 204 10 198 3 96
    10 14.79 190 407 0.47 0.05184 0.00299 0.21848 0.01114 0.03076 0.00038 280 133 201 9 195 2 97
    11 19.68 322 521 0.62 0.05348 0.00202 0.23019 0.00905 0.03100 0.00041 350 85 210 7 197 3 93
    12 32.84 389 859 0.45 0.04901 0.00167 0.21986 0.00747 0.03230 0.00037 150 84 202 6 205 2 98
    13 20.87 321 547 0.59 0.04825 0.00194 0.20648 0.00791 0.03101 0.00040 122 99 191 7 197 2 96
    14 7.45 111 193 0.57 0.04997 0.00326 0.21629 0.01299 0.03192 0.00051 195 152 199 11 203 3 98
    15 38.4 704 1004 0.70 0.05099 0.00200 0.22287 0.00848 0.03161 0.00042 239 91 204 7 201 3 98
    16 17.16 181 478 0.38 0.04659 0.00181 0.20201 0.00753 0.03125 0.00041 27.9 89 187 6 198 3 94
    17 23.06 364 591 0.62 0.04907 0.00188 0.21763 0.00780 0.03201 0.00037 150 91 200 7 203 2 98
    18 38.8 798 969 0.82 0.05177 0.00160 0.22217 0.00673 0.03076 0.00031 276 68 204 6 195 2 95
    19 13.72 280 343 0.82 0.05209 0.00261 0.22840 0.01076 0.03173 0.00044 300 147 209 9 201 3 96
    20 14.72 262 385 0.68 0.04838 0.00202 0.20778 0.00824 0.03105 0.00035 117 98 192 7 197 2 97
    21 9.51 37.0 284 0.13 0.05454 0.00407 0.23655 0.01825 0.03151 0.00047 394 169 216 15 200 3 92
    22 18.53 274 490 0.56 0.04944 0.00198 0.21764 0.00827 0.03183 0.00037 169 94 200 7 202 2 98
    23 3.14 44.8 78.9 0.57 0.05708 0.00433 0.26273 0.01761 0.03394 0.00081 494 168 237 14 215 5 90
    24 23.4 531 538 0.99 0.05404 0.00238 0.25718 0.01179 0.03432 0.00056 372 72 232 10 218 3 93
    二长花岗岩(2MSG-1样品)
    1 46 418 1200 0.35 0.05016 0.00057 0.22815 0.00329 0.03296 0.00031 202 26 209 3 209 2 100
    2 68 768 1720 0.45 0.05005 0.0005 0.22767 0.00303 0.03302 0.00038 197 23 208 3 209 2 99
    3 34 257 871 0.30 0.05074 0.00098 0.2284 0.00413 0.03277 0.00044 229 45 209 3 208 3 100
    4 81 773 1960 0.39 0.05032 0.00071 0.2313 0.00362 0.03334 0.00036 210 33 211 3 211 2 100
    5 35 315 934 0.34 0.05189 0.00076 0.2359 0.00445 0.03287 0.00047 281 34 215 4 209 3 97
    6 42 478 1090 0.44 0.05072 0.00089 0.23258 0.00474 0.03327 0.00052 228 41 212 4 211 3 99
    7 31 383 782 0.49 0.05111 0.00083 0.23041 0.00462 0.03269 0.00047 246 37 211 4 207 3 98
    8 44 279 1230 0.23 0.05038 0.00081 0.22826 0.00349 0.03278 0.00043 213 37 209 3 208 3 100
    9 29 248 738 0.34 0.05069 0.00064 0.23239 0.00408 0.03321 0.00044 227 29 212 3 211 3 99
    10 44 575 1110 0.52 0.05022 0.00054 0.22885 0.00243 0.033 0.00031 205 25 209 2 209 2 100
    11 85 914 2150 0.43 0.05041 0.00041 0.22975 0.00297 0.033 0.00035 214 19 210 3 209 2 100
    12 105 1020 2620 0.39 0.05037 0.00053 0.22821 0.00296 0.03282 0.00028 212 25 209 2 208 2 100
    13 48 500 1220 0.41 0.04981 0.00056 0.22644 0.00314 0.03293 0.00028 186 26 207 3 209 2 99
    14 62 781 1450 0.54 0.05048 0.00084 0.23263 0.0037 0.03344 0.00036 217 39 212 3 212 2 100
    15 41 483 1030 0.47 0.05005 0.00053 0.22915 0.00303 0.03321 0.00036 198 25 210 3 211 2 99
    16 28 250 766 0.33 0.05049 0.00118 0.23061 0.00524 0.03307 0.00039 217 54 211 4 210 2 100
    17 56 310 310 1.00 0.06487 0.00063 1.15174 0.01469 0.12861 0.0013 770 20 778 7 780 7 100
    18 31 71.4 168 0.43 0.06904 0.0008 1.44958 0.02005 0.15227 0.00143 900 24 910 8 914 8 100
    19 56 383 1440 0.27 0.05057 0.00067 0.24188 0.00361 0.0346 0.00036 222 31 220 3 219 2 100
    20 302 0 6980 0.00 0.06694 0.00091 0.34422 0.00465 0.03733 0.00059 836 28 300 4 236 4 79
    21 233 1710 6460 0.26 0.06503 0.0013 0.29357 0.00371 0.03293 0.00058 775 42 261 3 209 4 80
    22 355 0 7420 0.00 0.06638 0.00098 0.38506 0.00948 0.04184 0.0007 818 31 331 7 264 4 80
    23 255 0 6050 0.00 0.06847 0.00078 0.33474 0.00469 0.03541 0.00037 883 24 293 4 224 2 77
    二长花岗岩(2MSG-3样品)
    1 16 224 421 0.53 0.05045 0.0011 0.22725 0.00565 0.03266 0.00053 216 51 208 5 207 3 100
    2 30 164 818 0.20 0.05049 0.00065 0.22751 0.00331 0.03272 0.00035 218 30 208 3 208 2 100
    3 23 304 546 0.56 0.05011 0.00092 0.22483 0.00453 0.03249 0.0003 200 43 206 4 206 2 100
    4 32 290 845 0.34 0.04978 0.00081 0.22508 0.00432 0.03281 0.00041 185 38 206 4 208 3 99
    5 17 223 434 0.51 0.05048 0.00077 0.22673 0.00332 0.0326 0.00034 217 35 208 3 207 2 100
    6 47 400 1220 0.33 0.05023 0.0005 0.22816 0.00324 0.03295 0.00045 206 23 209 3 209 3 100
    7 44 504 1150 0.44 0.0499 0.001 0.22889 0.00523 0.03327 0.00059 190 47 209 4 211 4 99
    8 47 392 1220 0.32 0.05031 0.00063 0.23333 0.0032 0.03362 0.00031 210 29 213 3 213 2 100
    9 56 406 1410 0.29 0.05049 0.00059 0.23146 0.00314 0.03325 0.00029 217 27 211 3 211 2 100
    10 58 510 1460 0.35 0.05032 0.00063 0.22958 0.00293 0.0331 0.00032 210 29 210 2 210 2 100
    11 57 548 1470 0.37 0.05025 0.00062 0.23214 0.00414 0.03342 0.00044 207 29 212 3 212 3 100
    12 53 448 1400 0.32 0.05029 0.00059 0.22833 0.00362 0.0329 0.00034 209 27 209 3 209 2 100
    13 22 313 534 0.59 0.05045 0.0008 0.22722 0.00408 0.03273 0.0004 216 37 208 3 208 3 100
    14 23 274 573 0.48 0.05054 0.00083 0.23033 0.0048 0.03303 0.00041 220 38 211 4 210 3 100
    15 24 354 607 0.58 0.05025 0.00122 0.22599 0.00594 0.03266 0.0004 207 56 207 5 207 3 100
    16 23 313 565 0.55 0.0506 0.0008 0.22663 0.00451 0.03245 0.00032 223 37 207 4 206 2 99
    17 23 303 566 0.54 0.05057 0.00084 0.22917 0.00453 0.03294 0.00045 221 38 210 4 209 3 100
    18 19 260 483 0.54 0.05061 0.00071 0.22854 0.00468 0.03275 0.00046 223 32 209 4 208 3 99
    19 50 319 1340 0.24 0.05092 0.00065 0.23213 0.00387 0.03311 0.00036 237 29 212 3 210 2 99
    20 55 528 1440 0.37 0.05058 0.00049 0.22855 0.00351 0.03281 0.00037 222 23 209 3 208 2 100
    21 16 98.1 438 0.22 0.05304 0.00084 0.23287 0.00404 0.03182 0.00028 331 36 213 3 202 2 95
    22 17 231 444 0.52 0.05037 0.00088 0.22271 0.00373 0.03214 0.00032 212 40 204 3 204 2 100
    23 31 481 792 0.61 0.0509 0.00065 0.21781 0.00286 0.03108 0.00031 236 30 200 2 197 2 99
    下载: 导出CSV

    表  3  东昆仑印支晚期埃达克质花岗岩(2MSG-1样品)独居石LA-ICP-MS U-Pb 同位素测定结果

    Table  3.   Monazite laser ablation inductively coupled plasma mass spectrometry U-Pb data of Late Indosinian adakitic granite in East Kunlun

    测试点 元素含量/×10−6 Th/U 同位素比值及误差 年龄及误差/Ma
    U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ
    1 4220 76200 822 18 0.05294 0.00057 0.2388 0.0030 0.03275 0.00036 0.01060 0.00013 218 3 208 2 326 25 213 3
    2 6220 53500 674 9 0.05089 0.00048 0.2296 0.0029 0.03274 0.00037 0.01056 0.00013 210 2 208 2 236 22 212 3
    3 4410 98300 1021 22 0.05171 0.00046 0.237 0.0033 0.03324 0.00043 0.01061 0.00012 216 3 211 3 273 20 213 3
    4 8520 122000 1347 14 0.0508 0.00044 0.2307 0.0026 0.03299 0.00040 0.01050 0.00010 211 2 209 3 232 20 211 2
    5 12000 70900 1007 6 0.05136 0.00043 0.2325 0.0031 0.03282 0.00041 0.01047 0.00013 212 3 208 3 257 19 211 3
    6 3860 86500 893 22 0.05365 0.00058 0.2437 0.0034 0.0329 0.00034 0.01050 0.00012 222 3 209 2 356 24 211 2
    7 9340 48500 721 5 0.05144 0.00047 0.2327 0.0026 0.03283 0.00036 0.01052 0.00016 213 2 208 2 261 21 212 3
    8 6890 156000 1608 23 0.05236 0.00047 0.2406 0.0029 0.03334 0.00038 0.01054 0.00012 219 2 211 2 301 20 212 2
    9 3880 84000 861 22 0.05316 0.0005 0.2401 0.0029 0.03275 0.00033 0.01069 0.00011 219 2 208 2 336 21 215 2
    10 6800 152000 1522 22 0.05404 0.00044 0.247 0.0028 0.03319 0.00038 0.01049 0.00010 224 2 211 2 373 18 211 2
    11 8060 118000 1224 15 0.05289 0.0005 0.236 0.0031 0.03242 0.00042 0.01029 0.00011 215 3 206 3 324 22 207 2
    12 7200 141000 1358 20 0.05443 0.00049 0.2452 0.0029 0.03274 0.00041 0.01010 0.00010 223 2 208 3 389 20 203 2
    13 9040 150000 1532 17 0.05203 0.00045 0.2331 0.0028 0.03256 0.00042 0.01039 0.00011 213 2 207 3 287 20 209 2
    14 5580 120000 1166 22 0.05309 0.00047 0.2421 0.0035 0.03308 0.00045 0.01039 0.00010 220 3 210 3 333 20 209 2
    15 5280 96200 962 18 0.05138 0.00046 0.234 0.0031 0.03306 0.00042 0.01044 0.00011 214 3 210 3 258 20 210 2
    16 11200 172000 1770 15 0.05186 0.0004 0.2344 0.0028 0.03279 0.00036 0.01044 0.00009 214 2 208 2 279 18 210 2
    17 11100 131000 1415 12 0.05181 0.00039 0.2336 0.0028 0.03272 0.00039 0.01039 0.00011 213 2 208 3 277 17 209 2
    18 4270 120000 1119 28 0.05221 0.00049 0.2344 0.0034 0.03254 0.00038 0.01043 0.00011 214 3 206 2 295 21 210 2
    19 5230 130000 1228 25 0.052 0.00049 0.2352 0.0031 0.03284 0.00040 0.01046 0.00010 215 3 208 3 286 22 210 2
    20 5300 117000 1125 22 0.05244 0.00045 0.2399 0.0035 0.03317 0.00043 0.01040 0.00012 218 3 210 3 305 20 209 2
    21 8240 135000 1345 16 0.05297 0.00043 0.2383 0.0030 0.03263 0.00038 0.01041 0.00010 217 3 207 2 328 18 209 2
    22 5310 99800 977 19 0.05215 0.00049 0.2383 0.0032 0.03316 0.00040 0.01048 0.00010 217 3 210 3 292 22 211 2
    23 4430 89300 853 20 0.05133 0.00046 0.2319 0.0033 0.03277 0.00041 0.01038 0.00011 212 3 208 3 256 21 209 2
    24 5210 111000 1052 21 0.05161 0.00049 0.2333 0.0033 0.03281 0.0004 0.01045 0.00012 213 3 208 3 268 22 210 3
    25 2450 50200 472 20 0.05531 0.00064 0.2498 0.0039 0.03273 0.00035 0.01029 0.00014 226 3 208 2 425 26 207 3
    26 6340 125000 1199 20 0.05421 0.00049 0.2462 0.0032 0.03297 0.00039 0.01056 0.00012 224 3 209 2 380 20 212 2
    27 7150 104000 1048 15 0.05311 0.00045 0.2398 0.0028 0.03283 0.00040 0.01038 0.00012 218 2 208 3 334 19 209 2
    28 7650 133000 1286 17 0.05281 0.00044 0.2371 0.0027 0.03263 0.00039 0.01042 0.00012 216 2 207 2 321 19 210 2
    29 7440 110000 1106 15 0.05197 0.0004 0.2355 0.0029 0.03289 0.00036 0.01042 0.00012 215 2 209 2 284 18 210 2
    30 3690 129000 1139 35 0.05201 0.0005 0.2365 0.0032 0.03296 0.00033 0.01045 0.00012 216 3 209 2 286 22 210 3
    下载: 导出CSV

    表  4  东昆仑印支晚期埃达克质花岗岩锆石原位Hf同位素组成

    Table  4.   Zircon in situ Hf isotope composition of Late Indosinian adakitic granite in East Kunlun

    测点 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ εHf(0) εHft ±2σ tDM1 /Ga tDM2/Ga fLu/Hf 年龄/Ma
    花岗闪长岩(2BTS-1样品)
    2 0.019562 0.000360 0.000576 0.000009 0.282771 0.000012 −0.05 4.3 0.4 0.67 0.96 −0.98 201
    3 0.027941 0.001496 0.000836 0.000041 0.282780 0.000010 0.28 4.6 0.4 0.67 0.94 −0.97 202
    4 0.025777 0.000298 0.000805 0.000008 0.282776 0.000012 0.16 4.5 0.4 0.67 0.95 −0.98 207
    5 0.042144 0.000510 0.001233 0.000012 0.282754 0.000011 −0.65 3.6 0.4 0.71 1.01 −0.96 206
    6 0.026627 0.000435 0.000827 0.000012 0.282801 0.000011 1.04 5.3 0.4 0.64 0.90 −0.98 204
    7 0.021616 0.000107 0.000723 0.000007 0.282769 0.000012 −0.10 4.2 0.4 0.68 0.97 −0.98 206
    8 0.021666 0.000085 0.000691 0.000002 0.282819 0.000011 1.67 6.0 0.4 0.61 0.85 −0.98 196
    9 0.024267 0.000585 0.000748 0.000016 0.282779 0.000011 0.24 4.6 0.4 0.67 0.95 −0.98 203
    10 0.028067 0.000564 0.000880 0.000019 0.282762 0.000011 −0.36 3.9 0.4 0.69 0.99 −0.97 207
    12 0.041378 0.000634 0.001253 0.000017 0.282767 0.000013 −0.18 4.1 0.5 0.69 0.98 −0.96 201
    花岗闪长岩(2BTS-3样品)
    1 0.018020 0.000545 0.000567 0.000014 0.282772 0.000012 0.01 4.3 0.4 0.67 0.96 −0.98 199
    2 0.083193 0.001470 0.002278 0.000036 0.282805 0.000013 1.17 5.3 0.5 0.66 0.90 −0.93 200
    3 0.074120 0.002881 0.002134 0.000084 0.282787 0.000013 0.55 4.7 0.4 0.68 0.94 −0.94 202
    4 0.025046 0.000455 0.000784 0.000013 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 205
    5 0.024533 0.000293 0.000761 0.000007 0.282764 0.000012 −0.27 4.1 0.4 0.69 0.98 −0.98 204
    6 0.037705 0.000598 0.001123 0.000018 0.282769 0.000011 −0.10 4.1 0.4 0.69 0.97 −0.97 198
    7 0.025854 0.000167 0.000816 0.000006 0.282770 0.000011 −0.08 4.1 0.4 0.68 0.97 −0.98 196
    8 0.235679 0.008025 0.006361 0.000207 0.282875 0.000015 3.66 7.3 0.5 0.62 0.78 −0.81 204
    9 0.025038 0.001254 0.000693 0.000027 0.282748 0.000011 −0.85 3.4 0.4 0.71 1.02 −0.98 198
    10 0.029056 0.000891 0.000895 0.000025 0.282781 0.000012 0.34 4.5 0.4 0.66 0.94 −0.97 195
    二长花岗岩(2MSG-1样品)
    1 0.035872 0.001489 0.001229 0.000027 0.282665 0.000021 −3.8 0.6 0.7 0.84 1.20 −0.96 209
    2 0.034150 0.000825 0.001158 0.000024 0.282686 0.000016 −3.0 1.4 0.6 0.81 1.15 −0.97 209
    3 0.029031 0.000562 0.001159 0.000020 0.282715 0.000021 −2.0 2.4 0.7 0.76 1.09 −0.97 208
    4 0.033764 0.000344 0.001199 0.000012 0.282666 0.000018 −3.7 0.7 0.6 0.83 1.20 −0.96 211
    5 0.043131 0.001231 0.001494 0.000030 0.282718 0.000017 −1.9 2.5 0.6 0.77 1.09 −0.95 209
    6 0.034134 0.000504 0.001224 0.000012 0.282633 0.000019 −4.9 −0.4 0.7 0.88 1.27 −0.96 211
    7 0.027432 0.000219 0.001016 0.000006 0.282658 0.000019 −4.0 0.4 0.7 0.84 1.22 −0.97 207
    8 0.038499 0.001176 0.001301 0.000017 0.282654 0.000019 −4.2 0.2 0.7 0.85 1.23 −0.96 208
    9 0.033285 0.000708 0.001172 0.000016 0.282663 0.000018 −3.8 0.6 0.6 0.84 1.20 −0.96 211
    10 0.041094 0.003337 0.001362 0.000074 0.282718 0.000027 −1.9 2.5 0.9 0.76 1.08 −0.96 209
    二长花岗岩(2MSG-3样品)
    1 0.025003 0.000323 0.000818 0.000015 0.282746 0.000019 −0.9 3.5 0.7 0.71 1.02 −0.98 207
    2 0.020619 0.000329 0.000725 0.000017 0.282642 0.000019 −4.6 −0.1 0.7 0.86 1.25 −0.98 208
    3 0.033529 0.000919 0.001098 0.000017 0.282775 0.000019 0.1 4.5 0.7 0.68 0.95 −0.97 206
    4 0.029780 0.000433 0.000967 0.000003 0.282609 0.000019 −5.8 −1.3 0.7 0.91 1.33 −0.97 208
    5 0.029397 0.000773 0.000946 0.000010 0.282750 0.000019 −0.8 3.6 0.7 0.71 1.01 −0.97 207
    6 0.030505 0.001098 0.000983 0.000042 0.282608 0.000018 −5.8 −1.3 0.6 0.91 1.33 −0.97 209
    7 0.035696 0.000317 0.001136 0.000019 0.282706 0.000018 −2.3 2.1 0.6 0.78 1.11 −0.97 211
    8 0.049762 0.001531 0.001581 0.000031 0.282726 0.000020 −1.6 2.8 0.7 0.76 1.06 −0.95 213
    9 0.034561 0.000792 0.001118 0.000012 0.282812 0.000019 1.4 5.9 0.7 0.63 0.87 −0.97 211
    10 0.038980 0.000737 0.001272 0.000033 0.282670 0.000020 −3.6 0.8 0.7 0.83 1.19 −0.96 210
    下载: 导出CSV

    表  5  东昆仑印支晚期埃达克质花岗岩全岩Sr-Nd同位素组成

    Table  5.   Sr-Nd isotopic composition of the Late Indosinian adakitic granite in East Kunlun

    样品编号 2BTS-1-2 2BTS-3-2 2BTS-4-2 2MSG-3-2 2MSG-3-3 2MSG-1-2
    87Rb/86Sr 0.6322 0.6208 0.5119 0.6206 0.6130 0.9786
    87Sr/86Sr 0.70925 0.70923 0.70891 0.71094 0.71094 0.71181
    2σ 0.000006 0.000005 0.000006 0.000006 0.000006 0.000007
    87Sr/86Sr)i 0.7074 0.7075 0.7074 0.7091 0.7091 0.7089
    147Sm/144Nd 0.08694 0.09571 0.09216 0.09230 0.09372 0.09996
    143Nd/144Nd 0.512409 0.512425 0.512421 0.512324 0.512326 0.512321
    2σ 0.000004 0.000004 0.000004 0.000005 0.000006 0.000005
    143Nd/144Nd)i 0.512290 0.512294 0.512300 0.512203 0.512203 0.512184
    t/Ma 201 200 201 209 209 209
    εNdt −1.65 −1.58 −1.55 −3.34 −3.34 −3.60
    tDM1/Ga 0.89 0.94 0.92 1.04 1.05 1.11
    tDM2/Ga 1.12 1.11 1.11 1.26 1.26 1.28
    下载: 导出CSV
  • [1] ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
    [2] AO C, SUN F Y, LI B L, et al., 2015. U-Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 39(6): 1176-1184, doi: 10.16539/j.ddgzyckx.2015.06.016
    [3] CAO L, YI L W, DAI W, et al., 2021. Re-Os isotopic age of molybdenite of the Jingren deposit and its mineralogical significance of magnetite, pyrite and chalcopyrite[J]. Acta Geologica Sinica (English Edition), 95(4): 1236-1248. doi: 10.1111/1755-6724.14718
    [4] CASTILLO P R, JANNEY P E, SOLIDUM R U, 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51. doi: 10.1007/s004100050467
    [5] CASTILLO P R, 2012. Adakite petrogenesis[J]. Lithos, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013
    [6] CHEN D L, LIU L, CHE Z C, et al., 2001. Determination and preliminary study of Indosinian aluminous A-type granites in the Qimantag area, southeastern Xinjiang[J]. Geochimica, 30(6): 540-546. (in Chinese with English abstract
    [7] CHEN G, PEI X Z, LI Z C, et al., 2016. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China, 35(12): 1990-2005. (in Chinese with English abstract
    [8] CHEN G C, PEI X Z, LI R B, et al., 2013a. Late Triassic magma mixing in the East Kunlun orogenic belt: a case study of Helegang Xilikete granodiorites[J]. Geology in China, 40(4): 1044-1065. (in Chinese with English abstract
    [9] CHEN G C, PEI X Z, LI R B, et al., 2013b. Zircon U-Pb geochronology, geochemical characteristics and geological significance of cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun[J]. Acta Geologica Sinica, 87(2): 178-196. (in Chinese with English abstract
    [10] CHEN G C, PEI X Z, LI R B, et al., 2017. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance[J]. Geotectonica et Metallogenia, 41(6): 1097-1115. (in Chinese with English abstract
    [11] CHEN G C, PEI X Z, LI R B, et al., 2018. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: constraint on the middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 34(3): 567-585. (in Chinese with English abstract
    [12] CHEN G C, PEI X Z, LI R B, et al., 2019. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 26(4): 191-208. (in Chinese with English abstract
    [13] CHEN G C, CHEN X Z, PEI X Z, et al., 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of East Kunlun[J]. Acta Geologica Sinica, 96(3): 971-990. (in Chinese with English abstract
    [14] CHERNIAK D J, HANCHAR J M, WATSON E B, 1997a. Diffusion of tetravalent cations in zircon[J]. Contributions to Mineralogy and Petrology, 127(4): 383-390. doi: 10.1007/s004100050287
    [15] CHERNIAK D J, HANCHAR J M, WATSON E B, 1997b. Rare-earth diffusion in zircon[J]. Chemical Geology, 134(4): 289-301. doi: 10.1016/S0009-2541(96)00098-8
    [16] CHERNIAK D J, WATSON E B, 2001. Pb diffusion in zircon[J]. Chemical Geology, 172(1-2): 5-24. doi: 10.1016/S0009-2541(00)00233-3
    [17] CHERNIAK D J, WATSON E B, GROVE M, et al., 2004. Pb diffusion in monazite: a combined RBS/SIMS study[J]. Geochimica et Cosmochimica Acta, 68(4): 829-840. doi: 10.1016/j.gca.2003.07.012
    [18] China University of Geosciences (Wuhan), 2006. Regional geological survey report of 1∶250 000 Qusaihu (I46C001002) and Budomhquan (I46C001003) in Qinghai Province[R]. 1-400. (in Chinese)
    [19] CHU N C, TAYLOR R N, CHAVAGNAC V, et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/b206707b
    [20] CHUNG S L, LIU D Y, JI J Q, et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1
    [21] DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0
    [22] DING Q F, JIANG S Y, SUN F Y, 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: petrogenesis and tectonic implications[J]. Lithos, 205: 266-283. doi: 10.1016/j.lithos.2014.07.015
    [23] DING S, HUANG H, NIU Y L, et al., 2011. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrologica Sinica, 27(12): 3603-3614. (in Chinese with English abstract
    [24] DONG Y P, HE D F, SUN S S, et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006
    [25] DONG Y P, HUI B, SUN S S, et al., 2022. Multiple orogeny and geodynamics from proto-tethys to paleo-tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3426-3448. (in Chinese with English abstract
    [26] FANG J, ZHANG L, CHEN H Y, et al., 2018. Genesis of the Weibao banded skarn Pb-Zn deposit, Qimantagh, Xinjiang: insights from skarn mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews, 100: 483-503. doi: 10.1016/j.oregeorev.2017.06.001
    [27] FENG C Y, LI D S, QU W J, et al., 2009. Re-Os isotopic dating of molybdenite from the Suolajier skarn-type copper-molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223-227. (in Chinese with English abstract
    [28] FENG C Y, WANG X P, SHU X F, et al., 2011. Isotopic chronology of the hutouya skarn lead-zinc polymetallic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806-1817. (in Chinese with English abstract
    [29] FENG K, LI R B, PEI X Z, et al., 2020. Zircon U-Pb dating and geochemical characteristics of dagele granite in the eastern margin of East Kunlun Orogenic Belt, China and their tectonic implications[J]. Journal of Earth Sciences and Environment, 42(4): 442-463, doi: 10.19814/j.jese.2020.05009
    [30] FENG K, LI R B, PEI X Z, et al., 2022. Zircon U-Pb chronology, geochemistry and geological significance of late triassic intermediate-acid volcanic rocks in Boluositai Area, East Kunlun Orogenic Belt[J]. Earth Science, 47(4): 1194-1216, doi: 10.3799/dqkx.2021.116
    [31] GAO H C, SUN F Y, LI B L, et al., 2020. Geochronological and geochemical constraints on the origin of the Hutouya polymetallic skarn deposit in the East Kunlun orogenic belt, NW China[J]. Minerals, 10(12): 1136. doi: 10.3390/min10121136
    [32] GAO Y B, Li W Y, Ma X G, et al., 2012. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 48(2): 36-47(in Chinese with English abstract
    [33] GAO Y B, LI W Y, QIAN B, et al., 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647-1665. (in Chinese with English abstract
    [34] General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese)
    [35] General Administration of Quality Supervision, Insp ection and Quarantine of China, Standardization Administration of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010b. (in Chinese)
    [36] GU X X, ZHANG Y M, HE G F, et al. , 2017. Study on metallogenic regularity and prospecting direction of gold deposit in Kunlun River area, Qinghai Province[R]. 1-332. (in Chinese)
    [37] GUAN Q, ZHU D C, ZHAO Z D, et al., 2012. Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 21(1): 88-99. doi: 10.1016/j.gr.2011.07.004
    [38] GUO X Z, LI Y Z, JIA Q Z, et al., 2018. Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun: implication for metallogenic tectonic[J]. Acta Petrologica Sinica, 34(8): 2359-2379. (in Chinese with English abstract
    [39] GUO X Z, JIA Q Z, LI J C, et al., 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286-300. (in Chinese with English abstract
    [40] HE Y S, LI S G, HOEFS J, et al., 2011. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. doi: 10.1016/j.gca.2011.04.011
    [41] HOU Z Q, GAO Y F, QU X M, et al., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X
    [42] HU Y, NIU Y L, LI J Y, et al., 2016. Petrogenesis and tectonic significance of the late triassic mafic dikes and felsic volcanic rocks in the East Kunlun orogenic belt, northern tibet plateau[J]. Lithos, 245: 205-222. doi: 10.1016/j.lithos.2015.05.004
    [43] HUANG H, NIU Y L, NOWELL G, et al., 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 370: 1-18, doi: 10.1016/J.chemgeo.2014.01.010
    [44] HUANG X K, 2021. Gold mineralization and comprehensive information prospecting prediction in Balong-Gouli area, East Kunlun Orogen[D]. Wuhan: China University of Geosciences, doi: 10.27492/d.cnki.gzdzu.2021.000251. (in Chinese with English abstract
    [45] HUANG X K, WEI J H, LI H, et al., 2021. Zircon U-Pb geochronological, elemental and Sr-Nd-Hf isotopic constraints on petrogenesis of late triassic quartz diorite in balong region, East Kunlun Orogen[J]. Earth Science, 46(6): 2037-2056. (in Chinese with English abstract
    [46] JIAN K K, ZHU Y H, WANG L W, et al., 2017. Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the middle triassic granites from the Zhongzaohuo Area, East Kunlun[J]. Geological Review, 63(3): 659-676. (in Chinese with English abstract
    [47] KAY R W, KAY S M, 1993. Delamination and delamination magmatism[J]. Tectonophysics, 219(1-3): 177-189. doi: 10.1016/0040-1951(93)90295-U
    [48] KONG H L, LI J C, LI Y Z, et al., 2016. LA-MC-ICP-MS zircon U-Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron-polymetallic ore district in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 35(1): 8-16. (in Chinese with English abstract
    [49] KONG J J, NIU Y L, HU Y, et al., 2020. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: implications for continental crust growth from syn-collisional to post-collisional setting[J]. Lithos, 364-365: 105513, doi: 10.1016/J.lithos.2020.105513
    [50] LI C X, ZENG X H, ZHOU H, et al., 2023. Petrogenesis and geological significance of triassic granites in the central bayanhar[J]. Geotectonica et Metallogenia, 47(6): 1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303
    [51] LI J C, 2017. Metallogenic regularity and metallogenic prognosis of Gold Deposit in the East Kunlun Orogen, Qinghai Province[D]. Xi’an: Chang'an University. (in Chinese with English abstract
    [52] LI R B, PEI X Z, LI Z C, et al., 2015. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 34(12): 2302-2314 (in Chinese with English abstract
    [53] LI R B, PEI X Z, LI Z C, et al., 2018. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 34(11): 3399-3421. (in Chinese with English abstract
    [54] LI R B, PEI X Z, PEI L, et al., 2018. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 62: 212-226. doi: 10.1016/j.gr.2018.03.005
    [55] LIANG G Z, YANG K F, SUN W Q, et al., 2021. Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun Orogenic Belt, western China[J]. Journal of Asian Earth Sciences, 220: 104920. doi: 10.1016/j.jseaes.2021.104920
    [56] LING X X, HUYSKENS M H, LI Q L, et al., 2017. Monazite RW-1: a homogenous natural reference material for SIMS U–Pb and Th–Pb isotopic analysis[J]. Mineralogy and Petrology, 111(2): 163-172 doi: 10.1007/s00710-016-0478-7
    [57] LIU B, MA C Q, HUANG J, et al., 2017. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau[J]. Lithos, 284-285: 766-778. doi: 10.1016/j.lithos.2017.05.016
    [58] LIU H T, 2001. Qimantage terrestrial volcanics: Petrologic evidence of active continental margin of Tarim Plate during Late Indo-China Epoch[J]. Acta Petrologica Sinica, 17(3): 337-351 (in Chinese with English abstract
    [59] LIU J D, ZHANG K, WANG B Z, et al., 2023. U-Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains[J]. Geological Review, 69(4): 1525-1542. (in Chinese with English abstract
    [60] LIU J L, SUN F Y, LI L, et al., 2015. Geochronology, geochemistry and Hf isotopes of gerizhuotuo complex intrusion in west of anyemaqen suture zone[J]. Earth Science, 40(6): 965-981. (in Chinese with English abstract
    [61] LIU J N, FENG C Y, HE S Y, et al., 2017. Zircon U-Pb and phlogopite Ar-Ar ages of the monzogranite from Yemaquan iron-zinc deposit in Qinghai province[J]. Geotectonica et Metallogenia, 41(6): 1158-1170, doi: 10.16539/j.ddgzyckx.2017.06.013
    [62] LIU S, HU R Z, GAO S, et al., 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China: constraints on petrogenesis and implications[J]. Journal of Asian Earth Sciences, 35(5): 445-458. doi: 10.1016/j.jseaes.2009.02.008
    [63] LIU Y H, MO X X, YU X H, et al., 2006. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 22(10): 2457-2463. (in Chinese with English abstract
    [64] LUDWIG K R, 2003. User's manual for isoplot 3.00: a geochronological toolkit for microsoft excel[R]. Berkeley: Berkeley Geochronology Center: 39.
    [65] LUO M F, MO X X, YU X H, et al., 2014. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride Area, East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3229-3241. (in Chinese with English abstract
    [66] LUO Z H, KE S, CAO Y Q, et al., 2002. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6): 292-297. (in Chinese with English abstract
    [67] MACPHERSON C G, DREHER S T, THIRLWALL M F, 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth And Planetary Science Letters, 243(3-4): 581-593. doi: 10.1016/j.jpgl.2005.12.034
    [68] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224, doi: 10.1016/0012-8252(94)90029-9
    [69] MO X X, LUO Z H, DENG J F, et al., 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403-414. (in Chinese with English abstract
    [70] PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05
    [71] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81, doi: 10.1007/BF00384745
    [72] PEI X Z, LI R B, LI Z C, et al., 2018. Composition feature and Formation process of buqingshan composite accretionary mélange belt in southern margin of East Kunlun Orogen[J]. Earth Science, 43(12): 4498-4520. (in Chinese with English abstract
    [73] QIAN B, GAO Y B, LI K, et al., 2015. Zircon U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granitic intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 31(9): 2508-2520. (in Chinese with English abstract
    [74] Qinghai Geological Survey Institute, 2023. Regional geology of China. Qinghai province[M]. Beijing: Geological Publishing House: 1-1543. (in Chinese)
    [75] QU H Y, FRIEHAUF K, SANTOSH M, et al., 2019. Middle-Late Triassic magmatism in the Hutouya Fe-CU-Pb-Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization[J]. Ore Geology Reviews, 113: 103088. doi: 10.1016/j.oregeorev.2019.103088
    [76] REN J S, 2004. Some problems on the Kunlun-Qinling orogenic system[J]. Northwestern Geology, 37(1): 1-5. (in Chinese with English abstract
    [77] RUDNICK R L, GAO S, 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.
    [78] SHAO F L, 2017. Petrogenesis of Triassic granitoids and rhyolites in the East Kunlun Orogenic Belt and their tectonic implications[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences: 1-146. (in Chinese with English abstract
    [79] SMITH H A, GILETTI B J, 1997. Lead diffusion in monazite[J]. Geochimica et Cosmochimica Acta, 61(5): 1047-1055. doi: 10.1016/S0016-7037(96)00396-1
    [80] SONG S G, WANG M J, WANG C, et al., 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective[J]. Science China Earth Sciences, 58(8): 1284-1304, doi: 10.1007/s11430-015-5102-x
    [81] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [82] SUN Y, PEI X Z, DING S P, et al., 2009. Halagatu magma mixing granite in the East Kunlun Mountains: evidence from zircon U-Pb dating[J]. Acta Geologica Sinica, 83(7): 1000-1010. (in Chinese with English abstract
    [83] TIAN C S, FENG C Y, LI J H, et al., 2013. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in qimantag mountain of Qinghai province and its geological implications[J]. Mineral Deposits, 32(1): 169-176. (in Chinese with English abstract
    [84] TOMASCAK P B, KROGSTAD E J, WALKER R J, 1996. U-Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the northern appalachians[J]. The Journal of Geology, 104(2): 185-195. doi: 10.1086/629813
    [85] WANG B Z, CHEN J, LUO Z H, et al., 2014. Spatial and temporal distribution of Late Permian-Early Jurassic intrusion assemblages in eastern Qimantag, East Kunlun, and their tectonic settings[J]. Acta Petrologica Sinica, 30(11): 3213-3228. (in Chinese with English abstract
    [86] WANG B Z, PAN T, REN H D, et al., 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 28(1): 318-333 (in Chinese with English abstract
    [87] WANG B Z, LI J Q, FU C L, et al., 2022. Research on formation and evolution of Early paleozoic bulhanbuda Arc in East Kunlun Orogen[J]. Earth Science, 47(4): 1253-1270. (in Chinese with English abstract
    [88] WANG F C, CHEN J, XIE Z Y, et al., 2013. Geological features and Re-Os isotopic dating of the Lalingzaohuo molybdenum polymetallic deposit in East Kunlun[J]. Geology in China, 40(4): 1209-1217. (in Chinese with English abstract
    [89] WANG F L, WEI J H, LI X L, et al., 2022. Late permian magmatism at the eastern segment of the eastern Kunlun Orogenic belt: insights from granites in the Gazhima Area[J]. Geotectonica et Metallogenia, 46(5): 1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009
    [90] WANG P, ZHAO G C, LIU Q, et al., 2022. Evolution of the paleo-tethys ocean in eastern Kunlun, north Tibetan Plateau: from continental rift-drift to final closure[J]. Lithos, 422-423: 106717. doi: 10.1016/j.lithos.2022.106717
    [91] WANG Q, XU J F, JIAN P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070
    [92] WANG Q, WYMAN D A, XU J F, et al., 2007. Early cretaceous adakitic granites in the northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008
    [93] WANG Q, XU J F, ZHAO Z H, et al., 2008. Tectonic setting and associated rock suites of adakitic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350. (in Chinese with English abstract
    [94] WANG Q, HAO L L, ZHANG X Z, et al., 2020. Adakitic rocks at convergent plate boundaries: compositions and petrogenesis[J]. Science China Earth Sciences, 63(12): 1992-2016. doi: 10.1007/s11430-020-9678-y
    [95] WANG W, XIONG F H, MA C Q, et al., 2021. Petrogenesis of triassic suolagou sanukitoid-like diorite in East Kunlun orogen and its implications for paleo-tethyan orogeny[J]. Earth Science, 46(8): 2887-2902. (in Chinese with English abstract
    [96] WANG Y L, ZHANG Z W, ZHANG J W, et al., 2017. Early mesozoic mantle-derived magmatic events and their geological significance in the East Kunlun orogenic belt[J]. Geology and Exploration, 53(5): 855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003
    [97] WU F Y, YANG Y H, XIE L W, et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003
    [98] XIA R, QING M, WANG C M, et al., 2014. The genesis of the ore-bearing porphyry of the tuoketuo porphyry Cu-Au(Mo) deposit in the East Kunlun, Qinghai province: constraints from zircon U-Pb geochronological and geochemistry[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524. (in Chinese with English abstract
    [99] XIA R, WANG C M, QING M, et al., 2015. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024
    [100] XIAO Y, FENG C Y, LI D X, et al., 2014. Chronology and fluid inclusions of the guoluolongwa gold deposit in Qinghai province[J]. Acta Geologica Sinica, 88(5): 895-902. (in Chinese with English abstract
    [101] XIN W, SUN F Y, ZHANG Y T, et al., 2019. Mafic-intermediate igneous rocks in the East Kunlun orogenic belt, northwestern china: petrogenesis and implications for regional geodynamic evolution during the triassic[J]. Lithos, 346-347: 105159. doi: 10.1016/j.lithos.2019.105159
    [102] XIONG F H, MA C Q, ZHANG J Y, et al., 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 27(11): 3350-3364. (in Chinese with English abstract
    [103] XIONG F H, MA C Q, ZHANG J Y, et al., 2014. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by triassic I-type granitoids in the East Kunlun Orogen, northern Tibetan Plateau[J]. Journal of the Geological Society, 171(6): 847-863. doi: 10.1144/jgs2013-038
    [104] XU B, WANG C Y, LIU J D, et al., 2020. The petrogenesis of the Late Triassic granites in the Heergetou area, East Kunlun: constraints from geochronology, geochemistry and Sr-Nd-Pb isotopes[J]. Acta Geologica Sinica, 94(12): 3643-3656. (in Chinese with English abstract
    [105] XU Z Q, JIANG M, YANG J S, 1996. Tectonophysical process at depth for the uplift of the northern part of the qinghai-tibet plateau: illu- strated by the geological and geophysical compreh- ensive profile from golmud to the Tanggula Mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 70(3): 195-206. (in Chinese with English abstract
    [106] XU Z Q, YANG J S, LI W C, et al., 2012. Tectonic positioning of important metallogenic belts at southern and southeastern Tibet and ore prospecting[J]. Acta Geologica Sinica, 86(12): 1857-1868. (in Chinese with English abstract
    [107] YAN D D, XIONG F H, MA C Q, et al., 2024. Petrogenesis of middle triassic intermediate-mafic igneous rocks in East Kunlun, northern Tibet: implications for the crust growth and Paleo-Tethyan orogeny[J]. Geosystems and Geoenvironment, 3(2): 100096, doi: 10.1016/J.geogeo.2022.100096
    [108] YAN Z, BIAN Q T, Korchagin O A, et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: constrains from detrital framework, heavy mineral analysis and geochemistry[J]. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract
    [109] YIN H F, ZHANG K X, 1998. Evolution and characteristics of the Central Orogenic Belt[J]. Earth Science—Journal of China University of Geosciences, 23(5): 438-442. (in Chinese with English abstract
    [110] YU M, FENG C Y, LIU H C, et al., 2015. 40Ar-39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510-521. (in Chinese with English abstract
    [111] YUE W H, ZHOU J X, 2019. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai province[J]. Geological Bulletin of China, 38(2-3): 328-338. (in Chinese with English abstract
    [112] YUE Y G, 2022. Accretionary orogenesis of Carboniferous-Triassic in the southern belt of East Kunlun Orogen[D]. Xi’an: Northwest University, doi: 10.27405/d.cnki.gxbdu.2022.001333. (in Chinese with English abstract
    [113] ZENG L S, GAO L E, XIE K J, et al., 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303(3-4): 251-266. doi: 10.1016/j.jpgl.2011.01.005
    [114] ZHAN Q Y, ZHU D C, WANG Q, et al., 2018. Constructing the eastern margin of the Tibetan Plateau during the late Triassic[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459.
    [115] ZHANG J Y, MA C Q, XIONG F H, et al., 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 149(5): 892-908. doi: 10.1017/S0016756811001142
    [116] ZHANG J Y, MA C Q, LI J W, et al., 2017. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, Western China[J]. Ore Geology Reviews, 81: 342-357. doi: 10.1016/j.oregeorev.2016.11.003
    [117] ZHANG M Y, FENG C Y, WANG H, et al., 2018. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralogica, 37(2): 197-210. (in Chinese with English abstract
    [118] ZHANG X M, ZHAO X, FU L B, et al., 2023. Crustal architecture and metallogeny associated with the Paleo-Tethys evolution in the Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau[J]. Geoscience Frontiers, 14: 101654. doi: 10.1016/j.gsf.2023.101654
    [119] ZHANG Y L, LI Y Z, JIA Q Z, et al., 2018. Origin of magmatic rocks from Xishan copper polymetallic deposit, Geermu city, Qinghai province: insights from zircon U-Pb dating and geochemical characteristics[J]. Earth Science, 43(12): 4364-4374. (in Chinese with English abstract
    [120] ZHANG Y L, NI J Y, HU D G, et al., 2024. Geochronological and geochemical characteristics of volcanic rocks in the permian Gequ Formation in East Kunlun and their tectonic significance[J]. Acta Geoscientica Sinica, 45(2): 152-164. (in Chinese with English abstract
    [121] ZHAO X, FU L B, WEI J H, et al., 2018. Geochemical characteristics of An'nage hornblende gabbro from East Kunlun Orogenic belt and its constraints on evolution of paleo-tethys ocean[J]. Earth Science, 43(2): 354-370. (in Chinese with English abstract
    [122] ZHU Y X, WANG L X, MA C Q, et al., 2022. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412-413: 106595, doi: 10.1016/J.lithos.2022.106595
    [123] 奥琮,孙丰月,李碧乐,等,2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义[J]. 大地构造与成矿学,39(6):1176-1184, doi: 10.16539/J.ddgzyckx.2015.06.016.
    [124] 陈丹玲,刘良,车自成,等,2001. 祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J]. 地球化学,30(6):540-546. doi: 10.3321/j.issn:0379-1726.2001.06.006
    [125] 陈功,裴先治,李佐臣,等,2016. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报,35(12):1990-2005. doi: 10.3969/j.issn.1671-2552.2016.12.007
    [126] 陈国超,裴先治,李瑞保,等,2013a. 东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质,40(4):1044-1065.
    [127] 陈国超,裴先治,李瑞保,等,2013b. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报,87(2):178-196.
    [128] 陈国超,裴先治,李瑞保,等,2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学,41(6):1097-1115.
    [129] 陈国超,裴先治,李瑞保,等,2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报,34(3):567-585.
    [130] 陈国超,裴先治,李瑞保,等,2019. 东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据[J]. 地学前缘,26(4):191-208.
    [131] 陈国超,陈孝珍,裴先治,等,2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束[J]. 地质学报,96(3):971-990. doi: 10.3969/j.issn.0001-5717.2022.03.015
    [132] 丁烁,黄慧,牛耀龄,等,2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报,27(12):3603-3614.
    [133] 董云鹏,惠博,孙圣思,等,2022. 中国中央造山系原-古特提斯多阶段复合造山过程[J]. 地质学报,96(10):3426-3448. doi: 10.3969/j.issn.0001-5717.2022.10.010
    [134] 丰成友,李东生,屈文俊,等,2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试,28(3):223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006
    [135] 丰成友,王雪萍,舒晓峰,等,2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版),41(6):1806-1817.
    [136] 封铿,李瑞保,裴先治,等,2020. 东昆仑造山带东段大格勒花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报,42(4):442-463, doi: 10.19814/J.Jese.2020.05009.
    [137] 封铿,李瑞保,裴先治,等,2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 地球科学,47(4):1194-1216, doi: 10.3799/dqkx.2021.116.
    [138] 高永宝,李文渊,马晓光,等,2012. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版),48(2):36-47. doi: 10.3969/j.issn.0455-2059.2012.02.007
    [139] 高永宝,李文渊,钱兵,等,2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报,30(6):1647-1665.
    [140] 顾雪祥,章永梅,何格冯,等,2017. 青海省昆仑河地区金矿成矿规律与找矿方向研究[R]. 1-332.
    [141] 国显正,栗亚芝,贾群子,等,2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义[J]. 岩石学报,34(8):2359-2379.
    [142] 国显正,贾群子,李金超,等,2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报,25(2):286-300. doi: 10.12090/j.issn.1006-6616.2019.25.02.027
    [143] 黄啸坤,2021. 东昆仑巴隆-沟里地区金成矿作用与综合信息成矿预测[D]. 武汉:中国地质大学,doi: 10.27492/d.cnki.gzdzu.2021.000251.
    [144] 黄啸坤,魏俊浩,李欢,等,2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因:U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 地球科学,46(6):2037-2056.
    [145] 菅坤坤,朱云海,王利伟,等,2017. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义[J]. 地质论评,63(3):659-676.
    [146] 孔会磊,李金超,栗亚芝,等,2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报,35(1):8-16.
    [147] 李成祥,曾小慧,周虎,等,2023. 巴颜喀拉中部三叠纪花岗岩类的岩石成因及其地质意义[J]. 大地构造与成矿学,47(6):1413-1429, doi: 10.16539/J.ddgzyckx.2023.01.303.
    [148] 李金超,2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安:长安大学.
    [149] 李瑞保,裴先治,李佐臣,等,2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报,34(12):2302-2314. doi: 10.3969/j.issn.1671-2552.2015.12.016
    [150] 李瑞保,裴先治,李佐臣,等,2018. 东昆仑东段古特提斯洋俯冲作用:乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报,34(11):3399-3421.
    [151] 刘红涛,2001. 祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J]. 岩石学报,17(3):337-351. doi: 10.3321/j.issn:1000-0569.2001.03.001
    [152] 刘建栋,张焜,王秉璋,等,2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及Hf同位素特征[J]. 地质论评,69(4):1525-1542.
    [153] 刘建楠,丰成友,何书跃,等,2017. 青海野马泉铁锌矿床二长花岗岩锆石U-Pb和金云母Ar-Ar测年及地质意义[J]. 大地构造与成矿学,41(6):1158-1170, doi: 10.16539/J.ddgzyckx.2017.06.013.
    [154] 刘金龙,孙丰月,李良,等,2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素[J]. 地球科学,40(6):965-981.
    [155] 刘云华,莫宣学,喻学惠,等,2006. 东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报,22(10):2457-2463. doi: 10.3321/j.issn:1000-0569.2006.10.006
    [156] 罗明非,莫宣学,喻学惠,等,2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报,30(11):3229-3241.
    [157] 罗照华,柯珊,曹永清,等,2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报,21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003
    [158] 莫宣学,罗照华,邓晋福,等,2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报,13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
    [159] 裴先治,李瑞保,李佐臣,等,2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学,43(12):4498-4520.
    [160] 钱兵,高永宝,李侃,等,2015. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报,31(9):2508-2520.
    [161] 青海省地质调查院,2023. 中国区域地质志. 青海志[M]. 北京:地质出版社:1-1543.
    [162] 任纪舜,2004. 昆仑-秦岭造山系的几个问题[J]. 西北地质,37(1):1-5. doi: 10.3969/j.issn.1009-6248.2004.01.001
    [163] 邵凤丽,2017. 东昆仑造山带三叠纪花岗岩类和流纹岩类的成因:洋壳到陆壳的转化[D]. 青岛:中国科学院大学(中国科学院海洋研究所):1-146.
    [164] 孙雨,裴先治,丁仨平,等,2009. 东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J]. 地质学报,83(7):1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008
    [165] 田承盛,丰成友,李军红,等,2013. 青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J]. 矿床地质,32(1):169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012
    [166] 王秉璋,陈静,罗照华,等,2014. 东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J]. 岩石学报,30(11):3213-3228.
    [167] 王秉璋,潘彤,任海东,等,2021. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘,28(1):318-333.
    [168] 王秉璋,李积清,付长垒,等,2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学,47(4):1253-1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007
    [169] 王凤林,魏俊浩,李小亮,等,2022. 东昆仑造山带东段晚二叠世岩浆作用:来自尕之麻地区花岗岩的制约[J]. 大地构造与成矿学,46(5):1028-1045, doi: 10.16539/J.ddgzyckx.2022.05.009.
    [170] 王富春,陈静,谢志勇,等,2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年[J]. 中国地质,40(4):1209-1217. doi: 10.3969/j.issn.1000-3657.2013.04.019
    [171] 王强,许继峰,赵振华,等,2008. 埃达克质岩的构造背景与岩石组合[J]. 矿物岩石地球化学通报,27(4):344-350. doi: 10.3969/j.issn.1007-2802.2008.04.003
    [172] 王巍,熊富浩,马昌前,等,2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示[J]. 地球科学,46(8):2887-2902.
    [173] 王亚磊,张照伟,张江伟,等,2017. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探,53(5):855-866, doi: 10.13712/J.cnki.dzykt.2017.05.003.
    [174] 夏锐,卿敏,王长明,等,2014. 青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版),44(5):1502-1524.
    [175] 肖晔,丰成友,李大新,等,2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报,88(5):895-902.
    [176] 熊富浩,马昌前,张金阳,等,2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报,27(11):3350-3364.
    [177] 徐博,王成勇,刘建栋,等,2020. 东昆仑河尔格头地区晚三叠世花岗岩成因:年代学、地球化学及Sr-Nd-Pb同位素约束[J]. 地质学报,94(12):3643-3656. doi: 10.3969/j.issn.0001-5717.2020.12.009
    [178] 许志琴,姜枚,杨经绥,1996. 青藏高原北部隆升的深部构造物理作用:以“格尔木-唐古拉山”地质及地球物理综合剖面为例[J]. 地质学报,70(3):195-206.
    [179] 许志琴,杨经绥,李文昌,等,2012. 青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景[J]. 地质学报,86(12):1857-1868. doi: 10.3969/j.issn.0001-5717.2012.12.001
    [180] 闫臻,边千韬,Korchagin OA,等,2008. 东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据[J]. 岩石学报,24(5):1068-1078.
    [181] 殷鸿福,张克信,1998. 中央造山带的演化及其特点[J]. 地球科学−中国地质大学学报,23(5):438-442.
    [182] 于淼,丰成友,刘洪川,等,2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报,89(3):510-521.
    [183] 岳维好,周家喜,2019. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J]. 地质通报,38(2-3):328-338.
    [184] 岳远刚,2022. 东昆仑南部构造带石炭-三叠纪增生造山作用[D]. 西安:西北大学,doi: 10.27405/d.cnki.gxbdu.2022.001333.
    [185] 张明玉,丰成友,王辉,等,2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志,37(2):197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002
    [186] 张耀玲,倪晋宇,胡道功,等,2024. 东昆仑二叠系格曲组火山岩年代学、地球化学特征及其构造意义[J]. 地球学报,45(2):152-164. doi: 10.3975/cagsb.2023.110902
    [187] 张雨莲,栗亚芝,贾群子,等,2018. 青海省格尔木市西山铜多金属矿成矿岩体锆石U-Pb定年及地球化学特征[J]. 地球科学,43(12):4364-4374.
    [188] 赵旭,付乐兵,魏俊浩,等,2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学,43(2):354-370.
    [189] 中国地质大学(武汉),2006. 青海省1∶25万库赛湖幅(I46C001002)、不冻泉幅(I46C001003)区域地质调查报告[R]. 1-400.
    [190] 中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010a. 硅酸盐岩石化学分析方法:第28部分 16个主次成分量测定:GB/T 14506.28—2010[S]. 北京:中国标准出版社.
    [191] 中国国家质量监督检查检疫总局,中国国家标准化管理委员会,2010b. 硅酸盐岩石化学分析方法:第30部分 44个元素量测定:GB/T14506.30-2010[S]. 北京:中国标准出版社.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  104
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-01
  • 预出版日期:  2024-08-02
  • 刊出日期:  2024-10-28

目录

/

返回文章
返回